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Abstract

With the increase of machine learning usage by industries and scientific communities
in a variety of tasks such as text mining, image recognition and self-driving cars, au-
tomatic setting of hyper-parameter in learning algorithms is a key factor for achieving
satisfactory performance regardless of user expertise in the inner workings of the tech-
niques and methodologies. In particular, for a reinforcement learning algorithm, the
efficiency of an agent learning a control policy in an uncertain environment is heavily
dependent on the hyper-parameters used to balance exploration with exploitation. In
this work, an autonomous learning framework that integrates Bayesian optimization with
Gaussian process regression to optimize the hyper-parameters of a reinforcement learn-
ing algorithm, is proposed. Also, a bandits-based approach to achieve a balance between
computational costs and decreasing uncertainty about the Q-values, is presented. A
gridworld example is used to highlight how hyper-parameter configurations of a learning
algorithm (SARSA) are iteratively improved based on two performance functions.

Keywords: Autonomous Reinforcement Learning, Hyper-parameter Optimization, Meta-Learning, Bayesian
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1 Introduction

In recent years, with the notable increase of computational power in terms of floating point operations, a
vast number of different applications of machine learning algorithms have been attempted, yet optimization
of hyper-parameters is needed in order to obtain higher levels of performance. Such is the case of supervised
learning algorithms like random forests, support vector machines and neural networks, where each one of
them has its own set of hyper-parameters exerting influence on attributes such as model complexity or the
learning rate of the algorithm, which are key issues in order to reap important benefits such as a better
extrapolation to unseen situations, a reduction in computational times, a decrease in the model complexity,
among others. Such hyper-parameters are often manually tuned and their correct setting makes the difference
between mediocre and near-optimal performance of algorithms [1]. Several approaches have been proposed
in order to optimize the hyper-parameters to reduce the error generated by a bad configuration of the model
(e.g. [2, 3, 4, 5, 6]), with methods such as random search, gradient search, Bayesian optimization, among
others.

In the particular case of reinforcement learning (RL) [7], as opposed to supervised learning, there are not
correct examples of desired behavior in the form of datasets containing a label for each vector of features,
but instead a learning agent should seek for trade-off between exploitation with exploration so as to find
a way of behaving using external hints. Given a state s of the agent’s environment, the RL problem is
about obtaining the optimal policy (a function which, given sensed states, defines the action that should be
chosen) in order to maximize the amount of numerical scores (rewards) provided by the environment. For
the most commonly studied tasks that can be solved by using RL, where the agent may take a long sequence
of actions receiving insignificant or no reward until finally arriving to a state for which a high reward is
received (see [8]), the fact of having a delayed reward signal means larger execution times, so optimizing
hyper-parameters using optimization strategies like Grid Search, Random Search, Monte Carlo or Gradient-
based methods is not suitable for efficient autonomous learning. Alternatively, the Bayesian optimization
strategy provides an approach designed to maximize the effectiveness of an expensive-to-evaluate function
since it is derivative-free and less prone to be caught in a local minimum [9].

Among RL algorithms, such as Q-Learning [10] or SARSA [11], there are several parameters to be
configured prior to the execution of the algorithm, e.g. the learning rate α or the discount factor γ. In trivial
environments such as a gridworld, the impact of a change in a parameter like the exploration rate ε of an
ε-greedy policy in an agent run is often easy to understand, but in the case of more complex environments
and parameters such as the number of N planning iterations in a Dyna algorithm [12, 13], the cut-off time
of a given episode, or the computational temperature τ in a Softmax policy, the impact that changes to
these parameters may have in the agent’s learning curve to solve a given task is normally unclear prior to
its execution. Furthermore, when comparing the learning of different agents using different combinations of
hyper-parameters, it is often unclear which one outperforms the other because it has superior learning rule,
or simply because it has a better parameter setting. Moreover, if the environment is complex enough such
that each learning episode is computationally expensive, having a bad parameter configuration could result
in higher execution times that can eventually give rise to mediocre performance with a limited budget for
experimentation[3].

In this work, a novel approach that employs Bayesian optimization to find a good set of hyper-parameters
that improves the commonly used policies for a RL agent is proposed. In order to learn a near-optimal
set of hyper-parameters using previous agent-environment simulated interactions, a Bayesian optimization
framework is presented. In such an approach, a Gaussian process regression model is trained by using
two functions that measure the performance of the agent in the simulated environment for unseen hyper-
parameter settings. For meta-learning, a bandit-based algorithm is used to achieve a balance between the
reduction of uncertainty about Q-values and the computational costs of active exploration of untried action-
state pairs. Finally, it is discussed an example that shows how the agent immersed in a gridworld iteratively
converges to a near-optimal policy by querying the objective function for meta-learning of hyper-parameters
which gives rise to learning episodes with increasingly improved sets of hyper-parameters. Results obtained
demonstrate that autonomous reinforcement learning clearly outperforms a default configuration of the
parameters in a RL algorithm.

This work is an extended version of [14] 1, where a Bandits-based meta-learning layer has been added
aiming to significantly reduce the computational expense involved in autonomously minimizing the variance
of the different sequences of actions of a reinforcement learning agent - each with a different setting of hyper-
parameters - to advantage. The proposed variance reduction is performed bearing in mind the fact that, in
[14], most of resampling effort was invested in trying non-promising combinations of hyper-parameters (e.g.
points whose metric is much lower than the average for alternative combinations), so performing additional

1Source code is available on-line at https://github.com/jbarsce/rloptvb.
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simulations in those bad configurations is a waste of computational resources that can instead be directed
at doing more simulations with promising combinations (e.g. at points where the acquisition function is
maximized, as explained in section 2.3). This is the main purpose that motivates the addition of another
meta-learning component to decide, after evaluating the objective function at each point, if the outcome is
good enough compared to others in order to resample the objective function. To this aim, new experiments
have been performed, showing that a very significant reduction of computational times can be achieved
with different meta-learning bandits-based approaches. However, for some bandit algorithms computational
gains are not so important as one can expect, which is shown in Section 4.5. Finally, in order to compare
how the proposed approach performs against another common method for hyper-parameter optimization, a
comparison between the convergence towards the optimum of the proposed algorithm against random search
has been added, as it is shown in Section 4.4.

The article is organized as follows. In Section 2 a revision of the different methods to be used later
is presented, including reinforcement learning, Bayesian optimization, Gaussian processes, meta-learning
algorithms and bandit-based meta-learning; such methods are discussed in the context of autonomous setting
of a learning algorithm hyper-parameters. This is followed by a section devoted to the proposed framework
of autonomous reinforcement learning, Section 3, RLOpt, which aims to implement fast convergence to near-
optimal agent policies while minimizing the number of queries in the objective function at the meta-learning
level. This is followed by Section 4, which presents the different computational experiments that were made
in order to validate the proposed RLOpt approach. Finally, the work is summarized and the future research
directions are presented in section 5.

