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It has recently been shown that fðTÞ gravity has nðn−3Þ
2

þ 1 physical degrees of freedom (d.o.f.) in n
dimensions, contrary to previous claims. The simplest physical interpretation of this fact is that the theory
possesses a scalar d.o.f. This is the case of fðRÞ gravity, a theory that can be understood in the Einstein
frame as general relativity plus a scalaron. The scalar field that represents the extra d.o.f. in fðTÞ gravity
encodes information about the parallelization of the spacetime, which is detected through a reinterpretation
of the equations of motion in both the teleparallel Jordan and Einstein frames. The trace of the equations of
motion in fðTÞ gravity shows the propagation of the scalar d.o.f., giving an accurate proof of its existence.
We also provide a simple toy model of a physical system with rotational pseudoinvariance, like fðTÞ
gravity, which gives insights into the physical interpretation of the extra d.o.f. We discuss some
implications and unusual features of the previously worked out Hamiltonian formalism for fðTÞ gravity.
Finally we show some mathematical tools to implement the Hamiltonian formulation in the Einstein frame
of fðTÞ gravity, which exhibits some problems that should be addressed in future works.
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I. INTRODUCTION

Gravitational theories based on a spacetime with abso-
lute parallelism are extensions of general relativity (GR)
that are being thoroughly studied in the literature. They
intend to solve the main problems of cosmology like the
hypothesis of dark matter, the accelerated expansion of the
Universe and the inflation paradigm, as well as theoretical
problems of general relativity like the emergence of
singularities, and the quest for a quantum field theory of
gravity. Although teleparallel and modified teleparallel
theories of gravity have a long history, their applications
in the realm of cosmology started to being considered just
recently in the context of teleparallelism à la Born-Infeld
[1]. The original motivation of this work was to obtain an
early accelerated expansion of the Universe without resort-
ing to an inflaton field. This scheme addresses the problems
of general relativity at the high-energy regime, which has
been studied and discussed to some extent in subsequent
work [2–8]. The article [1] is a particular case of the so-
called fðTÞ gravity, a slight variation of teleparallel models
that has also been proposed as an alternative explanation of
the late-time accelerated expansion of the Universe [9].
Since then, there has been a growing interest in this kind of

theories [10–44] and several other gravity models based in
parallelized spacetimes have been developed [45–50].
Modified teleparallel theories of gravity on all its forms
are expected to be an effective theory of a more funda-
mental physical theory valid at energy regimes near the
Planck energy.
There is one issue about fðTÞ gravity that has given rise

to disputes in the literature: the fact that it is not invariant
under local Lorentz transformations of the tetrad field. This
fact is usually interpreted as the selection of preferred
frames that parallelize the spacetime, which implies that the
theory contains extra degrees of freedom (d.o.f.) if com-
pared with GR. Although this issue could be tackled by
replacing the standard Weitzenböck connection with a
general one to obtain a covariant version of the theory
[51–53], the number of d.o.f. would remain unchanged
since the same dynamical equations should be expected in
such covariant versions of fðTÞ gravity.
A recent work has established that fðTÞ gravity contains

one extra d.o.f. compared with the teleparallel equivalent of
general relativity (TEGR) in arbitrary dimension [42].
Although there could be many physical objects possessing
a single d.o.f., the easiest interpretation would be that the
theory is equivalent to the teleparallel equivalent of general
relativity plus a scalar field minimally coupled to it.
However, a very known fact is that fðTÞ gravity does
not possess the analog of an Einstein frame, at least not in
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the way that it occurs in fðRÞ gravity [15,35]. Therefore, it
is timely to discuss the interpretation of the physical d.o.f.
of fðTÞ gravity in the light of its fðRÞ counterpart. We will
analyze whether the scalar field interpretation is valid both
in the teleparallel Jordan and Einstein equivalent frames
and look for further insights in their respective Hamiltonian
formulations.
This work is organized as follows. In Sec. II we will

review the basics of fðRÞ gravity and the interpretation of
the additional d.o.f. on this theory, together with the
definition of the Jordan and Einstein frames. In Sec. III
we will introduce the TEGR and its simplest generalization,
fðTÞ gravity. In Sec. IV we will analyze the issue of the
extra d.o.f. in fðTÞ gravity through the comparison of the
teleparallel Jordan and the Einstein frames actions and
their equations of motion. In Sec. V we will present a
mechanical system with rotational pseudoinvariance, which
is useful to exemplify several uncommon features of fðTÞ
gravity and will help to understand the physical meaning of
the extra d.o.f. In Sec. VI we will discuss some features
of the Hamiltonian formalism for fðTÞ gravity developed
in [42]. In Sec. VII we will introduce the Hamiltonian
formalism for the teleparallel Einstein frame and discuss
the doability of the Dirac-Bergmann algorithm in two
different approaches. Finally we will dedicate Sec. VIII
to the conclusions.

II. f ðRÞ GRAVITY

One of the most studied and simplest modifications of
general relativity consists in replacing the GR Lagrangian
R with a function fðRÞ of the scalar curvature. Such a
gravitational theory is described by the action

S ¼ −
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Smatter; ð1Þ

where κ ¼ 8πG. In (1) and throughout this work we adopt
the convention ðþ;−;−;−Þ for the metric signature. The
variation of the action (1) gives rise to the following fourth-
order dynamical equations:

f0ðRÞRμν −
1

2
fðRÞgμν − ½∇μ∇ν − gμν□�f0ðRÞ ¼ κT μν; ð2Þ

where f0ðRÞ ¼ df=dR and T μν is the matter stress-energy
tensor. We see that f0ðRÞ acts as a renormalization of the
gravitational constant κ, and therefore only functions
satisfying f0ðRÞ > 0 should be considered; besides it
should be f00ðRÞ > 0 in order to avoid instabilities [54–57].
Taking the trace of the equations of motion (2) we can

see that the Ricci scalar R is dynamically determined by the
trace T of the energy-momentum tensor T μν through the
second-order equation

f0ðRÞR − 2fðRÞ þ 3□f0ðRÞ ¼ κT ð3Þ

(in four dimensions). While Einstein’s equations imply that
R vanishes in vacuum, this equation possesses nontrivial
propagating solutions in vacuum, so suggesting the exist-
ence of a new d.o.f. related to R [or f0ðRÞ]. The presence of
additional d.o.f. in fðRÞ gravity is foreseeable, since the
Cauchy data for the higher (fourth) order of the differential
equations involve more functions to be chosen on the
Cauchy surface. The issue of how many new d.o.f. are
involved in fðRÞ gravity can be better understood in the so-
called Jordan frame, which we proceed to review.

A. Jordan frame

Equations (2) are fourth-order differential equations for
the metric. But, alternatively, one could regard the set (2),
(3) as second-order equations for the metric and the scalar
object f0ðRÞ. Without any harm let us change the notation
to

ϕ≡ f0ðRÞ; VðϕÞ≡ Rϕ − fðRÞ; ð4Þ

to rewrite Eqs. (2) as [58]

Rμν −
1

2
gμνR ¼ κ

ϕ
T μν −

gμν
2ϕ

VðϕÞ þ 1

ϕ
½∇μ∇νϕ − gμν□ϕ�:

ð5Þ

Equation (4) defines the Legendre transform of fðRÞ.
Therefore one also obtains

R ¼ V 0ðϕÞ: ð6Þ

Equations (5) and (6) can be recognized as the dynamical
equations associated with the action

SJF½gμν;ϕ� ¼ −
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½ϕR − VðϕÞ� þ Smatter ð7Þ

