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Abstract

The Architectural knowledge (AK) generated during software architecture projects is a valuable asset for
software organizations. Although many organizations have adopted supporting tools to capture the pro-
duced AK, still there exist some difficulties in making it available to be retrieved by the consumers. More-
over, the boundaries of knowledge of an organization can be expanded to AK repositories that are shared
or made public by other organizations. Thus, organizations have to deal with heterogeneity in knowledge
representation, which makes complex the integration of knowledge from several sources. There is a need of
an approach for sharing, integrating, and retrieving AK from various sources, which enables organizations to
revisit and retrieve both their own and others’ past decisions, as a basis for upcoming decisions. This paper
describes an ontology-based approach for sharing, integrating, and retrieving knowledge from different AK
sources, which is based on ISO/IEC/IEEE 42010. A proof of concept was developed to apply the approach
on an AK management tool, and a scenario of knowledge retrieving was carried out.
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1 Introduction

As software systems become bigger and evolve, their software architectures become

more complex and, software architects need to cope with a constantly growing

amount of architectural knowledge. The knowledge generated during the software

architecture process in several projects is a valuable asset for software organizations

that can be shared in a community. Although many organizations have adopted

some strategies and tools to support to the architectural knowledge (AK) produc-

ers (architects, designers, documenters), still there exist some difficulties in making

the AK available to the AK consumers (maintainers, developers, reviewers, other
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organizations, other management tools, etc.). We have found that, in fact, in-

dustrial organizations make attempts of retrieving and reusing artifacts, decisions

and their rationale from previous projects, but they find this task difficult due to

some barriers [4]. One of the barriers that inhibit the recovering and use of AK

is that architecture knowledge management (AKM) tools do not provide efficient

knowledge recovering features for it. In order to take advantage of this knowledge,

organizations need adequate approaches for efficiently exploring and recovering it.

Additionally, the boundaries of AK retrieving can be expanded to include AK from

repositories shared or made public by other organizations. In this case, the barriers

are the heterogeneity in knowledge representation and the integration of knowledge

from several sources. Therefore, there is a need of an approach that enables the

integration, sharing, and retrieving of architectural knowledge from existent AK

sources, which should enable organizations to revisit and retrieve both their own

and others’ past decisions, as a basis for upcoming decisions.

Ontologies and Semantic Web are powerful mechanisms for representing knowl-

edge and encoding its meaning. They can be used to model and represent the

knowledge found in several sources, such as the knowledge generated and stored

in AKM tools, in order to enable its integration, exploration, recovering, and ex-

ploitation as a reusing asset. This paper describes a preliminary ontology-based

approach named SAK-SIR, which is based on ISO/IEC/IEEE 42010 standard, for

integrating, sharing, and retrieving knowledge from different SAK sources. Then,

as a proof of concept, we apply the approach for sharing, integrating, and retrieving

knowledge on the knowledge provided from an AKM tool the authors have devel-

oped in previous works (TracED). A scenario of knowledge retrieving is developed

regarding that TracED metamodel includes concepts for supporting the capture of

the complete evolution of a Software Architecture Design Process (SADP).

The paper is organized as follows. Background on ontologies and semantic web

technologies, and the ISO/IEC/IEEE 42010 is given in Section 2. In Section 3, the

possible sources of SAK are identified and characterized, and the SAK-SIR approach

is introduced. In Section 4, we apply the approach integrating the AKM metamodel

and repository of TracED tool [14], [16], and retrieving SAK from historical SA

projects. Section 5 discusses related word. Section 6 presents the conclusions.

2 Background

2.1 Ontologies for knowledge retrieving

Ontology-based techniques have gained acceptance as a means for tagging and per-

forming semantic searches. Additionally, ontologies can be used to provide a com-

mon understanding for different terminologies and make the knowledge available

for future use. In a previous paper [17], we have taken the first step to construct

an ontology for software architecture knowledge (SAKOnto), which include con-

cepts, relations, and constraints to represent knowledge from several categories: i)

general knowledge, ii) context knowledge, iii) design knowledge, and iv) reasoning

knowledge [19]. By definition, an ontology is an explicit formal specification of the
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concepts (also referred to as classes) in a domain and the relations among them [21].