2 Background

2.1 Related Work

The task of optimizing the hyper-parameters of machine learning algorithms is very challenging. A correct
setting of hyper-parameters makes a significant impact on the effectiveness for the task being addressed,
affecting the generalization errors in ways that are not easy to anticipate. Moreover, only a small fraction
of hyper-parameters are relevant to guarantee fast learning with few examples [2]. As the gradients are
normally not available, most methods for setting hyper-parameters are based on optimizing them using
pointwise function evaluations; this is often called black-box or derivative-free optimization. Alternatively, a
common approach is manual tuning, which consists of setting the hyper-parameters arbitrarily and evaluating
the generalization errors until the algorithm reaches some desirable performance for a given task. This is
often used because it is fast (no algorithmic implementation is required) and sometimes the user can gain
some empirical insights about the influence of hyper-parameters on learning method efficacy. However,
hand-tuning of hyper-parameters is costly in terms of time and money, hinders the reproducibility of results
obtained and limits machine learning to expert users, among other drawbacks [3, 2]. As an alternative
to hand-tuning, another common approach is grid search, which consists of training a model over every
combination of a subset of the hyper-parameter space Θ, in order to find a configuration θ ∈ Θ that
maximizes some metric. One of the problems of grid search is that it requires an amount of computational
resources that increases exponentially with the number of hyper-parameters. As a result, a lot of poor hyper-
parameter combinations are tried unnecessarily [2]. In this regard, random search, an algorithm that consists
on a random, independent sampling of the hyper-parameter space instead on a fixed sampling, is proved to
outperform grid search [2]. As an alternative to gradient-free optimization in neural networks, a gradient-
based hyper-parameter optimization method was proposed in [15], that resorts to obtaining gradients by
performing an exact reverse of stochastic gradient descent with momentum.

The main advantage of exhaustive search methods is that they are easy to run in parallel to easy the
computation burden. However, they are based on samples that are independent from each other, and there-
fore they do not use the information of previous evaluations, so the convergence towards the optimum is
slowed down. This is very significant when the budget of computational resources is scarce. As an alter-
native method aimed for expensive to evaluate functions, the sequential model-based optimization (SMBO)
(a common algorithm is Bayesian optimization) consists of resorting to a probabilistic model in order to
determine, according to the previous observations, what is the next point that yields, depending on the
probabilistic model, the highest probability of optimizing an expensive performance function [9, 16, 17].
Empirical evaluations highlight that SMBO performs better than random search on hyper-parameter tuning
in some applications (see e.g. [4]).

Regarding hyper-parameter setting for reinforcement learning algorithms, common hyper-parameters are
the step-size parameter α, that regulates the speed of learning; the discount factor γ, that determines how
future rewards are discounted (explained in section 2.2), policy related parameters such as ε or τ , that
determines how the agent select its actions seeking to trade-off exploitation with exploration. In some
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algorithms, the trace parameter λ, that determines the decay rate of credit-assignment to previously visited
states may be difficult to set. Each one of these hyper-parameters has been studied separately (for example,
see [18], [19] and [20] for the tuning of α, [21] for optimizing γ and [18] and [22] for adapting λ). A meta-
learning approach has been proposed in [23] to tune the hyper-parameters of a reinforcement learning for
a problem related to animal behavior. The proposed approach is rather limited as the information to tune
the hyper-parameters is obtained from dopamine neuron firing in animals. For high-level hyper-parameter
setting in a reinforcement learning task, a relevant problem recently studied in this area is the problem
of algorithm selection, where the hyper-parameter can be the learning algorithm itself (for example, [24]).
Considering the scope and limitations of previously references in the field, our main motivation is to propose
a general framework to autonomously tune all the hyper-parameters in a reinforcement learning algorithm
so as to make hyper-parameter setting part of the learning problem related to Q-values.

2.2 Reinforcement Learning

As a method that can be combined with a large set of algorithms such as deep learning representations,
as presented in [8], and employed in applications such as self-driving cars [25] and in games such as Go
[26, 27], reinforcement learning (RL) is a form of computational learning where an agent is immersed in an
environment E and its goal is to converge to an optimal policy by performing sequences of actions in different
environmental states and receiving reinforcement signals after each action is taken. At any discrete time t,
the environment is in a state s that the agent can sense. Each agent action a is applied to the environment,
making it to transition from state s to a new state s′. A frequent setting is one that uses delayed rewards,
i.e. by returning a non-zero reward whenever a goal state is reached and 0 otherwise. In such a setting, the
agent could not normally determine whether an action is good or bad until a reinforcement is received, so the
agent must try different actions in different states without a priori knowing the final outcome. For example,
consider an agent learning to play Chess, where a check-mate situation would lead to a reinforcement of 1 or
-1 depending on if it was a victory or a loss, whilst being in every other state would lead to a reinforcement
of 0.

For the cases where the RL problem has a finite set of actions and states, and the sequences of (state, action)
satisfies the Markov property, then the problem can be formally defined as a Markov Decision Process (MDP)
where S = {s1, s2, ..., sn} is the set of states, A = {a1, a2, ..., am} is the set of actions and Pa(s, s′) is the
probability that the agent, being in state s, transitions to state s′ after taking an action a and receive a
reward r. An episode is defined by the finite sequence s0, a0, r1, s1, a1, . . . , an−1, rn, sn. At each time step t,
the agent senses its environmental state st and selects the action at ∈ A to take next using the (estimated)
optimal policy. The latter summed up the experience gathered in previous interactions with the environ-
ment and tends to maximize future rewards. To balance the search for short-term versus long-term rewards,
future rewards are discounted by a factor γ ∈ [0, 1], such that the total reward Rt at time t is given by
Rt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + ...+ γnrt+n.

In order to solve a task using RL, the learning agent employs a policy π that defines, being in the
environmental state s, what action must be taken in each given time t. With a given policy, the agent aims,
for all states, to learn to maximize its action-value function Qπ(s, a), which represents the expected reward
that would be obtained when starting from state s by taking action a and following policy π afterwards.
Given s, a and π the action-value function satisfies the Bellman equation, expressed as

Qπ(s, a) = E(Rt | st = s, at = a) (1)

=
∑
s′

P (s′ | s, a)(r(s, a, s′) + γVπ(s′))

where P (s′ | s, a) is the probability that the agent transitions from state s to state s′ after taking action
a, r(s, a, s′) is the reward obtained by applying the action a in state s and transitioning to state s′ and
Vπ(s′) is the expected reward to obtain starting from state s and by following policy π. Solving Eq. (1) by
applying iterations is what the different algorithm implementations of RL attempt to achieve. One of the
most common algorithms is Q-Learning [10], which uses temporal difference at each time-step t in order to
update Q(s, a). Q-Learning is an off-policy algorithm, in the sense that each Q(s, a) is updated considering
the best value of Q in the next time-step, regardless of the policy the agent actually uses. The update step
is given by

Q(st, at) ← Q(st, at) + (2)

α(rt+1 + γmax
a

Q(st+1, a)−Q(st, at))

4
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Other well-known reinforcement learning algorithms includes on-policy algorithms such as SARSA [11],
model-based algorithms such as Dyna versions of Q-learning and algorithms that incorporate eligibility traces
such as Q(λ) [28], among many others. All of them have a fixed set of hyper-parameters such as the step-size
α, which impacts on the temporal difference update of Q(s, a), or n, the number of times the model is used
to simulate experience after each step as in Dyna-Q.