(which resembles a Brans-Dicke action withωBD ¼ 0 and a
nontrivial potential). By varying the action (7) with respect
to ϕ one gets Eq. (6), which says the scalar ϕ is a function
of the scalar curvature R. This result implies that the
Lagrangian in (7) is dynamically equivalent to the Legendre
transform of the function VðϕÞ; then, it can be rewritten as a
function of R uniquely:

fðRÞ ¼ ϕR − VðϕÞ; ð8Þ
which completes the full circle of the equivalence between
the actions (7) and (1). In fact, Eqs. (4), (6) and (8) contain
the entire mechanism of the Legendre transform and its
inverse (f00 ≠ 0 in order that the transformation be invert-
ible). The action (7) is said to be the Jordan frame
representation of fðRÞ gravity.
Notice that one can use the result (6) to write the trace

of Eq. (5) as a wave equation for a self-interacting scalar
field ϕ:
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3□ϕ − ϕ3½ϕ−2VðϕÞ�0 ¼ κT : ð9Þ

From this perspective, ϕ looks like a scalar field mini-
mally coupled to the metric gμν, but coupled to the matter.
On the other hand, Eqs. (5) are Einstein equations sourced
by the matter and the scalar field. Thus, fðRÞ gravity can be
rephrased as a scalar-tensor theory with second-order
dynamical equations [59–61]. As dynamical equations
for the metric gμν, Eqs. (5) keep all the symmetries
contained in Einstein equations1; so, they describe two
d.o.f. in four dimensions. Besides, there is one extra d.o.f.
described by the second-order equation (9).

B. Einstein frame

An even clearer understanding of the extra scalar d.o.f. in
fðRÞ gravity is achieved by working in the so-called
Einstein frame. In this representation the extra d.o.f. is
distilled in the action as a scalar field possessing its own
kinetic term. This goal is attained by means of a conformal
transformation of the metric together with a redefinition of
the scalar field:

gμν → g̃μν ¼ ϕgμν; ϕ → ϕ̃ ¼
ffiffiffiffiffi
3

2κ

r
lnϕ ð10Þ

(then it is
ffiffiffiffiffiffi−gp ¼ ϕ−2 ffiffiffiffiffiffi

−g̃
p

). Thus, applying the relation for
the scalar curvatures of conformally related metrics

ϕR̃ ¼ R −
3

2
gμν∂μ lnϕ∂ν lnϕ − 3□ lnϕ; ð11Þ

the action SJF in (7) is rewritten as

SEF½g̃μν; ϕ̃� ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
R̃
2κ

þ 1

2
g̃μν∂μϕ̃∂νϕ̃ − Uðϕ̃Þ

�
þ Smatter; ð12Þ

where the new potential Uðϕ̃Þ is

Uðϕ̃Þ ¼ −
VðϕÞ
2κϕ2

¼ fðRÞ − Rf0ðRÞ
2κf0ðRÞ2 : ð13Þ

The action (12) describes a tensor field g̃μν governed by
Einstein equations and a minimally coupled scalar field ϕ̃
governed by a Klein-Gordon equation that includes a self-
interaction [62–65]. Therefore, the Einstein frame has the
virtue of explicitly showing the extra d.o.f. at the level of
the action, since SEF is the sum of the Einstein-Hilbert
action and the scalar field action. Of course g̃μν and ϕ̃ are
not the original tensor and scalar fields; but it does not
matter for the purpose of counting d.o.f. Anyway, once the

Einstein frame dynamical equations are solved, one can
always return to the original metric gμν by means
of Eq. (10).
Our very aim is to investigate whether the issue of the

extra d.o.f. in fðTÞ gravity can be addressed in analogy
with the fðRÞ gravity case. For this, we will introduce fðTÞ
theories of gravity and its progenitor, the teleparallel
equivalent of general relativity.

III. TELEPARALLEL AND f ðTÞ GRAVITY

A. Teleparallel gravity

In order to build a dynamical theory for a field of
orthonormal frames, we begin by defining a manifold M
and a basis of vectors feag in the tangent space TpðMÞ. We
also define a dual basis fEag in the cotangent space T�

pðMÞ
such that EaðebÞ ¼ δab. If expanded in a coordinate basis,

ea ¼ eμa∂μ; Ea ¼ Ea
μdxμ; ð14Þ

the duality relationships are written as

Ea
μe

μ
b ¼ δab; eμaEa

ν ¼ δμν : ð15Þ

We will use Greek letters μ; ν;… ¼ 0;…; n − 1 for space-
time coordinate indices and Latin letters a;b;…¼ 0;…;
n−1 for tangent space or Lorentz indices. A vielbein is a
basis that encodes the metric structure through the follow-
ing relation:

g ¼ ηabEa ⊗ Eb; ð16Þ

then the inverse expression

ea · eb ¼ gðea; ebÞ ¼ ηab ð17Þ

states that the vielbein is an orthonormal basis. In n ¼ 4 we
have a vierbein or tetrad. The expressions (16) and (17) can
be alternatively written in coordinate language as

gμν ¼ ηabEa
μEb

ν ; ηab ¼ gμνe
μ
aeνb: ð18Þ

This notation also implies that
ffiffiffiffiffiffi−gp ¼ detðEa

μÞ≡ E, and
also e≡ detðeμaÞ ¼ E−1. We can construct a dynamical
theory for the spacetime through the tetrad field, since it
encodes the metric tensor and henceforth the geometry of
the spacetime. To get equations of motion equivalent to
Einstein equations we use the TEGR action,

S ¼ 1

2κ

Z
d4xET þ Smatter; ð19Þ

where T is a local Lorentz pseudoinvariant made up of the
torsion of the Weitzenböck connection1In particular, the automatic conservation of T μν is guaranteed.
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Tμ
νρ ¼ eμað∂νEa

ρ − ∂ρEa
νÞ: ð20Þ

In terms of this torsion, T is written as

T ≡ Tρ
μνSρμν; ð21Þ

where the object Sρμν is called the superpotential and is
given by

Sρμν ≡ −
1

4
ðTμν

ρ − Tνμ
ρ − Tρ

μνÞ þ 1

2
Tσ

σμδνρ −
1

2
Tσ

σνδμρ:

ð22Þ

GR and TEGR are equivalent theories because the GR
Lagrangian R differs from the TEGR Lagrangian in a
boundary term,

R ¼ −T þ 2e∂μðETμÞ; ð23Þ

where R is the Ricci scalar of the Levi-Civita connection
associated with the metric (18) and Tμ ≡ Tρ

ρ
μ is the vector

part of the torsion.
By varying the action (19) with respect to the tetrad field

we obtain the following dynamical equations:

4e∂μðEeλaSλμνÞ þ 4eλaTρ
μλSρμν − eνaT ¼ −2κeλaT λ

ν; ð24Þ

which prove to be equivalent to Einstein equations for the
metric (18). In particular, the trace of (24) in four
dimensions is

2eEa
ν∂μðEeλaSλμνÞ ¼ −κT ; ð25Þ

where T is the trace of the energy-momentum tensor.
However it can be proven that

2eEa
ν∂μðEeλaSλμνÞ ¼ −T þ 2e∂μðETμÞ: ð26Þ

Therefore it results

−T þ 2e∂μðETμÞ ¼ −κT : ð27Þ

The lhs is R, as we know from the Lagrangian equivalence
(23). Thus we retrieve the trace of Einstein equations.