Ontologies are used in various application domains to facilitate a common under-

standing of the information structures in a domain and to enable reuse of domain

knowledge. Ontologies enable a hierarchical classification of interrelated domain

concepts. They can be represented using RDF 4 schema and OWL 5 , which is a

more expressive language. The use of RDF makes ontologies human readable and

machine interpretable, allowing querying of and inference over knowledge [7]. OWL

is a language for defining and instantiating Web ontologies. An OWL ontology may

include descriptions of classes, their properties and instances. Given an ontology,

the OWL formal semantics specify how to derive its logical consequences (infer new

knowledge), in other words, facts that are not literally present in the ontology, but

entailed by the semantics.

Regarding the potential of ontologies for knowledge retrieving, it should be noted

that the RDF triples in a dataset, represent relationships between knowledge objects

that are explicitly described and directly accessible. As a result, SPARQL 6 queries

are considerably better aligned with users’ mental models of a domain. Queries

that have to traverse a chain of connections are particularly complex in traditional

queries over relational databases, while very simple in SPARQL.

With RDF, schema level information is stored and queried the same way as

data. It means that the conceptual data model could be fully explored through

queries. It also makes it easy to create flexible driven queries. A key advantage

of RDF is that it was designed specifically to readily merge disparate sources of

data. Correspondingly, SPARQL includes a syntax to call two or more data sources

within a single query. Therefore, these semantic technologies are suitable for being

employed for retrieving knowledge from heterogeneous knowledge sources.

2.2 The ISO/IEC/IEEE 42010 standard and AKM tools

The ISO/IEC/IEEE 42010 International Standard for describing software architec-

ture [9] provides a core ontology for the description of software architectures. The

standards’ core metamodel consists of stakeholders, system concerns, environment

and architecture. Architecture is described in terms of architecture description,

which consists of system elements, relationships between system elements, princi-

ples of the system design, and principles that guide the evolution of system over its

life cycle. The ISO/IEC/IEEE 42010 provides a model characterizing the constructs

that need to be captured for documenting SADPs and their rationale. The stan-

dard considers that an AD element is any construct in an architecture description.

An architecture description includes one or more architecture views. An architec-

ture view expresses the architecture of the system-of-interest in accordance with

an architecture viewpoint. A view is governed by a viewpoint. An architecture

view is composed of one or more architecture models. An architecture model uses

modelling conventions appropriate to the concerns to be addressed. These conven-

4 https://www.w3.org/TR/rdf-schema/
5 https://www.w3.org/TR/owl-features/
6 https://www.w3.org/TR/rdf-sparql-query/
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tions are specified by the model kind governing that model. A model kind may be

documented by specifying a metamodel that defines its core constructs. A meta-

model presents the AD elements that comprise the vocabulary of a model kind.

The metamodel should present entities, attributes, and relationships, which are all

Architecture Description elements. The standard also states that when a viewpoint

specifies multiple model kinds it is often useful to specify a single viewpoint meta-

model unifying the definition of the model kinds. Furthermore, it is often helpful

to use a single metamodel to express multiple, related viewpoints. Architecture ra-

tionale records explanation, justification or reasoning about architecture decisions

that have been made. A decision can affect the architecture in several ways. These

can be reflected in the architecture description as follows: requiring the existence of

AD elements; changing the properties of AD elements; triggering trade-off analyses

in which some AD elements, including other decisions and concerns, are revised;

raising new concerns.