Regarding the agent’s action-selection policy, a common one is ε-greedy, where the agent explores actions
that are a priori suboptimal, by taking a random action with probability ε, and exploits its current knowledge
by taking the action that is believed to be the optimal one with probability 1− ε. Another common policy
that the agent can follow in its learning policy is Softmax, where the agent takes an action with a probability
that depends on its Q(s, a) value. The most common implementation of this algorithm is the Boltzmann
Softmax, which defines the probability of taking the action a in state s as

π(a | s) =
exp{Q(s, a)/τ}∑
b exp{Q(s, b)/τ}

(3)

where τ is the computational temperature. By using this policy, the agent starts by employing an exploratory
policy at the beginning with a”high temperature”, switching over time to a more greedy policy as the value
of the hyper-parameter τ is increasingly reduced, i.e. exploration ”cools down”.

2.3 Bayesian Optimization

As an approach typically used to maximize an expensive to evaluate function such as the one measur-
ing the performance of a reinforcement learning agent in an uncertain environment, Bayesian optimiza-
tion [29] seeks to optimize an unknown objective function f(X), where X ∈ Rn, by treating it as a
black-box function and defining a probabilistic model, a prior distribution, over its nature. Then, the
Bayes’ theorem is used to update the posterior belief about its distribution after observing the data Dn =
{(X1, f(X1)), (X2, f(X2)), ..., (Xn, f(Xn))} of new f queries (the algorithm for BO is stated in Algorithm 1
[9]). In order to maximize the efficiency under a limited amount of possible queries i.e. a budget of queries
for sampling f , Bayesian optimization (BO) resorts to a cheap probabilistic surrogate model in order to de-
termine the next point to query. This point is selected by maximizing a function called acquisition function.
To begin with, sampling methods such as Latin hypercube [30] are used. The acquisition function determines
how much the agent exploits the current knowledge and selects points with the highest probability of being
a new maximum of f versus how much the agent explores a priori sub-optimal regions aiming to discover a
reduced, yet feasible region of interest where the function maximum may be located with high probability.
Emphasizing exploitation accelerates convergence, but the agent may often fall in a local optimum. On the
other hand, emphasizing exploration ensures a more comprehensive sampling, but can significantly increase
the time and cost needed to learn Q-values. An acquisition function commonly chosen is the expected im-
provement function [31, 32], because it provides a sensible trade off between exploration and exploitation by
weighting the amount of improvement of a given point X with regards to the current maximum X+ by the
probability that such point X will improve over the current (known) maximum. The expected improvement
acquisition function is given by

αEI = E(f(X)− f(X+))P (f(X) > f(X+)) (4)

= Φ(Z)(µn(X)− f(X+)) + φ(Z)σn(X)

where X+ is the point corresponding to the highest observed value of f , whereas Φ and φ are the cumulative
distribution function and probabilistic density function of the standard Normal distribution, respectively,

and Z = µ(X)−f(X+)
σ(X) .

In the Algorithm 1, it can be appreciated how, given an acquisition function, the objective function is
queried in a controlled manner. The core sentence of the algorithm can be observed in line 2, where the
acquisition function is optimized aiming to obtain the query point Xt that, influenced by the chosen prior
distribution, is the point with higher probability of being the maximum of the objective function.

2.4 Gaussian Processes

In a supervised learning task, the agent is given examples in the form of correct feature-response pairs
Dn = {(Xi, f(Xi))}, i = 1, . . . , n which are used to learn inductively how to make predictions for unseen X.
Features or inputs are normally X ∈ RD, whereas responses can be either real valued, in such case the agent
is learning an input-output regression map, or categorically valued, i.e. f(X) ∈ {C1, C2, ..., Cn}. In the
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Algorithm 1: Bayesian Optimization

Input : αmodel - the acquisition function
1 for t = 1, 2, ... do
2 Xt = arg maxX(αmodel(X | D))
3 Sample the objective function yt = f(Xt) + ε
4 Dt+1 = add(Dn, (Xt+1, yt+1))
5 Update the statistical model

6 end
Output: arg maxX f(X)

latter case the agent is learning a classification task. Such feature/response pairs are fitted to training data,

in such a way that the agent minimizes a loss function L(f(X), f̂(X)) that measures the cost of predicting

using the model f̂(X) instead of the actual (unknown) function, f(X). A common loss function is the
mean-squared error, given by

MSE = n−1
n∑
i

(f(Xi)− f̂(Xi))
2 (5)

Since the function f(X) is unknown and expensive to query, a common approach is to assume that it
follows a multivariate Gaussian distribution defined by a prior mean function µ0(X)→ R and a covariance
function k(Xi, Xj)→ R. Based on this assumption and by incorporating the pairsDn obtained from querying
the objective function n times, we are using a Gaussian process [33] as the surrogate model. A Gaussian
process (GP) places a prior over the data set Dn, and, by applying the kernel trick [33], it constructs a
Bayesian regression model as follows: given Dn, the mean and variance of a new point X is given by

µn+1(X) = µ0(X) + k(X)TK−1(Y − µ0) (6)

σ2
n+1(X) = k(X,X)− k(X)TK−1k(X) (7)

where K is the covariance matrix, whose element Kij = k(Xi, Xj) and k(X) = (k(X1, X), ..., k(Xn, X)) is
a covariance vector composed of the covariance between X and each of the points Xi for i = 1, 2, ..., n. On
the other hand, the covariance function k defines the smoothness properties of the samples drawn from the
GP. The most common choice is the squared exponential function [33], given by

kse(Xi, Xj) = σ2
f exp{−1

2
(Xi −Xj)

T (8)

diag(l)−2(Xi −Xj)}+ σ2
nδij

where σ2
f is the variance of the function f , σ2

n is the noise signal, l is a vector of positive values that
defines the magnitude of the covariance and δij is the Kronecker delta such that δij = 1 if i = j and 0
otherwise. This function is infinitely differentiable and it is often considered as unrealistically smooth for
several optimization problems [4]; an alternative is the Matérn covariance function. Assuming no prior
knowledge about the hyper-parameters θGP = (σ2

f , σ
2
n, l), a common approach is to maximize

logP (y | X, θGP ) = − 1

2
(y − µ0)TK−1(y − µ0)

− 1

2
log |K| − n

2
log 2π (9)

where y is the vector containing the observations f(X1), f(X2), ..., f(Xn) and µ0 is the vector containing the
prior means. Regarding θGP , approaches such as Latin Hypercube Sampling or the Nelder-Mead optimization
method can be used in order to obtain values that maximizes the likelihood of the dataset given the GP
hyper-parameters.