B. f ðTÞ gravity
The teleparallel equivalent of general relativity can be

utilized as an underlying framework for a more general
class of modified gravities. The simplest choice is to
generalize the TEGR Lagrangian through an arbitrary
function of the torsion scalar T; this gives rise to the so-
called fðTÞ gravity. The action for this theory is given by

S½Ea
μ� ¼

1

2κ

Z
d4xEfðTÞ þ Smatter; ð28Þ

where T is the Weitzenböck or torsion scalar, which is
quadratic in first-order derivatives of the tetrad field. This
fact alone implies that the equations of motion of this
theory will always be second order, which is an advantage
over other modified gravities [as metric fðRÞ gravity]. In
fact, by varying the action (28) with respect to the tetrad, it
results [26]

4e∂μðf0ðTÞEeλaSλμνÞ þ 4f0ðTÞeλaTσ
μλSσμν − eνafðTÞ

¼ −2κeλaT λ
ν: ð29Þ

Equation (29) shows that f0ðTÞ renormalizes the gravita-
tional constant κ and the volume E. It has been known since
the beginning of the theory that the action of fðTÞ gravity
and their equations of motion are sensitive to local Lorentz
transformations in the tangent space of the spacetime
manifold: given a tetrad Ea that solves Eqs. (29), the
Lorentz transformed tetrad Ea0 ¼ Λa0

aðxÞEa will not nec-
essarily solve them. The departure from the local Lorentz
invariance can be already recognized in the action; the
torsion scalar T is invariant under global Lorentz trans-
formations of the tetrad, but local transformations will
provide it with terms containing derivatives of the Lorentz
matrices Λa0

aðxÞ. For TEGR this fact is harmless; according
to Eq. (23), T is equal to −R—which depends only on the
(locally invariant) metric—plus a boundary termwhich is the
responsible for the lack of local invariance. But a boundary
term is irrelevant for the dynamics in the TEGR action (19).
On the contrary, the most general functional form f in (28) is
not linear; thus the four-divergence term remains encapsu-
lated in f, and the local Lorentz invariance is definitely lost.

C. The premetric formulation of TEGR

We will find useful in later sections and future work to
rewrite several mathematical objects by getting rid of the
metric tensor in favor of the tetrad field and the Minkowski
metric. As it was firstly introduced in [66], the TEGR
Lagrangian can be written in a compact form like

L ¼ ET ¼ 1

2
E∂μEa

ν∂ρEb
λe

μ
ceνee

ρ
de

λ
fMab

cedf; ð30Þ

where Mab
cedf is the supermetric, the Lorentz invariant

tensor given by

Mab
cedf ¼ 2ηabη

c½dηf�e − 4δ½da ηf�½cδ
e�
b þ 8δ½ca ηe�½dδ

f�
b : ð31Þ

This object is nothing more than a constitutive tensor, that
is the object that relates the excitation field and the field
strength of any physical theory [67,68]. This result can be
derived alternatively by writing both Tρ

μν and Sρμν in the
premetric formalism. Observing that
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Tρ
μν ¼ eρað∂μEa

ν − ∂νEa
μÞ ¼ ∂σEa

λe
ρ
aeσbe

λ
cEd

μEe
νðδbdδce − δbeδ

c
dÞ;

ð32Þ

we can rewrite the superpotential Sρμν defined in (22) as

Sρμν ¼ Ed
ρ∂σEa

λe
σ
be

λ
ce

μ
eeνfSad

becf; ð33Þ

where we have defined

Sadbecf ¼ ηadη
e½bηc�f − ηf½bδc�d δ

e
a þ ηe½bδc�d δ

f
a þ 2δbaη

c½eδf�d

− 2δcaη
b½eδf�d : ð34Þ

Performing the corresponding algebra, it is not difficult to
check that, up to a factor E, the multiplication of (32) and
(34) gives (30). This is in virtue of the simple result

Sbadcfe − Sbadefc ¼ Mab
cedf: ð35Þ

We will need for later to rewrite the four-divergence
∂μðETμÞ, that distinguishes the (Levi-Civita) curvature
scalar from the torsion scalar. This is written as

∂μðETμÞ ¼ ∂μðEgμνeρað∂ρEa
ν − ∂νEa

ρÞÞ: ð36Þ

Taking into account that ∂μE ¼ Eeλa∂μEa
λ , and replacing

the metric tensor by its tetrad counterpart, in the end it is
obtained

B≡ e∂μðETμÞ ¼ 1

2
∂μEa

ν∂ρEb
λe

μ
ceνee

ρ
de

λ
fBab

cedf

þ ∂μ∂ρEa
νe

μ
be

ν
ce

ρ
dðδdaηbc − δcaη

bdÞ; ð37Þ

where the analog of the constitutive tensor for the four-
divergence is written as

Bab
cedf ¼ 4ηcdδ½fa δ

e�
b þ 4ηceδ½da δ

f�
b þ 4ηcfδ½ea δ

d�
b þ 4δcaη

e½dδf�b :

ð38Þ

Remarkably this object does not have the same antisym-
metry properties as Mab

cedf.

D. Approaches on the degrees
of freedom of f ðTÞ gravity

While in fðRÞ gravity the increase of the number of d.o.f.
manifests itself through the increase of the order of the
differential equations, in fðTÞ gravity the dynamical
equations remain as second-order equations. Instead, the
fðTÞ dynamical equations have less gauge freedom than
the TEGR equations, because not all the local Lorentz
transformations of the tetrad are symmetries of the dynam-
ics. Less gauge freedom implies more genuine d.o.f.

There are several approaches to the question of the
number and nature of the d.o.f. of fðTÞ gravity, which do
not necessarily coincide with their outcomes. The
Hamiltonian analysis of fðTÞ gravity presented in [23],
based on Maluf’s Hamiltonian formulation of TEGR [69],
gives n − 1 extra d.o.f. for fðTÞ gravity in arbitrary
dimension. In [32] it is performed a simple Hamiltonian
analysis based on the number of pairs of Lorentz con-
straints that would become second class. The authors
establish that fðTÞ gravity might have five, four or two
d.o.f. based on the possibility that six, four or two Lorentz
constraints become second class. The enforcement of the
vanishing of the Riemann tensor through the introduction
of Lagrange multipliers has been analyzed with detail in
[50]. This strategy attempts to avoid a particular choice of
the spin connection but adds a large quantity of Lagrange
multipliers that are nevertheless determined at the end of
the procedure. Other approaches that need further develop-
ment in order to give a characterization of the d.o.f. are the
study of the remnant group of local Lorentz symmetries
[34], the null tetrad approach [33,38] and the discussion on
the covariantization of the theory [51–53], among others.
Finally, the recent work performed in [42] suggests that
there exists only one additional d.o.f. in arbitrary dimen-
sion. The counting of d.o.f. obtained in this work is not the
same as the one presented in [23], nor falls in any of the
categories sketched in [32]. However, if the theory has one
rightful extra d.o.f., it could be similar to the scalaron that
appears in fðRÞ theories of gravity. We will discuss the
possibility of finding a scalar d.o.f. in the equations of
motion of fðTÞ gravity in the next section.

IV. THE EXTRA DEGREE OF FREEDOM
OF f ðTÞ GRAVITY

A. Jordan frame

The previous discussions, and the comparison with fðRÞ
gravity in Sec. II, could suggest taking a look at the Jordan
action as a way to understand the nature of the extra d.o.f.
This approach is successful in fðRÞ gravity because it
decouples the equations at the same time that it reduces their
differential order. However, in fðTÞ gravity the equations of
motion (29)arealreadysecondorder.Besides, by tracing them
we do not succeed in isolating the dynamics of some scalar
d.o.f.; in fact, in four dimensions the trace is

eEa
ν∂μðf0ðTÞEeλaSλμνÞ þ f0ðTÞT − fðTÞ ¼ −

κ

2
T ; ð39Þ

that can be rewritten as

e∂μðf0ðTÞEEa
νeλaSλμνÞ−f0ðTÞeλaSλμν∂μEa

νþf0ðTÞT−fðTÞ
¼−

κ

2
T : ð40Þ

Let us now consider the dynamics in the Jordan frame,
which is defined by the Legendre transform
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ϕ ¼ f0ðTÞ; VðϕÞ ¼ Tϕ − fðTÞ; ð41Þ

also implying that it is

T ¼ V0ðϕÞ: ð42Þ

Thus the dynamical equations (29) read2

4ϕ−1e∂μðϕEeλaSλμνÞ þ 4eλaTσ
μλSσμν − eνaT

¼ −
2κ

ϕ
eλaT λ

ν þ eνa
VðϕÞ
ϕ

; ð43Þ

which keep the structure of TEGR field equations, except
for the renormalizations of the gravitational constant κ and
the volume E, and the term ϕ−1VðϕÞ playing the role of a
local cosmological constant. Equations (43) and (42) can be
obtained by varying the action

SJF½Ea
μ;ϕ� ¼

1

2κ

Z
d4xE½ϕT − VðϕÞ� þ Smatter: ð44Þ

In particular, Eq. (42) results from varying with respect to
ϕ, which means that the Lagrangian is dynamically
equivalent to the Legendre transform of VðϕÞ, and so it
is a function fðTÞ such that ϕ ¼ f0ðTÞ. Thus, the action
(44) is dynamically equivalent to the action (28).
Let us now analyze the trace of the dynamical equations.