The most widely known AKM tools so far [19] have an associated repository

to store and manage AK. In fact, one of the key differentiating factors among the

AKM tools is the data model of the corresponding repository. Such data models

define the architectural constructs and their relationships with each other, and thus

represent architecture design knowledge that is used or generated during software

architecture design and analysis. A data model can help organizations to define

and obtain data on various aspects of their architectural assets and design rationale

during the software architecture process [4].

Several AKM approaches of the last ten years describe the connection between

design decisions and other software artifacts and how decisions can be represented,

which is aligned with the ISO/IEC/IEEE 42010 standard. Therefore, integrating

these concepts in an ontology would not be a difficult task, given the advantages

of languages like RDF and OWL for defining hierarchical relationships and set any

kind of semantic association between concepts and instances.

However, each AKM approach proposes its own architectural description ele-

ments, which includes a series of specific concepts that need a suitable represen-

tation in an ontology that is compatible with the concepts of the ISO/IEC/IEEE

42010 standard. Many of the concepts could be missing in the standard, or could be

present but expressed in a generic way. This means that in some cases, it is required

the work of an expert or ontology engineer for the identification and specification o

of concepts, relations, properties and rules in order to define the ontology.

3 The SAK-SIR Approach

The approach for Sharing, Integrating, and Retrieving Software Architecture Knowl-

edge (SAK-SIR approach) is scoped in the AK producer-consumer model revisited

by Tang et al. [19], which describes the general activities and stakeholders of AK.

That producer-consumer model has at the heart the concept of Reasoning Knowl-

edge, which includes design decisions, rationale, alternatives considered, tradeoffs

made, and forces identified. Related to this knowledge are: General Knowledge,
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Fig. 1. An overview of the SAK-SIR approach.

Context Knowledge, and Design Knowledge, which could be traced to the Rea-

soning Knowledge. General Knowledge includes knowledge that is usable in any

system design (e.g. architectural styles, patterns, and tactics), whereas Context

Knowledge contains the knowledge about the problem space, which is specific to

a system, e.g. architectural significant requirements and project context. Design

Knowledge includes the knowledge about the design of the system, e.g. architec-

tural models or views. Together these four types of knowledge make up the concept

of Architectural Knowledge. A Consumer can Learn and Search/Retrieve this AK.

In addition, a Consumer can evaluate the Reasoning/Design Knowledge. A Pro-

ducer produces Reasoning Knowledge by architecting, and Design Knowledge by

synthesizing. The Producer can also distill and apply General Knowledge while ar-

chitecting/synthesizing and integrate Context Knowledge. Last, the Producer can

share the produced Architectural Knowledge.

The SAK-SIR approach focus in how the producers share the software architec-

ture knowledge (SAK) they own, how to integrate it with other knowledge sources,

and provides guidelines on tools to make possible to consumers to explore and

retrieve knowledge. SAK-SIR consists of five stages, not being all of them com-

pletely computer-supported, as some human expert work is still necessary. They

are: A)SAK Sources Identification, B) SAK Processing, C) SAK Integration, D)

SAK Loading, and E) SAK Retrieving. An overview of SAK-SIR approach is shown

in Figure 1.
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3.1 SAK Sources Identification Stage (A)

SAK sources can be characterized regarding whether they are internal or externals

to an organization, regarding if their content is file-based, or ontology-based, or

structured in a data-base, regarding the kind of AK they provide (General, Context,

Design, or Reasoning), etc. In this work, the following knowledge sources types have

been identified (KS-TX):

• KS-T1: Software architecture texts and publications, web pages and cata-

logues, standards. This knowledge is general and not related to specific archi-

tecture design projects from an organization.

• KS-T2: Software Architecture Documents, Architectural Decision Templates,

Wikis (file-based approaches, ontology-based approaches). Their content are

derived from specific architecture design projects.

• KS-T3: Metamodels and projects repositories from Architectural Knowledge

Management tools.