2.5 Meta-learning

The integration of algorithms for Bayesian optimization of parameters in a RL algorithm defines a more
abstract layer of learning known as meta-learning [34, 35]. Meta-learning seeks to imitate the human
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capacity of fast generalizing concepts after seeing just a few examples, and is also referred to as learning
to learn. Meta-learning is closely related to transfer learning where an agent learns to perform better in
a task by resorting to knowledge gain in successfully solving similar tasks [36], even learning the learning
algorithm itself [37]. Meta-learning is aimed at learning the specific bias of the task the agent is trying to
do, i.e. the set of constraining assumptions that influence the choice of hypothesis for explaining the data.
These biases allow the agent to gain prior knowledge that increase the efficiency in solving similar tasks [37].
Meta-learning involves at least two learning systems: a low level system that generally learns fast and an
abstract learning layers that normally learns slower and whose purpose is to improve the learning efficiency
at the low level system [36]. A well-known meta-learning example in machine learning is the boosting method
[38], that consists on a set of ”weak” learners that are trained sequentially and their predictions are weighted
and combined to form a ”strong” classifier that enjoys of a sensible higher prediction capability for class
separation.

Regarding meta-learning approaches more specifically geared towards reinforcement learning, recent
works include the incorporation of a general purpose RL agent as a meta-learning agent, used to train
a recurrent neural network [39, 36]. Also, a model-agnostic meta-learning layer that learns to generalize
by performing a low number of gradient steps [40], which can also be used in supervised and unsupervised
learning has been proposed. Other meta-learning approaches have shown the effectivity of using Bayesian
optimization at a more abstract learning layers, particularly in reinforcement learning for robotic applica-
tions (e.g. [41, 42]), where such layer is used to learn a policy for a damaged robot, updating the model
after each iteration. This allows, for example, that the robot be able to walk by adapting its policy to a loss
in motor functionality using knowledge acquired in previous faulty conditions.

2.6 Bandit algorithms

The multi-armed bandit or N -Armed bandit problem is a decision problem in which a gambler must
choose among N arms or slot machines (also referred as ”one-armed bandits”), where each arm has a latent
probability distribution. The gambler seeks to maximize the value received from the slot machines, having a
limited budget of pulls to be tried. The decision problem arises from the gambler having to decide between
pulling those arms which rewarded a high payoff (exploitation) and pulling apparently less profitable arms
where the value received was a lower value or unexplored arms that have not yet been pulled (exploration).
This is a somewhat simplified reinforcement learning setting but without state related association of rewards
received (it can be formalized as a one-state Markov decision process). This problem has several variants,
but a common formulation consists of N ∈ N+ arms where D = {Φ1(µ1, σ1), ...,ΦN (µN , σN )} is the set
of latent probabilistic payoff distributions corresponding to each i = 1, . . . , N . At every discrete time-step
t = 0, 1, . . . , the gambler has to choose which arm ai(t) ∈ {a1(t), . . . , aN (t)} to pull, receiving in turn a
reward r ∼ Φi(µi, σi), from which she may calculate the sample mean and the sample standard deviation, µ̂i
and σ̂, respectively. The problem of maximizing the sum of received rewards,

∑
r, is what bandit algorithms

attempt to solve. In this section there are listed some common ones (based on [43]), which are also those
used in this work.

Two common policies, as in the reinforcement learning problem, are ε-greedy and Softmax. In the case
of ε-greedy, the policy for choosing an arm follows

ai(t) =

{
arg maxai=1,...,N

µ̂i(t) with probability 1− ε
ai with probability ε/N

(10)

This means that the best arm will be selected with a 1− ε probability, and with ε probability a random arm
is selected. A common variant of ε-greedy is the greedy policy, which is the ε-greedy policy with ε = 0 i.e. a
policy which always selects the arm whose sampled mean is higher. On the other hand, the Softmax policy
(as seen on Equation 3) states that each arm has a probability of being selected distributed in proportion
to the sample mean, and given by

P (ai(t)) =
exp{τ µ̂i(t)}∑
b exp{τ µ̂i(t)}

(11)

Other common family of policies are the Upper Confidence Bound algorithms [44], which consist in algorithms
that maximizes the upper bounds of a confidence interval. Two algorithms used in this work are the UCB1
and the UCB1Tuned algorithms. In the UCB1 algorithm, the arm to be selected is determined in proportion
of the sampled mean of that arm and a factor between an amount proportional to the amount of times each
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arm has been pulled and the current discrete time t. Analytically this is given by

ai(t) = arg max
ai=1,...,N

[
µ̂i(t) +

√
2 log t

ni

]
(12)

where ni is the amount of times the i-th has been pulled. The UCB1Tuned algorithm is similar to UCB1,
but it is extended by taking the variance into account by weighting the factor of UCB1 by an amount
proportional to the sampled variance. Therefore, UCB1Tuned is given by:

ai(t) = arg max
ai=1,...,N

[
µ̂i +

√
log t

ni
min

[
1

4
, Vi(ni)

]]
(13)

where Vi(ni) = σ̂2
i +
√

2 log t
ni

.

In this work, a meta-learning layer that combines a bandit learning algorithm and Bayesian optimization
to control the performance, querying and selection of the hyper-parameters of a RL learning agent at a lower
layer is proposed.

3 RLOpt Framework

The autonomous reinforcement learning framework proposed in this work, RLOpt, consists of the integration
of Bayesian optimization as a meta-learning layer in a reinforcement learning algorithm, in order to take
full advantage of the agent’s past experience with its environment given a different hyper-parameter con-
figuration. The distinctive feature of RLOpt is the autonomous seeking for a good set of hyper-parameters
that maximizes the efficiency of the agent learning an optimal policy without requiring any difficult-to-
understand inputs from the user. In order to be able to optimize the outcome of each learning episode of
an RL agent A, its interaction with a simulated environment given a set of hyper-parameters is treated
as a supervised learning task at the meta-level of learning. In such a task, the set of hyper-parameters θ
constitutes the input to a random function fA(θ)→ R which measures the influence of hyper-parameters on
the learning curve. The output of such function is the performance metric in learning to solving the task. In
other words, the hyper-parameters of the RL algorithm are taken as predictors of a real-valued performance
metric for optimal policy learned so far, as in supervised learning; however, the distinctive aspect of the
proposed framework is that it uses a supervised learning approach for hyper-parameters in a higher level of
abstraction to improve to speed up the learning curve experienced by the agent while seeking to find in the
best policy through interactions with the environment. Therefore, the objective of the RLOpt framework is
resorting to data gathered Dn = {(θi, fA(θi))} as evaluative feedback to train a regression model, and then
use Bayesian optimization to learn good algorithm configurations for A with a minimum number of queries,
i.e. learning episodes. On the other hand, RLOpt has its own set of hyper-parameters Θ at the highest
level of abstraction which includes the number of queries that A will perform and the parameters of the GP
model such as the covariance function.

The framework consists of six components, as it is depicted in Fig. 1, separated by RL learning and a
meta-learning layers. The components are described below:

Figure 1: The Autonomous RLOpt Framework.