In four dimensions it results that Sνμν ¼ Tν
νμ ¼ Tμ.

Besides, it is eλaSλμν∂μEa
ν ¼ eλaSλμν∂ ½μEa

ν� ¼ SλμνTλ
μν=2 ¼

T=2. Then the equation for the trace becomes

2e∂μðf0ðTÞETμÞ þ f0ðTÞT − 2fðTÞ ¼ −κT ; ð45Þ

i.e.,

2Tμ∂μf0ðTÞ þ 2f0ðTÞe∂μðETμÞ þ f0ðTÞT − 2fðTÞ ¼ −κT :

ð46Þ

From Eq. (23), 2e∂μðETμÞ can be substituted with Rþ T.
By writing Eq. (45) in terms of ϕ one gets

2Tμ∂μϕþ 2VðϕÞ þ ϕR ¼ −κT : ð47Þ

In TEGR it is ϕ ¼ 1 and VðϕÞ ¼ 0, and the former
equation just implies R ¼ −κT [cf. Eq. (27)]. So, in
principle, Eq. (47) could be interpreted as describing the

propagation of a mode that was not present in TEGR, like
Eq. (3) in fðRÞ gravity. The existence of an extra d.o.f. is
connected to the loss of a gauge symmetry. In fact, TEGR
dynamics is invariant under local Lorentz transformations
of the tetrad because the Lagrangian T in (19) differs from
R in a four-divergence [see Eq. (23)], R being invariant
under local Lorentz transformations of the tetrad field since
it only depends on the metric. Thus TEGR is not a
dynamical theory for the tetrad but for the metric.
Instead the gauge symmetries of the action (28) are reduced
to those of T, which does not remain invariant under a
general local Lorentz transformation. Such a remnant
gauge symmetry of fðTÞ gravity has an on-shell character.
Notice that the invariance of T implies the invariance of ϕ
in Eq. (42). On the other hand, according to Eq. (23), the
invariance of T is equivalent to the invariance of the four-
divergence e∂μðETμÞ. Under local Lorentz transformations
of the tetrad field, e∂μðETμÞ transforms as

e∂μðETμÞ → e∂μðEgμνΛa
a0e

ρ
að∂ρðΛa0

b E
b
νÞ − ∂νðΛa0

b E
b
ρÞÞÞ

¼ e∂μðETμÞ
þ e∂μðEgμνðEb

νe
ρ
a0∂ρΛa0

b − Λa
a0∂νΛa0

a ÞÞ; ð48Þ
for infinitesimal transformations

Λa0
b ¼ δa

0
b −

1

2
σghðxÞðMghÞa0b þOðσ2Þ; ð49Þ

where the generators Mgh are the traceless matrices
ðMghÞa0b ¼ δa

0
g ηhb − δa

0
h ηgb, it results

e∂μðETμÞ → e∂μðETμÞ − 1

2
e∂μðEgμνEb

νðeρgηhb
− eρhηgbÞ∂ρσ

ghÞ þOðσ2Þ: ð50Þ

By replacing gμνEb
νηhb ¼ eμh, and noticing that

ðeρgeμh − eμge
ρ
hÞ∂μ∂ρσ

gh ¼ 0, we obtain that the remnant
gauge symmetry is generated by those Lorentz transfor-
mations that fulfill [cf. Eq. (32) in Ref. [34]]

∂μðEðeρgeμh − eμge
ρ
hÞÞ∂ρσ

gh ¼ 0: ð51Þ

To finish this subsection, we will notice that Eq. (47) could
admit solutions ϕ ¼ constant [i.e., T ¼ const, according to
Eq. (42)]. In such a case Eqs. (43) look like TEGR
equations with peculiar gravitational and cosmological
constants. Remarkably more than one solution of this type
could be found for the same potential VðϕÞ [i.e., for the
same function fðTÞ] [40].

B. Einstein frame

Let us examine whether the issue of the number of d.o.f.
in fðTÞ gravity can be better understood in the so-called
Einstein frame. We prevent the reader from possible

2These equations have a nontrivial antisymmetric part
2S½ρμν�∂μϕ ¼ −κT ½ρν�, where the rhs could be different from
zero if the matter were coupled in a nontrivial way to the tetrad
field. In Ref. [52] the lhs has been obtained from another
procedure, where the action is varied with respect to an “inertial”
spin connection. This procedure has been used to find the spin
connection in cosmological and spherically symmetric space-
times in [53].
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confusion clarifying that in this work we will refer to the
“Einstein frame” representation of fðTÞ gravity as the
action that results from applying a conformal transforma-
tion to the Jordan frame action of fðTÞ gravity. This is a
somehow forced terminology, since it is common knowl-
edge that the outcome of such conformal transformation is
not the TEGR action plus a scalar field, as it would be
desired given that a similar fact happens in fðRÞ gravity.
We follow the standard procedure and start from the Jordan
frame action (44), which could be regarded as the particular
case ωBD ¼ 0 of a sort of Brans-Dicke teleparallel action of
the form

SBD ¼ 1

2κ

Z
d4xE½ϕT þ ωBDϕ

−1gμν∂μϕ∂νϕ − VðϕÞ�

þ Smatter: ð52Þ

Now we will consider a change of dynamical variables by
performing a local conformal transformation of the tetrad:

Êa
μ ¼ ΩðxÞEa

μ; êμa ¼ Ω−1ðxÞeμa; ð53Þ

so it is Ê ¼ Ω4E and ê ¼ Ω−4e. It is well known that the
action (44) will transform as [15,35]

S ¼ 1

2κ

Z
d4xÊ½ϕðΩ−2T̂ − 4Ω−3T̂μ∂μΩ

− 6Ω−4ĝμν∂μΩ∂νΩÞ − Ω−4VðϕÞ� ð54Þ

(we can disregard Smatter since we are only interested in the
number of gravitational d.o.f.). We will choose the con-
formal factor Ω to have a minimal coupling between ϕ and
the torsion scalar T. The choice ϕ ¼ Ω2 converts the action
(44) into

S ¼ 1

2κ

Z
d4xÊ

�
T̂ − 2ϕ−1T̂μ∂μϕ

−
3

2
ϕ−2ĝμν∂μϕ∂νϕ − ϕ−2VðϕÞ

�
: ð55Þ

In this action it would be desirable to have the canonical
form for the kinetic term; therefore it is convenient to
redefine the scalar field to a new field ψ such that

ψ ¼
ffiffiffi
3

p
lnϕ; ð56Þ

and the action (55) is rewritten as

S ¼ 1

2κ

Z
d4xÊ

�
T̂ −

2ffiffiffi
3

p ∂μψ T̂
μ −

1

2
ĝμν∂μψ∂νψ −UðψÞ

�
;

ð57Þ

where the potential is UðψÞ ¼ ϕ−2VðϕÞ. After an integra-
tion by parts the action reads

S ¼ 1

2κ

Z
d4xÊ

�
T̂ þ 2ffiffiffi

3
p ψ ê∂μðÊT̂μÞ

−
1

2
ĝμν∂μψ∂νψ −UðψÞ

�
: ð58Þ

This action exhibits an ordinary teleparallel theory together
with a phantom scalar field. However there is also an
annoying term that (nonminimally) couples the ordinary
gravity to the scalar field. So, the Einstein frame in fðTÞ
gravity is unable to cleanly separate the extra d.o.f., as it
effectively happens in fðRÞ gravity.
Although we have already shown a rather strong evi-

dence in favor of an extra d.o.f. in fðTÞ gravity, the issue
can be definitely solved within the formalism for con-
strained Hamiltonian systems, as it was done in a recent
publication [42]. We can gain some insight into this
formalism by looking at how it works in a simple toy
model, as we are going to show in the next section.