KS-T1 sources (Figure 1) are public and provide general AK knowledge, like re-

curring SA practices, architectural patterns, styles and tactics, as well as knowledge

about methods and documentation approaches [3], [20]. KS-T1 sources are mostly

textual documents. KS-T2 and KS-T3 SAK sources can be internal to an organi-

zation or shared/made public by an external organization, and provide knowledge

about SA projects developed by the organization that produced it. KS-T2 sources

provide knowledge that is scattered in several documents, which are the products

of different SA projects. They came mostly from documents created by software

architects with some kind of text processor. In addition, they can be documents

generated from file-based approaches, or employing a template fashion. In this

group, we consider ontology-based documentation approaches that implement a ba-

sic software ontology and semantic wiki tools, thus to address the limitations of

file-based documentation for knowledge retrieving. KS-T3 sources are from AKM

tools [11], [5]. This knowledge comes from, both the metamodel on which is based

the implementation of the AKM tool and the SA projects developed with the tool.

Within KS-T3 category, some approaches for SA development that involve the use

of ontologies about general software architecture knowledge can be also considered.

The identification of the characteristics of a SAK source derives in the selection of

the suitable methods and techniques that have to be applied in order to process the

knowledge and make possible its integration with other available SAK.

3.2 SAK Processing Stage (B)

Depending on the knowledge source, the techniques and mechanisms applied in

this stage vary. In the case of textual documents (KS-T1 and KS-T2), this stage

comprises a series of extraction techniques based on Natural Language Processing

(NLP), and the identification of terms and attributes, which has to be performed

using sophisticated tools. Parsing of web pages can be used also. Some annotations

or tagging mechanisms are also necessary in order to add the semantic. For these
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types of knowledge sources, a specific domain ontology should be created. The

objective for defining an ontology is twofold: to identify terms (or individuals) and

their relationships in the documents (text files); and to make possible the integration

of these knowledge sources with available knowledge residing in other ontologies.

The last activity should be done as part of SAK Integration stage.

When KS-T3 sources are considered, some adapting mechanisms are needed.

It may be necessary the programming of specific-purpose wrappers or adapters to

convert data to a common format, or the use of an API provided by the AKM tool

to enable accessing its repository.

3.3 SAK Integration Stage (C)

This stage constitutes the core of the SAK-SIR approach. The activities of knowl-

edge integration are supported by the SAK Ontology Network. The SAK Ontology

Network is organized in four ontology levels, which are illustrated in Figure 2. They

are the following:

L1) ISO/IEC/IEEE 42010 Standard Ontology Layer. The ISO/IEC/IEEE

42010 standard [9] ontology constitutes a basis for describing all the concepts

included in the SAK ontology network. Therefore, all the networked metamodel

and domain ontologies inherit the same foundational concepts and relations,

which is essential for ontology integration.

L2) Metamodels layer. This layer defines the concepts, relationships, and rules

that represent the terms of the Architectural Descriptions that an AKM ap-

proach implements. This layer is built on L1 mainly through the extension of

the hierarchy’s concepts and object properties, using RDF Schema constructs

like rdfs:subClassOf and rdfs:subPropertyOf.

L3) Software Architecture Domain layer. This layer, which is built on L1

and L2 layers, includes the concepts that are specific from SA domains. A

domain comprises a set of concepts, regarding the building block types and

their possible relations to be employed in a SA project for describing a soft-

ware architecture. A domain also can include the definition of generic design

decisions, like design patterns and styles.

L4) Projects Layer. This layer comprises individuals that populate the SAK

ontology, whose rdf:type is given by concepts or object properties from any of

the above layers.

Although all the AK metamodels and domain ontologies integrated in the net-

work share the same conceptual basis, they still need to be aligned with respect to

their specific knowledge, to make possible retrieving knowledge from different on-

tologies. RDF and OWL provides useful constructs to specify property axioms, like

equivalence relations between classes (owl:equivalentClass) and relations to other

properties (owl:equivalentProperty and owl:inverseOf ), and logical property char-

acteristics (owl:SymmetricProperty and owl:TransitiveProperty).