1. The first component is a user application U , which sets the hyper-parameters Θ of the framework and
adds previous agent-environment interaction pairs (θ, fA(θ)), if they are available.
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2. The second component is the Bayesian Optimizer module BO, which uses a statistical model and
Bayesian optimization approach to decide what configuration is best to maximize the efficiency of the
learning curve. The BO module, according to Θ, is set to run a certain amount of meta-episodes (i.e.
queries to fA(θ) which represents higher abstraction level episodes where several RL agent episodes
are run under the same θ configuration).

3. The third component is the query optimization module QO, which stores all the pairs of the previous
queries (θ, fA(θ)) and, after receiving new θ vectors from BO, decides how many queries the agent
will perform with the same θ configuration, in order to ensure that at least a small sample of queries
in relevant regions are performed so as to reduce the impact of the stochasticity and to have a more
accurate sample of the real value of f for a given θ. The purpose of the QO component is to balance
the trade-off between the precision of the f(θ) point and the computational cost of those queries.

4. The fourth component, is the reinforcement learning agent A, which receives configuration vectors from
QO and interacts with the environment, learning a policy by iteratively sensing the environment state
and taking actions seeking a trade-off between exploitation and exploration. After receiving vectors
of hyper-parameters, the agent starts each new simulation from having no prior knowledge about the
policies found in previous instances with other vector of hyper-parameters.

5. The fifth component is the environment E, which provides the simulation environment used to train
the agent by receiving inputs from A that can modify its state and returns rewards accordingly.

6. Finally, the sixth component is the regression model (in this work a Gaussian process is employed) at
the meta-level of learning which iteratively incorporates new data into its modeling dataset, whenever
it is available, and use its current data in order to make a regression of the objective function at the level
where hyper-parameters are learned. This regression model is employed to obtain a new configuration
θ that maximizes the acquisition function so as to choose, hopefully, the next configuration of the agent
learning A where the maximum of fA has the greatest probability of being located, considering the
previous meta-episodes. In the current implementation of the RLOpt, the statistical model employed
is a Gaussian process; the main benefit of this model in the framework is that, by assuming a Gaussian
prior about the data, it can learn after a few queries instead of needing a vast amount of training
examples as methods such as deep learning models (see e.g. [45]). After receiving the signal from the
run() method initiated by the user U , the BO proceeds to instantiate A, E and the Gaussian Process
as the statistical model.

Based on prior experience, if it is previously provided by the user, the BO module sets the configuration
of A and passes it to the QO module, which, in turn, sets the configuration of A and then sets an agent to
run learning episodes for the first θ configuration. Then A proceeds to successively apply actions which are
defined by its current policy π on E, sensing its next state and receiving a numeric reward. This process is
repeated until a goal state or some stopping criterion is reached, and then the agent starts a new episode.
After finishing a fixed amount of episodes, the results obtained by each episode of the agent are averaged in
order to to calculate fA(θ). Then, the average of the episode with the other outputs from different θ vectors
is compared in the QO module and, if the minimum number of queries for the same θ has been reached, a
bandit algorithm is used to define if the current vector is good enough to query it again in order to see if
whether it was a result of the stochastic effect. If that is assumed to be the case, then the same θ is used
to query f again. Otherwise, if the maximum amount of queries of the same vector has been reached, the
current query is finished in the QO and fA(θ) is passed to the BO so the configuration vector θ, and the pair
(θ, fA(θ)) are added into the dataset used to fit the Gaussian process (statistical model). Once incorporated
into the statistical model, the BO starts using this new information to calculate µn+1 and σ2

n+1, in order
to optimize the acquisition function so as to determine the next best configuration to perform in a new
learning meta-episode. The optimizer then proceeds to initialize the agent with the new hyper-parameter
configuration, repeating the cycle until a preset number of learning meta-episodes with their corresponding
agent (lower-level) episodes have been made. The overall algorithm for the autonomous RLOpt Framework
is depicted in Algorithm 2.

In Algorithm 2, Θ is the framework configuration vector. This vector is composed by A, which is the RL
algorithm; µ0 which is the prior mean vector; σ2

f , the noiseless variance of f ; σ2
n, the noise level of the GP; l

the vector that defines the magnitude of the GP covariance function; α, the acquisition function; αopt which
is the function that optimizes α; the cut-off time k; minRunsθ and maxRunsθ which are the minimum and
maximum amount of learning episodes to be made under the same configuration θ, respectively; initLH ,
the amount of optional training meta-episodes used to add information sampled by a Latin hypercube to
the covariance matrix of the GP, and finally episodesBO, which is the number of the BO meta-episodes
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Algorithm 2: RLOpt framework.

Input : Θ
1 for n = 1 to episodesBO do
2 θ ← argmaxθ(α, αopt)
3 episodeQueries = 0
4 nextQuery = True
5 while nextQuery do
6 episodeQueries = episodeQueries+ 1
7 init(A, episodesA)
8 fA−avg(θ)← 0
9 for ep = 1 to episodesA do

10 restart(A)
11 run(A | θ)
12 saveExecution(A)
13 fA−avg(θ)← fA−avg(θ) + fA−ep(θ)

14 end
15 nextQuery = decideIfNextQuery(A)

16 end
17 fA−avg(θ) = fA−avg(θ)/(episodeQueries ∗ episodesA)
18 addGP (θ, fA−avg(θ))

19 end
Output: arg maxθ fA−avg(θ)

to run. On the other hand, the random function fA(θ) is sampled after executing a fixed amount of agent
episodes given by episodesA and under a given configuration vector θ. After initializing the optimizer, the RL
algorithm of A that runs the simulation and the acquisition and covariance functions are instantiated. If the
BO has not prior query points, before the beginning of the first episode the covariance matrix is initialized
by sampling a random number of initLH points in order to start the first set of GP model predictions with
non-trivial values of mean and variance (this step is skipped if initLH = 0). Whenever the BO changes the
hyper-parameters of A and resets its knowledge, it also resets E by returning it to its initial state, so as to
each agent can interact with the environment in similar conditions.

Because A involves a stochastic nature in its decision making policy to make room for exploration, the
result of the performance metric fA(θ) may vary from one simulation run to another even with the same
configuration θ. In order to minimize its variance and obtain a more significant value of f(θ) for a given θ,
f(θ) can be queried several times with the same θ and the result of the queries of the objective function is
averaged over all queries made with the same vector. The core method where the QO module decision is
performed is the decideIfNextQuery function, that returns True if it has been decided that the best choice
is to query the objective function with the same configuration, and False otherwise. In order to make this
decision, a N-armed bandit algorithm is employed such that, at any time, there are two arms that can be
chosen: the first is an arm that represents the decision to not keep querying the objective function with
the same configuration, because the sampled mean and the variance of the f(θ) samples with the current θ
vector are not good enough, in comparison to results obtained using other configuration vectors. Likewise,
the other arm represents the decision of performing another query to the objective function with the same
configuration, because the mean and variance of f(θ) under the same θ are sufficiently good compared to
the other values of the performance metric.