V. MODIFYING A MECHANICAL SYSTEM WITH
ROTATIONAL PSEUDOINVARIANCE

A. Pseudoinvariant rotational Lagrangian

Some features of fðTÞ gravity can be mimicked by
deforming the mechanical Lagrangian

L ¼ 1

2

�
_z
z
þ _̄z
z̄

�
2

þ A
_z
z
þ Ā

_̄z
z̄
− Uðzz̄Þ; ð59Þ

where z and z̄ are complex conjugate canonical variables
and A and Ā are complex conjugate constants. This
Lagrangian can be rewritten as

L ¼ 1

2

�
d
dt

lnðzz̄Þ
�

2

þ d
dt

ðA ln zþ Ā ln z̄Þ −Uðzz̄Þ; ð60Þ

so it just provides a dynamics to the combination zz̄, since
the total derivative term is irrelevant in Lagrange equations.
This means that the evolution of the phase z=jzj is not
determined by Lagrange equations. We can notice this fact
also at the level of the symmetries of the Lagrangian, which
is pseudoinvariant under local rotations:

z → eiαðtÞz; z̄ → e−iαðtÞz̄ ⇒ L → Lþ i _αðA − ĀÞ:
ð61Þ

We can recognize some features that resemble the TEGR
theory. In fact, the TEGR Lagrangian is pseudoinvariant
under local Lorentz transformations of the tetrad; so it can
only govern the dynamics of the metric, but it is unable to
determine the “orientation” of the tetrad. The analogy is not
complete because the boundary term in this toy model just
contain first derivatives of the canonical variables, differing
from the boundary term in Eq. (23) which is second order in
derivatives of the tetrad.
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Now let us pass to the Hamiltonian formalism and look
for the constraint algebra. The canonical momenta are
defined as

pz ≡ ∂L
∂ _z ¼ 1

z

�
_z
z
þ _̄z
z̄
þ A

�
; pz̄ ≡ ∂L

∂ _̄z ¼ 1

z̄

�
_z
z
þ _̄z
z̄
þ Ā

�
;

ð62Þ

from which it is easily seen the primary constraint

Gð1Þ ≡ zpz − A − z̄pz̄ þ Ā ≈ 0; ð63Þ

which fulfills

fGð1Þ; zz̄g ¼ 0: ð64Þ

The canonical Hamiltonian is

H ¼ _zpz þ _̄zpz̄ − L ¼ 1

2

�
_z
z
þ _̄z
z̄

�
2

þ Uðzz̄Þ

¼ 1

8
ðzpz − Aþ z̄pz̄ − ĀÞ2 þ Uðzz̄Þ; ð65Þ

while the primary Hamiltonian results

Hp ¼ 1

8
ðzpz − Aþ z̄pz̄ − ĀÞ2 þ Uðzz̄Þ þ uðtÞGð1Þ; ð66Þ

where uðtÞ is a Lagrange multiplier. We verify that Gð1Þ
evolves without leaving the constraint surface:

_Gð1Þ ¼ fGð1Þ; Hpg ¼ 1

4
ðzpz − Aþ z̄pz̄ − ĀÞ

× fGð1Þ; zpz − Aþ z̄pz̄ − Āg ¼ 0: ð67Þ

Therefore, no secondary constraints appear. There is a
unique first-class constraint; so one d.o.f. is removed, and
the system is left with just one genuine d.o.f. [70].
Equation (64) reveals that zz̄ is the gauge invariant
(observable) associated to the physical d.o.f.

B. Modified pseudoinvariant rotational Lagrangian

Let us deform the theory by replacing the pseudoinvar-
iant Lagrangian with a function of itself:

L ¼ fðLÞ: ð68Þ

This new theory is dynamically equivalent to the one
governed by the Jordan frame Lagrangian that includes an
additional dynamical variable ϕ:

L ¼ ϕL − VðϕÞ: ð69Þ

In fact, the dynamical equation for ϕ is

L ¼ V 0ðϕÞ: ð70Þ

So, the dynamics says that L in Eq. (69) is the Legendre
transform of VðϕÞ; therefore, L is a function fðLÞ
(each choice of V equals a choice of f). The canonical
momenta are

Gð1Þ
π ≡ π ¼ ∂L

∂ _ϕ ≈ 0; ð71Þ

pz ¼
ϕ

z

�
_z
z
þ _̄z
z̄
þ A

�
; pz̄ ¼

ϕ

z̄

�
_z
z
þ _̄z
z̄
þ Ā

�
; ð72Þ

thus one gets the constraint

Gð1Þ ≡ zpz − Aϕ − z̄pz̄ þ Āϕ ≈ 0: ð73Þ

Then the modified system has two noncommuting primary
constraints:

fGð1Þ; Gð1Þ
π g ¼ −Aþ Ā: ð74Þ

The canonical Hamiltonian is

H ¼ _zpz þ _̄zpz̄ − L ¼ 1

8ϕ
ðzpz − ϕAþ z̄pz̄ − ϕĀÞ2

þ ϕUðzz̄Þ þ VðϕÞ; ð75Þ

and the primary Hamiltonian is

Hp ¼ Hþ uπðtÞGð1Þ
π þ uðtÞGð1Þ; ð76Þ

where uπ and u are Lagrange multipliers. We must evaluate
the evolution of the primary constraints to look for
secondary constraints:

_Gð1Þ
π ¼ fGð1Þ

π ;Hpg ¼ fπ;Hpg

¼ ðzpz þ z̄pz̄Þ2
8ϕ2

−
1

8
ðAþ ĀÞ2 −Uðzz̄Þ − V 0ðϕÞ

þ uðtÞðA − ĀÞ

¼ L −
1

2
ðA − ĀÞ

�
_z
z
−
_̄z
z̄

�
− V 0ðϕÞ þ uðtÞðA − ĀÞ;

ð77Þ

_Gð1Þ ¼ fGð1Þ;Hpg ¼ −uπðA − ĀÞ: ð78Þ

Thus, the consistency of the constraints with the evolution
can be obtained by choosing the Lagrange multipliers as

uπ ¼ 0; uðtÞ ¼ LðtÞ − V 0ðϕðtÞÞ
A − Ā

−
1

2

�
_zðtÞ
zðtÞ −

_̄zðtÞ
z̄ðtÞ
�
:

ð79Þ
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Therefore the system has no secondary constraints; the only

constraints Gð1Þ and Gð1Þ
π are second class [see Eq. (74)].