The ontology that underlies the SAK network and constitutes L1 layer was bor-
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rowed from others authors proposal. Guessi et al. [6] proposed OntolAD, an ontol-

ogy expressed in OWL 2 for architectural descriptions based on the ISO/IEC/IEEE

42010 standard. That ontology was built through the transformation of the

primitive AD constructs into OWL classes. Many relationships described in the

ISO/IEC/IEEE 42010 standard were implemented as object properties in Onto-

lAD. However, the authors did not provide either the domain or range for object

properties. Therefore, the ontology was enriched which adequate domain and range

for each object property in order to add semantic to the relationships among con-

cepts. In addition, some axioms on OntolAD were too restrictive and we interpreted

that did not reflect the standard semantic, so they were eliminated.

It should be noted, that the SAK-SIR approach it is not fully computer-

supported, since human intervention is necessary. At integration stage, the role

of an ontology engineer or expert is crucial to guaranty quality and expressiveness

of the knowledge model. For example, regarding the integration of knowledge from

a KS-T3 source, the ontology engineer (with the help of the architects of the in-

volved organizations) should identify the concepts defined in the metamodel of the

AKM tool that wants to integrate. Thus, these concepts have to be defined as an

extension of concepts in the IEEE 42010 standard ontology (st prefix). For exam-

ple, let us consider that the AKM tool metamodel ontology (akm prefix) includes

a specific type of view for describing detailed decisions using a template fashion.

Then, the class akm:DetailedDecisionViewType has to be defined as subclass of the

st:ArchitectureViewType, as well as the necessary data properties, annotation prop-

erties and object properties that involve that concept, and other concepts related

to this kind of view that are not defined in the ontology yet.

3.4 SAK Loading Stage (D)

While the previous stage concerned the integration of a metamodel/scheme in the

ontology network (the meaning of the vocabulary of properties and classes of an

AKM tool or set of documents), SAK Loading stage concerns the population of

that scheme. The individuals that populate the ontologies come from the knowl-

edge/artifacts generated during several SADP projects.

Ontology population can be done by manually creating the necessary instances

and triples, or by means of a specific loader program that transform data from

repositories/data bases in convenient RDF triples. The JENA ontology API can be

used for that.

3.5 SAK Retrieving Stage (E)

This stage comprise a set of tools and mechanisms for exploring and retrieving the

SAK that can be gathered from internal/external sources and integrated in the SAK

ontology network. Due to the diverse needs of knowledge of the SAK consumers,

the approach has to provide a flexible interface for placing queries on the ontologies

(Query Editor, in Figure 1). On the one hand, it has to be intuitive and user-friendly.

Moreover, on the other hand, it has to be powerful enough to create complex queries.
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Fig. 2. SAK Ontology Network Layers.

A query editor should assist the users in the queries definition. Complex inferences

about the SAK knowledge available can be made by means of a reasoner to generate

non-explicit knowledge. Additionally, a set of predefined SPARQL queries can be

available for being executed as services, which would achieve interoperability among

different AKM tools.

4 A Scenario of Applying the SAK-SIR Approach

Although the proposed approach is intended to integrate heterogeneous architec-

tural knowledge available from several sources, in this work, we reduce the scope to

achieve the integration of the concepts of TracED with the ISO/IEC/IEEE 42010

standard, and to populate a dataset with the knowledge gathered from different

SAK projects. Then, some queries are placed to retrieving valuable knowledge from

the evolution of a SA.