On the other hand, the method init(A, episodesA) sets the agent to its initial environmental state, thus
erasing its previous knowledge. This is done for two reasons: firstly, because previous knowledge relied
on hyper-parameters which are different to the current set, and therefore the new knowledge is biased in
unpredictable ways; secondly, in order to give the agent a new unbiased configuration to interact with the
environment so as to evaluate how the learning curve converges when starting with no prior knowledge.
On the other hand, the method restart(A), used to start a new agent episode, restores the agent to the
initial state of the environment, keeping its acquired knowledge. The procedure run(A | θ) runs the agent
episodes under θ in its environment from its initial state and until A reaches a final state or the amount of
steps corresponding to the cut-off time. The method saveExecution(A) stores the results obtained in the
episode, fA−ep(θ), for further use, e.g. by saving the amount of steps required for the agent to reach the
final state. Finally, when the last episode of A under the same configuration θ finishes, the BO saves and
averages the results obtained, attaching them to the dataset D, incorporating this new observation in the
statistical model. The cycle repeats itself until a certain amount of BO meta-episodes are completed, and
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then the configuration θ that maximizes fA is returned.
In order to compare the efficiency between an agent A against another agent A′ in how both performs

when taking actions to solve a task, two performance metrics were integrated into the framework. The first
is the average amount of time steps per episode,

fA(θ) =

∑nep

i ti
nep

(14)

Where ti is the amount of time steps employed in the episode i, and nep is the total number of episodes
experienced by A under configuration θ. This metric aims to reward the agent that solves the task in the
minimum possible time, i.e. taking the minimum possible amount of time steps to reach the goal state, where
nep 6 f(θ) 6 knep. That is, if A cannot reach its objective before the cut-off time, the amount of steps
employed in that episode will be added. When using this measure, the framework will treat the optimization
as a minimization problem by searching for arg minθ fA(θ).

On the other hand, the second metric used is the amount of successful runs per episode. The following
metric adds a notion of success to the agent episodes by making a distinction between successful and un-
successful episodes of the agent, instead of measuring the performance by a numerical score. For an episode
to be considered as a success, it considers an objective that must be accomplished regardless of any other
considerations such as the amount of steps the agent required to reach the goal state. The metric is defined
by

fA(θ) =

∑nep

i si
nep

(15)

Where, for each episode i, si = 1 if that episode was a success; si = 0 otherwise. The idea behind this
performance metric is to adapt to problems where, being the unknown objective function is expensive to
query, such as the function fA(θ) defined above. Thus, it is more important for the learning agent to succeed
while experiencing the episode rather than maximizing some other performance metric. For example, consider
an agent which uses reinforcement learning in order to learn how to better perform rescheduling tasks. For
such an agent, it is mandatory to find a repaired schedule which is feasible in minimum time rather than
finding the best schedule that is both feasible and optimum in some sense, e.g. having a minimum total
tardiness[46].

4 Case Study

4.1 Experimental Setup

In order to illustrate the proposed approach, results obtained for a gridworld problem are presented. Based
on the Blocking Maze example in [7], the proposed example consists of a grid where an agent starts from an
initial state S aiming to reach a final state G, in which the environment returns a reward of 1 (as opposed
to transitions to any other state where the reward obtained by the learning agent is always 0). There is a
set of obstacles between them, as depicted in Figure 2. Such obstacles are either permanent obstacles where
the agent cannot pass, obstacles that can be temporarily overcome for the agent, but at a certain episode
they become permanent obstacles, and temporal obstacles where the agent will be able to pass after some
amount of episodes have elapsed. There are two instances where the environment may change in each agent
simulation: the first happens whenever an agent instance reaches episode 15 and the other when the same
agent reaches the episode 30. The idea behind those environmental changes is to test how the agent adapts
to a somehow different environment with a given configuration of parameters.

In this work, two variants of the framework were employed: the first one which uses as performance
metric the average amount of time steps per episode, and the second one which uses as metric the amount
of successful steps per episode, which, in this example, is the amount of episodes where the agent reached
the final state (i.e. in less time-steps than the cutoff time). The algorithm selected for the agents to perform
the different experiments was SARSA(λ), which is a variant of the on-policy SARSA algorithm that uses
eligibility traces, a mechanism to propagate the Q(s, a) values to the state-action pairs visited in the past,
proportionally to how much time steps have elapsed since the last time the agent visited each pair. The
algorithm, in turn, is run under an ε-greedy policy and with a cut-off time of 400 time-steps. In this particular
setting, each agent instance Ai has as the configuration vector θi = (αi, εi, γi, λi), where the parameters
represents the learning rate, the exploration rate, the discount factor and the eligibility traces decay rate,
respectively. Regarding the statistical model configuration, the GP hyper-parameters were not optimized
after each step in order to use the same configuration between all the simulations. Instead, the following
hyper-parameters, which were determined empirically, were used: σ2

f = 0.8, σ2
n = 0.17, µ0 = (0, 0, 0, 0),
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Figure 2: Double blocking gridworld environment.

l = (−0.12,−0.12,−0.12,−0.12), expected improvement as the acquisition function and squared exponential
as the covariance function. The hardware configuration used to run the different experiments consisted in a
computer with 8 GB of RAM and 4 x 3.20 GHz processors.

Three different set of experiments were run in order to validate RLOpt. In the first experiment set,
the focus is to validate how the framework iteratively seeks for a θ vector that optimizes a performance
metric f in 30 meta-episodes considering two alternative ways for measuring it. On the other hand, the
second experiment set uses the best two vectors of θ for each metric of f found by the optimizers performing
a simulation, showing how their corresponding learning curves converge in comparison with a default θ
configuration. Finally, in the third experiment set, an extension of the first experiment is presented, that
illustrates how adding a N-armed bandit algorithm in the meta-learning layer makes room for a considerable
reduction in the amount of queries with the same theta and, at the same time, maintains a similar or better
convergence for both performance metrics. The experiments and their corresponding results and analysis
are discussed in the subsections below.

4.2 Convergence of the optimizers towards the optimum of the objective function

In this set of experiments, the two variants of RLOpt were executed 10 times in order to compare how fast
they converge towards the maximum value of f , where each execution consisted of 30 different queries to
the performance function. For each query, a RL agent with a given configuration θ is engaged in running 5
times 50 episodes, in order to obtain the average of the query. Each execution of the success metric variant
took an average of 2:12 hours, whereas the execution of the variant with the step-per-episode metric took an
average execution time of 2:39 hours. The two variants of the framework were run in parallel, where the ten
executions were run in batch, having finished in about 26:30 hours. The results of the optimization for the
number of successes and the number of steps per episode are depicted in Fig. 3 and Fig. 4, respectively, where
each curve represents how, for the success metric and steps per episode metric, the maximum and minimum
that were found for each execution changes for a given meta-episode, and the thicker curve represents the
average optimum value found for all runs made using the same framework configuration alternative.