So, they remove only one d.o.f. [70]; there are two genuine
d.o.f. among the variables ðz; z̄;ϕÞ. Notice that, differing
from fðTÞ gravity, no gauge freedom is left in this system
since both Lagrange multipliers have been fixed; so the
primary Hamiltonian completely determines the evolution
of the variables. In particular, the evolution of ϕ is frozen:

_ϕ ¼ fϕ;Hpg ¼ uπ ¼ 0: ð80Þ
Coming back to the Lagrange equations, let us use for L
the form (60); then by varying L with respect to zz̄ and z
one obtains

d
dt

�
ϕ
d
dt

lnðzz̄Þ
�

¼ −ϕU0ðzz̄Þ; d
dt

ðϕAÞ ¼ 0: ð81Þ

So, we retrieve the result that ϕ is constant. Besides zz̄
obeys the same dynamical equation of the nondeformed
theory. In particular the magnitude

H ¼ 1

2

�
d
dt

lnðzz̄Þ
�

2

þUðzz̄Þ ð82Þ

is a constant of motion. Since ϕ is constant, then the
dynamical equation for ϕ, i.e., Eq. (70), implies that L is
constant. From Eqs. (70), (59) and (82) we obtain that the
evolution of the phase of z is determined by the dynamics
through the first-order equation

d
dt

ðA ln zþ Ā ln z̄Þ ¼ −
1

2

�
d
dt

lnðzz̄Þ
�

2

þUðzz̄Þ þ V 0ðϕÞ

¼ 2Uðzz̄Þ þ V 0ðϕÞ −H: ð83Þ

At the initial conditions, the choice of ϕ is the way one
chooses the initial velocity of the phase. Due to the
remaining global rotational symmetry, the initial value of
the phase is irrelevant. This equation can be also obtained in
the Hamiltonian formalism by computing the Poisson
bracket between A ln zþ Ā ln z̄ and Hp and then substitut-
ing the momenta and the Lagrange multipliers with (72)
and (79).
In sum, the system described by the Lagrangian (69) has

two d.o.f.: one of them is jzj2 ¼ zz̄ whose dynamics does
not differ from the one described by the Lagrangian (60); in
both cases we arrive to the conserved quantity H in
Eq. (82). Once the evolution of jzj is determined by the
choices of the initial value jzðtoÞj and the constant of
motionH, Eq. (83) determines the evolution of the phase of
z, which is the remaining d.o.f. In this equation, the value
of the constant ϕ is connected to the initial value of the
derivative of the phase of z; there is no other physics
associated with ϕ over and above the one related to the
phase of z.

In analogy with fðTÞ gravity, ϕ could be then regarded
as a variable carrying information about the orientation of
the tetrad, which would be partially determined by the
dynamical equations.

VI. HAMILTONIAN FORMALISM
AND FRAME DEPENDENCE

The Hamiltonian formalism for fðTÞ gravity, starting
from the (scalar-torsion) Jordan frame formulation of the
theory, was presented in full detail in [42]. There are several
unusual features of this physical system that deserves a
comment. In most Hamiltonian constrained systems the
identification of secondary constraints is a rather trivial
enterprise, and there is no need to calculate the left and right
null eigenvectors of the matrix of Poisson brackets among
constraints. However, in the Hamiltonian formalism for
fðTÞ gravity we have to pay close attention to this point,
which makes the theory an atypical example of a con-
strained Hamiltonian system.
After following the Dirac-Bergmann algorithm for fðTÞ

gravity one is led to a set of first-class ΦI and second-class
constraints χA organized in the following way (see defi-
nitions at [42]):

(i) n first-class constraints Φc ¼ Gð1Þ
c coming from the

absence of _Ec
0 in the Lagrangian,

(ii) n − 1 first-class constraints Φi ¼ Gð2Þ
i associated

with the spatial diffeomorphisms (supermomentum
constraints),

(iii) nðn−1Þ
2

− 1 first-class constraints Φab ¼ G̃ð1Þ
ab associ-

ated with the Lorentz algebra,
(iv) one first-class constraint Φ0 ¼ G̃ð2Þ

0 associated with
the temporal diffeomorphism (super-Hamiltonian
constraint), and

(v) two second-class constraints: χπ ¼ Gð1Þ
π , coming

from the absence of _ϕ in the Lagrangian, and χ ¼
αabG̃ð1Þ

ab associated with the Lorentz algebra.
This classification is obtained after a redefinition of the

original Lorentz constraints that maximizes the number of
vanishing Poisson brackets in the algebra of constraints. In
fact, in terms of the original constraints, the nonvanishing
Poisson brackets involve the Lorentz constraints and the
super-Hamiltonian constraint; they are

fGð1Þ
ab ; G

ð1Þ
π g≡ Fab;

fGð2Þ
0 ; Gð1Þ

π g≡ Fϕ: ð84Þ

Since Fab and Fϕ are functions of the canonical coordinates
and momenta, they could vanish at particular points of the
phase space. So, let us suppose that F01 is not zero in some
neighborhood of the constraint surface. Then we can
change the basis of the constraint algebra by combining

the original Lorentz constraints Gð1Þ
ab in the following way:
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G̃ð1Þ
01 ¼ Gð1Þ

01 ;

G̃ð1Þ
02 ¼ F01G

ð1Þ
02 − F02G

ð1Þ
01 ;

..

.

G̃ð1Þ
ðn−2Þðn−1Þ ¼ F01G

ð1Þ
ðn−2Þðn−1Þ − Fðn−2Þðn−1ÞG

ð1Þ
01 : ð85Þ

Besides, we replace the super-Hamiltonian constraint Gð2Þ
0

with

G̃ð2Þ
0 ¼ F01G

ð2Þ
0 − FϕG

ð1Þ
01 : ð86Þ

Thus the only nonvanishing Poisson brackets will be

fG̃ð1Þ
01 ; G

ð1Þ
π g≡ F01: ð87Þ

In this way we have two second-class constraints χA, the
remaining constraints being first class. The matrix
ΔAB ¼ fχA; χBg,

ΔAB ¼
 
fGð1Þ

π ; Gð1Þ
π g fG̃ð1Þ

01 ; G
ð1Þ
π g

fGð1Þ
π ; G̃ð1Þ

01 g fG̃ð1Þ
01 ; G̃

ð1Þ
01 g

!
¼
�

0 F01

−F01 0

�
;

ð88Þ

is a 2 × 2 invertible matrix. The choice that G̃ð1Þ
01 be the odd

second-class Lorentz constraint is completely arbitrary and
any linear combination of the form

χ ¼ αabGð1Þ
ab ð89Þ

can be chosen to be the second-class one (but αabFab must
be different from zero). This is because the Dirac-
Bergmann algorithm does not determine a particular linear
combination to be second class. However the arbitrariness
of the choice does not affect the conclusions.
The equations assuring the consistency of the evolution

of the first-class constraints result to be trivial, while the

ones for the second-class constraints χA ¼ ðGð1Þ
π ; G̃ð1Þ

01 Þ,

fχA;Hcg þ ΔABuB≈
!
0; ð90Þ

can be satisfied by properly choosing the Lagrange multi-
pliers uπ and ũ01:

uπ ¼ 0; F01ũ01 ¼ Fϕ; ð91Þ

which is comparable to Eq. (79) in Sec. V. Therefore, when
passing from TEGR to fðTÞ gravity as described in the
Jordan frame, one of the first-class constraints associated
with the Lorentz algebra becomes a second-class constraint

paired with Gð1Þ
π . As was shown in the toy model of the

previous section, this fact amounts to the retrieval of a d.o.f.
that took part in the gauge freedom of the TEGR theory.
Concretely, the invariance under local Lorentz transforma-
tions is partially lost since a linear combination of their
generators is no longer a gauge transformation. In other
words, some feature of the tetrad orientation has passed to
be governed by the dynamics and now forms part of the set
of genuine d.o.f. together with the metric d.o.f.
For defining the set of first-class Lorentz constraints (85)

we had to assume that at least one of the Fab is non-
vanishing. However, there could be points on the constraint
surface where all the Fab vanishes. In this case, the
consistency of the Dirac-Bergmann algorithm could
impose two different outcomes: Fϕ also vanishes identi-
cally and the theory has the same d.o.f. as TEGR, or Fϕ is a
constraint and the algorithm continues. Although, for
obtaining a meaningful number of d.o.f., the algorithm
is not allowed to extend too much, as we will argue next.