4.1 SAK Sources Identification

TracED 7 is an AKM developed by the authors that is available for being employed

for research and educational purposes. The metamodel on which TracED it is based

is easily accessible and has been published [14], [16]. TracED repository preserves

the knowledge captured in the several projects that were developed on different SA

domains, with a structured representation and some textual documents (Decisions

7 http://traced-doc.appspot.com
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Fig. 3. TracED metamodel for supporting versioning and tracing of SA model versions.

templates), which is supported by a traditional database. However, the repository

of TracED tool, has not been shared with other parties nor made public, and is not

available an API for accessing to its content. Therefore, it constitutes an internal

source of knowledge for the authors’ organization, which means that the structure

of TracED repository is known and accessible through a database connection.

4.2 SAK Processing

The aforementioned characteristics (the fact that TracED is an internal knowledge

source and, therefore, the organization knows the tool’s metamodel) make unnec-

essary to perform actions in this stage of the approach.

4.3 SAK Integration

In a previous work [17], SAKOnto ontology was built from scratch. A methodology

based on competency questions was employed for guiding the SAKOnto developing

process [7]. The metamodel of TracED was analyzed and their main terms and

relationships were identified and defined in the ontology. However, to apply the

SAK-SIR approach, and achieve a successful integration in the ontology network,

the ontology needs to be specified based on the concepts of ISO/IEC/IEEE42010

standard. That means that some concepts will be defined at the Metamodel Layer,

as “specializations of” some classes and object properties that the standard defines.

Thus, the integration stage involves adding into the ontology network the ontology

that includes all the concepts, relations, and axioms for representing the TracED

metamodel (Figure 3).
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Metamodel Layer

TracED [14], [16] considers an architectural design decision as the transformation

between two states of the software architecture. The tool adopts an operational

perspective where design decisions are materialized by the execution of a sequence

of design operations. Design operations are the actions performed by a designer,

which operate on the products of the design process. These products, called design

objects in this proposal, constitute an abstraction of what is eventually desired to

be realized in the real word, and are the results of other design decisions made by

the designers. Typical design objects are the structural elements of the artifact that

is being designed (i.e., the components and connectors that comprise a software

architecture), and the specifications to be met (i.e., quality requirements such as

modifiability or performance). These objects evolve as the SADP takes place, giving

rise to several versions. The set of versions of the design objects at a given point of

the design process constitute a model version of the software architecture. A model

version describes the state of the design process at that point.

The design decisions made during a SADP project can be materialized in se-

quences of operations. A sequence of operations φ is applied on a model version

(called predecessor model version) in order to generate a new model version (called

successor model version). Under this approach, the SADP follows a tree-structure,

where each node represents a model version. The initial model version is the root

of the tree and each arc represents a sequence of operations applied to a predecessor

model version to obtain a new model version. Therefore, a model version is the re-

sult of the history of the design process given by all sequences of operations applied

since the initial model version.

Figure 3 shows the main elements of TracED metamodel, where design objects

are represented at two levels; the repository level and the version level (see Versions

and Repository packages). The Repository level keeps a unique entity for each

design object that is created and/or modified due to the natural progress that takes

place during a design project. Any entity kept in the repository is regarded as a

versionable object. Furthermore, associations among the different versionable objects

are also held in the repository to represent the configuration of the architectural

model (Association, Figure 3). The Version level maintains the different versions

resulting from the evolution of each design object, which are called object versions.

The relationship between a versionable object and each of its object versions is

captured by the Version association. Therefore, for a given design object, a unique

instance is kept in the repository, and all the versions it assumes along the design

process in different model versions belong to the versions level.

Therefore, TracED represents the evolution of an architectural model as a his-

tory, where a newmodel version is generated by applying a sequence of operations on

a predecessor model version. Each sequence of operations applied on a model version

is captured by means of a model history link (represented by the class association

Model History, Figure 3), and each operation executed in the sequence of operations

is captured by a version history link (represented by class VersionHistory Figure

3) that also keeps traces among the object versions on which the operation was ap-
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plied and the arising object versions as a result of the operation execution. As it is

shown in Figure 3, a Model History link is an aggregation of various VersionHistory

links. In the Domain package, the central class is Design object type, which provides

the elements for defining the possible building block types of an architecture model

or view. Design object types are specialized according to the view type they are

suitable to describe in TracED. Given that TracED supports view types such as

Component and Connector, Deployment [3], and Architecture rationale templates.