Regarding the variant with the success metric, as can be seen in Fig. 3, the autonomous learning agent is
able to found iteratively the average maximum percentage of success per episode starting from an average of
near 0.3772 and converging to a maximum of 0.61 after 30 queries, which represents a 61.7% increase in the
success rate from the initial to the final query, with about a 2.12% average increase of the maximum for each
query. The learning curves reached a maximum of 0.7 successful episodes per episode and the worst case was
0.536 successful runs per episode. On the other hand, regarding the convergence, it can be appreciated in
various learning curves and in the average curve that this variant is prone to be caught in a local maximum:
there were a total of 12 meta-episodes where not a single of the 10 runs increased its maximum value at all.
Another noticeable aspect is that the major increase of the maximum happened between the 2th and the
7th query on all the runs made, where the average increase of the maximum of all the queries made in that
interval is 6.88%; and after that interval the average increase is reduced to 0.41%.
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Figure 3: Convergence towards the maximum number of successes per episode.

Figure 4: Convergence towards the minimum number of steps per episode.
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Figure 5: Learning curve of the variant with the success metric.

Figure 6: Learning curve of the variant with the step-per-episode metric.

On the other hand, regarding the variant using the number-of-steps-per-episode metric displayed in Fig
4, the minimum of the average amount of steps per episode starts in 276.4 in the first query, converging after
30 queries to a minimum of 211,7, which is a decrease of about 23% of the initial average steps per episode,
with an average of 0.80% decrease of the minimum of each run; the best minimum value for a single run
reached 188.95 average-steps-per-episode while the worst minimum value is 229.06 average-steps-per-episode.
Regarding the convergence of each execution, it can also be observed that in the different curves the optimizer
is prone to stuck in a local minimum. The number of episodes where in no one of the 10 executions is able to
change its minimum value using this metric which is 14. As in the other variant, a remarkable aspect is that,
between the 2th and the 6th query of all the runs, a worth noting decrease is produced in the minimum of
the majority of the curves, where various of the minima can be seen. The average decrease of the minimum
found in this period is 3.6%. After that gap, the convergence slows down to an average decrease of 0.19%
per episode. In both performance metrics used this fact can be interpreted as that the first few queries are
the most important to determine the optimum of each execution, thus suggesting that a minor amount of
meta-episodes could have been used instead of 30 to save computational time while obtaining similar results.

4.3 Comparison of Learned Policies with a Default Configuration

In order to visualize how is the learning of the different agents that use the global optimum obtained from
each variant, and how they compare to a default configuration used in RL, the best two configurations for
each alternative performance metric had been run again 20 times in a RL agent and averaged in order to
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Table 1: Hyper-parameters and results for the success metric variant

Hyper-parameters Metric

Best Configuration (0.538, 0.49, 0.69, 0.686) 0.495

Second Best Configuration (0.582, 0.553, 0.653, 0.321) 0.487

Soar Default Configuration (0.3, 0.1, 0.9, 0.001) 0.39

Table 2: Hyper-parameters and result for the steps-per-episode variant

Hyper-parameters Metric

Best Configuration (0.607, 0.191, 0.667, 0.707) 212.49

Second Best Configuration (0.291, 0.38, 0.5, 0.784) 235.07

Soar Default Configuration (0.3, 0.1, 0.9, 0.001) 260.29

compare them with a default configuration for RL agents. For such default configuration, the parameters
selected as default were the default parameters employed for a SARSA(λ) agent in the Soar Cognitive
Architecture [47] (specified in the Soar manual), that consisted on (α = 0.3, ε = 0.1, γ = 0.9, λ = 0.001).
The results can be seen in Table 1 and Table 2, whereas the convergence, represented by a learning curve
that averages all the previous episodes, can be appreciated in Fig. 5 and Fig. 6 for the variant with the
success metric and for the variant with the step-per-episode metric, respectively.

When the performance metric is the success, it can be appreciated that both agents with its configurations
obtained as a result of the optimization perform similarly. Moreover, both behave better than the default
configuration, which in turn start converging similarly to the second best configuration but their adaptation
is significantly worse compared to the first environmental change. The best configuration starts consistently
better than the other two, whereas their average is significantly decreased after the second environmental
change, in a similar profile in comparison to the other two runs. On the other hand, regarding the steps-per-
episode variant, the agent with the default configuration again performed worse compared to the agent with
the second best configuration, despite it starts with a poor performance in comparison to the agent with
the default configuration. Compared with the other variants, there was a clearer distinction in this metric
between the performance of the different agents, where at least 20 steps per episode separated all three runs
and this separation increases after the first environmental change.

4.4 Comparison with random search

In order to assess how the results obtained in the precedent section compares with other hyper-parameter
optimization methods, convergence curves obtained used the random search (RS) method help providing a
representative example (as described in Section 2.1). An implementation of the RS algorithm was run with
the same budget and configuration used in RLOpt: 10 executions of the algorithm, where each execution
consists of 30 meta-episodes. The ten executions were set to run twice, one for each performance metric.

The results of the convergence can be seen in Fig. 7 and Fig. 8 for the success and the steps- per-
episode metric, respectively. The blue and red curves represent the observed behavior for RLOpt and
Random Search, respectively. In each learning curve, the solid line in the middle corresponds to the mean
of ten independent executions, whereas the lighter area around that line has drawn based on the standard
deviation and confidence intervals. As can be seen in both curves, RLOpt consistently tends to find better
optima combinations of hyper-parameters, on average, than RS. More specifically, for the success metric,
RLOpt consistently increases the distance with respect to RS. on the other hand, for the step-per-episode
metric, RLOpt does a better start than RS in the first 5 meta-episodes. Later on, RS starts to reduce its
distance to RLOpt from the 11th meta-episode and onwards, reaching the minimum distance at the 28th
meta-episode.

4.5 Variants with N -Armed Bandits Decision Algorithms

In order to reduce the total amount of times f(θ) is queried, and therefore execution times, the experiments
presented in this section are based on the experiments made previously in Section 4.2, extending them by
adding executions with N -armed bandits for each variant of the optimizer. Five variants of the bandit-
based algorithms presented in Section 2.6 were used: ε-greedy with ε = 0.2, greedy (i.e. ε-greedy with
ε = 0), Softmax with τ = 1, UCB1 and UCB1Tuned. On each execution of the optimizers, a setting of
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Figure 7: Comparison of RLOpt convergence to the maximum against the convergence of random search
(success metric).

Figure 8: Comparison of RLOpt convergence to the minimum against the convergence of random search
(steps-per-episode metric).
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Figure 9: Comparison with the different average convergence curves for the success metric optimizers with
different bandit algorithms.

Table 3: Execution times and average number of queries of different optimizer variants (success metric).

No bandits Softmax ε-greedy Greedy UCB1 UCB1Tuned

Avg. number of queries 150.0 83.6 97.1 115.9 126.4 125.4

Avg. time per optimizer execution 2:12:25 1:19:47 1:27:33 1:44:48 1:54:37 1:52:53

% of time reduction - 39.7% 33.8% 20.8% 13.4% 14.7%

minRunsθ = 2 and maxRunsθ = 5 were used, so each optimizer run would at least query f twice for
each θ, and at most 5 times in order to avoid impasses whenever a local optimum is found and thus saving
computational resources.