Let us reasonably assume that neitherGð2Þ
μ nor Gð1Þ

c become
second class and thus they remove 2n d.o.f. But X of the
nðn − 1Þ=2 Lorentz constraints could still become second
class due to the pairing with the same amount of second-
class constraints. Besides, there could appear additional Y1

first-class constraints (f.c.c.) and Y2 second-class con-
straints (s.c.c.). The counting of d.o.f. would go in the
following way:

number of d:o:f: ¼ n2 þ 1 − ðnumber of f:c:c:Þ

−
1

2
ðnumber of s:c:c:Þ

¼ n2 þ 1 −
�
2nþ n

2
ðn − 1Þ − X þ Y1

�

−
1

2
ð2X þ Y2Þ

¼ nðn − 3Þ
2

þ 1 − Y1 −
1

2
Y2: ð92Þ

The case of fðTÞ gravity falls in the category X ¼ 1, since

there is only one constraint Gð1Þ
π that pairs up with one

Lorentz constraint to become second class. If we are in a
particular point of the phase space where all the Fab are

zero, the Poisson bracket among Gð1Þ
π and Gð1Þ

ab would

vanish on shell, but some of the Gð1Þ
ab could still become

second class due to the appearance of new constraints
represented by X. In this case the algorithm would require
Fϕ to weakly vanish on shell and become a constraint. If it
were first class, then Y1 ¼ 1, Y2 ¼ 0; thus Eq. (92) would
reproduce the number of d.o.f. of TEGR. Instead, if both

Fϕ and Gð1Þ
π are second class and they originate at least one

new first- or two second-class constraints, the counting of
d.o.f. will give a meaningless answer: less d.o.f. than
TEGR. This, of course, is an unacceptable result, and
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the only reasonable possibility is that the pair Fϕ; G
ð1Þ
π is

second class and removes one d.o.f. to give the TEGR
result. In this case, the time stability of Fϕ should be proved
calculating its Poisson algebra with the remaining con-
straints; however it is a very involved calculation which
may require an improved Hamiltonian formalism.
Finally, it is worth mentioning a puzzling feature in the

Hamiltonian constraint of Eq. (86), since the second term of
this expression may have a cubic dependence on the
canonical momenta. This is easily seen because Gð1Þ

01 is
linear in the momenta, but Fϕ depends on the torsion scalar
and is therefore quadratic in the momenta. The cubic

dependence of G̃ð2Þ
0 is the price to be paid for getting a

first-class Hamiltonian constraint. This fact can be traced to
the pseudoinvariance of the TEGR Lagrangian, which
implies that the fðTÞ action breaks the local Lorentz
invariance. This is an unusual feature for a Hamiltonian
system, and it could lead to instabilities since the
Hamiltonian could be unbounded from below [71,72].

VII. HAMILTONIAN APPROACH IN THE
TELEPARALLEL EINSTEIN FRAME

Since the conformal transformation that leads from the
Jordan frame to the Einstein frame is a canonical trans-
formation, one should expect the same number of d.o.f. in
both the Jordan and Einstein frames. Nonetheless this mere
verification could throw light on the issue of the meaning of
the extra d.o.f. However this exercise will indeed reveal the
intricate Hamiltonian structure of fðTÞ gravity in the
Einstein frame. Let us start from a gravitational theory
whose action is

S½Ea
μ;ψ � ¼

1

2κ

Z
d4xE

�
T þ 2ffiffiffi

3
p ψB

−
1

2
gμν∇μψ∇νψ þ UðψÞ

�
: ð93Þ

We get rid of the hatted fields in the action and start
working directly under the assumption that the teleparallel
Einstein frame is our theory for describing the gravitational
phenomena. In this formulation it is simple to see that the
Hamiltonian procedure is not applicable, since the term B,
as we have written it in Eq. (37), has an explicit dependence
on second-order time derivatives on the tetrad field. In this
case we need to resort to Ostrogradsky’s choice for
canonical variables and momenta. It is well known that
Lagrangians having higher-order time derivatives might
suffer from the Ostrogradsky instability [71,72], although
as we will prove later, in our case we can get rid of this
obstruction by means of an integration by parts. However,
motivated by a deeper understanding in this subject, it will
be interesting to first explore this approach. Ostrogradsky’s
definitions of canonical momenta are given by

Πμ
a ¼ ∂L

∂ð∂0Ea
μÞ

− ∂0

∂L
∂ð∂0∂0Ea

μÞ
; Pμ

a ¼ ∂L
∂ð∂0∂0Ea

μÞ
;

ð94Þ

that are associated to the canonical variables Ea
μ and

Ea
μ ≡ ∂0Ea

μ, respectively. Within the premetric formalism
developed in Sec. III, they can be easily computed; the
result is

Πμ
a ¼ E∂ρEb

λe
0
ce

μ
ee

ρ
de

λ
f

�
Mab

cedf þ 2ffiffiffi
3

p ψBab
cedf

�

−
2ffiffiffi
3

p ∂0½ψEe0beμce0d�ðδdaηbc − δcaη
bdÞ ð95Þ

and

Pμ
a ¼ 2ffiffiffi

3
p ψEe0be

μ
ce0dðδdaηbc − δcaη

bdÞ: ð96Þ

There is also a canonical momentum associated with the
scalar field ψ , given by

π ¼ ∂L
∂ð∂0ψÞ

¼ −Eg0ν∂νψ : ð97Þ

It is clear that there appear n primary constraints P0
a ≈ 0.

Besides, (95) can be rewritten as a primary constraint using
(97), which is

Πμ
a ¼ EEb

λe
μ
eeλfC̃ab

ef

þ E∂iEb
λe

0
ce

μ
eeide

λ
f

�
Mab

cedf þ 2ffiffiffi
3

p ψBab
cedf

�

þ 2ffiffiffi
3

p
�

e
g00

π þ g00

g0i
∂iψ

�
E½e0ag0μ − eμag00�; ð98Þ

where

C̃ab
ef ¼ e0ce0d

�
Mab

cedf þ 2ffiffiffi
3

p ψBab
cedf −

4ffiffiffi
3

p ψðηcfδ½ea δd�b

þ ηcdδ½fa δ
e�
b þ ηecδ½da δ

f�
b þ δdbη

f½cδe�a Þ
�
: ð99Þ

As depicted in [72], Eqs. (95)–(97) should be used to write
the canonical Hamiltonian

Hc ¼ Πμ
aEa

μ þ Pμ
a∂0Ea

μ þ π∂0ψ − L ð100Þ

in terms of the canonical variables ðEa
μ;Π

μ
a; Ea

μ;P
μ
a;ψ ; πÞ

and their spatial derivatives. According to the formalism,
the acceleration Aa

μ ¼ ∂0∂0Ea
μ should be solved as a

function of the canonical variables from the second
equation in Eq. (94); thus, Πμ

a will not enter in the
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expression for Aa
μ. Therefore, Hc will depend on Πμ

a only
through the first term of Eq. (100), which is a linear in Πμ

a

(in this higher-order formalism, Ea
μ is a canonical variable).

This means thatHc is unbounded from below and we might
be in the presence of some sort of instability, although
briefly we will see that we can circumvent this issue
resorting to an equivalent representation.
However, the Lagrangian in Eq. (93) is linear in the

acceleration Aa
μ ¼ ∂0∂0Ea

μ ¼ ∂0Ea
μ. Therefore the defini-

tion of Pμ
a does not allow one to solve the acceleration in

terms of the canonical variables but leads to a constraint
[cf. Eq. (96)]. Thus, the acceleration will remain as a
Lagrange multiplier in the canonical Hamiltonian (100),
which will be subsumed in the respective Lagrange
multiplier of the primary Hamiltonian.
Ostrogradsky’s procedure can be avoided by performing

an integration by parts in (93); thus we will work with the
action

S½Ea
μ;ψ � ¼

1

2κ

Z
d4xE

�
T −

2ffiffiffi
3

p Tμ∂μψ

−
1

2
gμν∇μψ∇νψ þ UðψÞ

�
: ð101Þ

In this case, the canonical momenta associated with the
tetrad field results

Πμ
a ¼ E∂ρEb

λe
0
ce

μ
ee

ρ
de

λ
fMab

cedf

−
2ffiffiffi
3

p E∂νψe0be
ν
ce

μ
d½ηdcδba − ηbcδda�; ð102Þ

while the canonical momentum for the scalar field is

π ¼ −Eg0ν∂νψ −
2ffiffiffi
3

p E∂ρEa
νe0be

ρ
ceνd½ηbdδca − ηcbδda�: ð103Þ

It is easy to see that both canonical momenta include
canonical velocities ∂0Ea

μ and ∂0ψ in their defini-
tions. Therefore, the procedure to write the canonical
Hamiltonian in terms of the canonical variables will be
more intricate than the one developed for TEGR in
Ref. [66]. Let us solve for ∂0ψ in (103):

∂0ψ ¼ −
e
g00

π −
g0i

g00
∂iψ

−
2ffiffiffi
3

p
g00

∂ρEa
λe

0
be

ρ
ceλd½ηbdδca − ηcbδda�: ð104Þ

After replacing this result in (102) and performing some
arrangements, the following expression is obtained:

Ee
μΠ

μ
a ¼ E∂0Eb

λe
λ
fC̃ab

ef þ E∂iEb
λe

λ
f

�
e0ceidMab

cedf

þ 4

3g00
e0ce0de

0
geih½ηceδda − ηcdδea�½ηgfδhb − ηhgδfb�

�

þ 2πffiffiffi
3

p
g00

e0ce0d½ηceδda − ηcdδea�

þ 2ffiffiffi
3

p E∂iψe0d

�
−eic þ e0c

g0i

g00

�
½ηceδda − ηcdδea�;

ð105Þ

where

C̃ab
ef ¼ e0ce0dMab

cedf þ 4

3g00
e0de

0
ce0ge0h½ηceδda − ηcdδea�

× ½ηgfδhb − ηhgδfb�: ð106Þ
Apart from looking for primary constraints, the next
obvious step would be to write the canonical Hamiltonian
associated with (101). It can be attempted by means of the
Moore-Penrose pseudoinverse method introduced in [66] in
order to invert the matrix (106). For this, it would be useful
to know whether its eigenvalues and eigenvectors are the
same obtained for Cab

ef in TEGR; however the answer is
negative. Moreover, the structure of eigenvalues and eigen-
vectors is more complicated, and it may require to develop
advanced mathematical techniques in order to find them. The
fact that the matrix (106) is not the same than the one in
TEGR is intriguing and puts forward the question whether
the teleparallel Einstein frame can genuinely be interpreted
as TEGR plus a scalar field. The answer to this interesting
question calls for further research.
Finally we can attempt to obtain the primary constraints

of this theory by multiplying Eq. (105) by the eigenvectors
vjgjea ¼ e0eδag and vjghjea ¼ δagηhe − δahηge. The first one
gives the trivial constraint

Gð1Þ
g ¼ Π0

g ≈ 0: ð107Þ

For the second set of eigenvectors vjghjea, it is easy to check
that they are null eigenvectors of C̃ab

ef, i.e., they satisfy
vjghjeaC̃ab

ef ¼ 0, as they are also for the matrix Cab
ef in

TEGR [66]. Using this result in (105), the following
constraints are obtained:

Gð1Þ
ab ¼ 2ηe½bΠi

a�E
e
i þ 4E∂iEb

j e
0
½be

i
ae

j
c�

þ 2ffiffiffi
3

p ∂iψðeiae0b − e0aeibÞ: ð108Þ

The appearance of an extra term with respect to the TEGR
case changes drastically the Lorentz algebra, as this term

has a nonvanishing Poisson bracket with the Gð1Þ
cd ’s. It is not

difficult to prove that
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fGð1Þ
ab ; G

ð1Þ
cd g ¼ ηbdG

ð1Þ
ac þ ηacG

ð1Þ
bd − ηbcG

ð1Þ
ad − ηadG

ð1Þ
bc

þ 4ffiffiffi
3

p ∂iψ ½HabHi
cd −HcdHi

ab�; ð109Þ

where

Hab ≡ e0ae0b − e0be0a; Hi
cd ≡ e0ceid − e0de

i
c: ð110Þ

These two terms reflect the departure from Lorentz
invariance, since they do not vanish in the most general
case. However, unlike the teleparallel Jordan frame case,
here the theory seems to present full Lorentz violation.
That is, none of the Lorentz constraints seems to be first
class; then one might be tempted to conclude that this
leads to the counting of d.o.f. of [23]. Nevertheless, there

is still another Poisson bracket fGð1Þ
g ; Gð1Þ

ab g to be taken
into account, which gives

fGð1Þ
g ; Gð1Þ

ab g ¼ 2ffiffiffi
3

p ∂iψe0gðeiae0b − e0aeibÞ: ð111Þ

The noncommuting character of Gð1Þ
g was expected, since

gauge transformations of the tetrad in the form δEa
0 ¼ ϵa

are no longer symmetries of the Lagrangian due to the
dependence on ∂0Ea

0 in the coupling term proportional to
Tμ∂μψ in the action (101) (see Sec. V of [66]).
Henceforth, the counting of d.o.f. in this frame requires
a rigorous analysis of the time evolution of all constraints
with the primary Hamiltonian, a point that needs to be
investigated in future work.

VIII. CONCLUSIONS

We have analyzed the issue of the d.o.f. in fðTÞ
gravity from several perspectives. For the sake of a
comparison, we first reviewed the interpretation of the
additional d.o.f. in fðRÞ gravity in both Jordan and
Einstein frames. Analogously, the study of the equations
of motion and its trace in fðTÞ gravity reveals evidence
of a unique additional d.o.f. in the teleparallel Jordan and
Einstein frames. To mimic the essential features of fðTÞ
gravity, we have exhibited the Hamiltonian dynamics of a
simple toy model with pseudorotational invariance. The
nonlinear deformation of this toy model shows the
appearance of a scalar d.o.f. ϕ, whose value is connected
to the initial value of the derivative of the phase of the
complex canonical variable z. Analogously, in fðTÞ
gravity the scalar d.o.f. is connected with the proper
parallelization of the spacetime.

Concerning our previous work on the extra d.o.f. of
fðTÞ gravity [42], we have emphasized that such analysis
can depend on the point of the phase space under
consideration. In fact, the Poisson brackets between
constraints are functions of the tetrad field and their
canonical momenta. Thus, there could exist a point or a
neighborhood of the constraint surface where all the
Fab’s in Eq. (84) were zero, which would dramatically
change the counting of d.o.f. In that particular points the
consistency of our analysis would imply that Fϕ becomes
a constraint, nonetheless if its time consistency does not
generate additional constraints, the theory would have the
same number of d.o.f. as TEGR. This could be sug-
gesting that only some reference frames do manifest the
extra d.o.f.; however it is still unclear the conditions that
they should accomplish.
Finally, we have just introduced two possible ways of

applying the Hamiltonian formalism in the teleparallel
Einstein frame. In spite of appearances, the Einstein
frame proves to be rather more involved than the
Jordan frame. This is because the term coupling the
vector part of the torsion Tμ to the scalar field pro-
duces an intricate binding of the canonical momenta,
which result in serious difficulties for calculating the
Hamiltonian.
It is clear that further research needs to be done in order

to understand the implications of the additional d.o.f.
of the theory. A simple strategy to identify it would be
to resort to solutions to fðTÞ gravity in 2þ 1 dimensions,
where neither TEGR nor GR possess genuine d.o.f. This
issue will be addressed in future work [73].
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