The results of this experiment on the success metric variant optimizer are summarized in Table 3 for the
total amount of queries on f(θ) and execution times, and in Fig 9 learning curves are shown. The average of
the convergence of each variant with its corresponding bandit algorithm is presented in continuous curves,
while the average convergence without bandits (as was mentioned in Section 4.2) is displayed as a non-
continuous curve. It can be appreciated, in terms of the number of queries made, how the bandit-based
approach achieves a significant saving, between 15% and 40%, depending on the algorithm used. More
specifically, it is worth noting that the ε-greedy bandit and, specially, the Softmax bandit gives rise to the
biggest reduction of all in the average amount of queries and elapsed time, followed by the greedy algorithm.
On the other hand, the UCB1 and UCB1Tuned algorithms correspond to the lowest performance. By
observing the learning curves, it can be seen how, in terms of convergence to the maximum, the variant with
ε-greedy bandit algorithm converges slightly better than the performance average with no bandits by an
amount of 3,1%, whereas Softmax starts with a poor convergence and then recovered to an average of 0.16%
increase. Finally, the greedy bandit exhibits a similar convergence (-0.1%) and, regarding the UCB1 and
UCB1Tuned algorithms, they slightly underperformed in comparison to the average performance without
bandits (-0.48% and -1.46%, respectively).

Finally, for the step-per-episode measured optimizers, the results are shown in Table 4 and in Fig. 10.
Regarding the number of queries made, it is shown that the ε-greedy, Softmax and greedy algorithms were
those that reduced the most the number of queries, and the UCB and UCB1Tuned obtained the least
reduction, similarly to the success metric variant. The main differences in this experiment compared with
the previous one is that the algorithm that achieves the biggest reduction was the ε-greedy rather than
Softmax. Moreover, this time the greedy algorithm performed consistently better. In terms of execution
time reduction, ε-greedy obtained the highest reduction with near 46%, followed by a 40% reduction of the
greedy algorithm (which almost doubles the reduction obtained in the previous experiment). A slightly
less significant reduction (39.4%) is obtained using Softmax, which maintains almost the same reduction
achieved in the previous experiment. In terms of convergence, all the bandit algorithms tried follow a better
convergence, on average, towards the minimum, reporting less amount of steps-per-episode in comparison
with the variant without bandits. Here, the ε-greedy algorithm achieves best convergence, which found a
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Figure 10: Comparison with the different average convergence curves for the step-per-episode measured
optimizers with different bandit algorithms.

Table 4: Execution times and average number of queries of different optimizer variants (step-per-episode
metric).

No bandits Softmax ε-greedy Greedy UCB1 UCB1Tuned

Avg. number of queries 150.0 89.4 83.8 93.3 127.3 127.9

Avg. time per optimizer execution 2:39:23 1:36:28 1:26:36 1:34:41 2:15:29 2:14:09

% of time reduction - 39.4% 45.6% 40.5% 14.9% 15.8%

minimum that is -6,4% on average, compared with the optimizer variant that does not use bandits, and
followed by Softmax, greedy, UCB1Tuned and UCB1 (-2.83%, -2.63%, -2.51% and -1.48%, respectively).

Analyzing both experiments with and without bandits-based algorithms, it can be said that the main
benefit of adding a bandit algorithm in the meta-learning layer is that, depending of the chosen algorithm,
there is a considerable reduction regarding the number of queries to the performance function f . As a
result,the execution time that every optimizer requires to complete their corresponding number of meta-
episodes is also reduced. Regarding the convergence to the optimum, it is seen that some algorithms achieve,
on average, a slight better performance than the variant with no bandits, while other algorithms obtained
virtually the same convergence rate or even under-performed slightly. A problem to be addressed in a
future work is the reliance of bandit algorithms on their own hyper-parameters; this is clearly seen in the
greedy algorithm, which is the ε-greedy algorithm with ε = 0, which performed consistently worse than
the ε = 0.2 algorithm in both experiments. This is a plausible problem that UCB1 and UCB1Tuned also
had in their respective experiments. Even though they do not have hyper-parameters, the numeric scales
can be considerably different than those of the problem as it happens in the experiments made. Thus,
having a limited amount of queries, adding a hyper-parameter to change the scales can be an addition to be
considered. Another aspect to address is that, even with the inclusion of bandit algorithms, the stagnation in
the convergence it is repeated as in the variants without bandits, as it can be seen in the convergence curves.
It can be said that the convergence to the maximum starts rapidly in the meta-episodes 2-5 (5.7% increase
and 4.77% decrease per meta-episode for the different success and step-per-episode variants, in average),
slowing down to an average of about 0.45% increase and 0.24% decrease from there, respectively. As in
the first set of experiments, this means that it would be almost unnoticeable in terms of convergence of the
learning if the optimizer were run for half or even less meta-episodes.

5 Concluding Remarks

A framework for automating the quest for a near-optimal policy in an autonomous reinforcement learning
task has been presented. The proposed framework allows the learning agent to automatically find a good
policy abstracting the user from having to manually tune the configuration, resorting to an expensive trial-
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and-error approach or using a possibly sub-optimal, default hyper-parameter configuration not suited for
the specifics of the learning task at hand. By using Bayesian optimization, the framework takes into account
all the previous points and observed values. By assuming a Gaussian prior of the data at the meta-level of
learning, the framework uses a Gaussian process regression model to estimate the point where the maximum
cumulative reward has a greater probability of being located, thus increasing the efficiency of the search of
the hyper-parameter configuration that maximizes the efficiency of a reinforcement learning agent. Finally,
by incorporating a bandit learning algorithm in order to decide which regions are potentially more appealing
to explore further in order to reduce the stochasticity of the samples, the framework can reduce the amount
of computational time required while maintaining a good convergence towards the optimum.

For future research work, there are several directions were this work is to be extended. The first direction
points towards the extension of the performance functions and the respective analysis and comparison with
the current ones in different environments and including metrics with labels that belongs to a certain category
Ci ∈ {C1, C2, ..., Cn} e.g. whether an execution is a failure or a success, instead of being real valued. The
second direction is about the extension of the case study to an industrial example for a rescheduling task, in
order to analyze how the framework performs with the increase of complexity in the environment, adapting
the framework to such complexity by making modifications such as the use of more complex reinforcement
learning algorithms or erasing queries that have low information contents after the covariance matrix reaches
a certain rank. Also, another research avenue is the extension of the framework to a higher level for hyper-
parameter selection such as RL algorithm selection and agent policy selection, among others. Additionally,
other research direction is to add in the framework methods to detect which regions of hyper-parameters
can ensure an adequate performance in the agent’s learned policy, and then perform an optimization inside
those smaller regions. The fifth direction address the incorporation in RLOpt of the optimization of the
Gaussian process own hyper-parameters, by maximizing Eq. (9) instead of using empirically determined
values. Finally, the sixth direction approaches the implementation of other regression models such as random
forests, and the comparison of GP with different covariance functions.
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