Design Object Type is specialized in StructureBehaviourDeploymentDOT and Ra-

tionaleDOT classes. The properties of each type are specified by a set of instances of

Property class. Furthermore, the possible relationships among the different design

object types of a domain are described by means of Domain Relationship. TracED

metamodel also provides elements for the specification and execution of operations

applicable in a domain [14], [16], [15]. Operations are defined in terms of add,

delete, modify primitives and other domain operation, enabling the materialization

of operations as complex as a pattern applying and to set explicit traces with the

requirements achieved. Due to space constraints, these details are hidden in this

case study.

Integrating TracED metamodel in the ontology network implies the definition of

each term as an owl:class and setting adequate rdf:subClassOf properties with the

respective concepts in L1. Figure 4 shows that traced:SoftwareArchitectureDomain

is a specialization of st:Metamodel class.

The traced:DesignObjectType, traced:DomainRelationship, and traced:Property

concepts are defined as specializations of st:Entity, st:Relationship, and st:Attribute

classes respectively. On the other hand, traced:ModelVersion is defined as sub-

class or st:ArchitectureModel and traced:ModelHistory is included as subclass or

st:ArchitectureDecision.

Figure 4 shows the definition of the metamodel concepts as classes and the corre-

spondent object properties, which were inserted in a RDF graph prefixed as traced.

For each class, a set of property annotations was added to maintain the metadata

about each concept in the ontology. The rdfs:label and rdfs:comment annotation

properties were used to represent the name of the concept and the description of the

concept. In addition rdfs:isDefinedBy annotation property indicates the ontology

where the subject was defined.

Domain Layer

TracED enables defining several domains, depending on the context of the sys-

tem whose architecture is going to be designed. The specific design object types

of the domains were included at the domain layer of the SA ontology network as

subclasses of the concepts in the standard and metamodel layers, thus employing

rdfs:subClassOf and rdfs:subPropertyOf properties. In Figure 5 a partial view of

the integration of a domain is shown, where IaaSCloudDomain, a domain that de-

fines design object types for the architecture of a cloud system, is specified in the

ontology. In this domain, the design object type is specialized in specific component

for cloud systems: Wrapper, DataBase, and Synchronizer.
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Fig. 4. TracED metamodel concepts for supporting versioning and tracing of SA model versions integrated
in the SAK Ontology Network.
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Fig. 5. Partial view of integration of ISO/IEC/IEEE 42010 standard concepts and TracED metamodel and
domain concepts.

4.4 SAK Loading

We loaded the ontologies on an Apache Fuseki Server. Regarding the scope of this

work, we created a dataset “SAKOnto” that has two RDF triples graphs. The

first graph was loaded from the available IEEE 42010 standard ontology (OntolAD,

prefix st:), which imports the namespace of OntolAD, and the second graph from the

TracED ontology (prefix traced:). TracED graph was populated with the knowledge

gathered from projects developed using TracED tool.

Accessing to TracED database is straightforward since it is an internal tool of

the author’s organization, so the projects’ data were imported as RDF triples, by

means of a loader program implemented with the JENA API. Next, it is described

a fragment of project developed in a cloud migration domain that was loaded from

TracED repository [15].
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SportsInc is a firm traditionally dedicated to the wholesale of sportswear and

apparels. In the last decade, the firm expanded its business to e-commerce retail

sale, maintaining hardware and software infrastructure for running the web store.

Due to the increasing number of online sales, the firm decided to migrate the web

store to the cloud to decrease infrastructure and maintenance costs, eliciting new

quality requirements of scalability, performance, and availability to be satisfied by

the software architecture. Still, SportsInc decided keeping operative the legacy

system, which mainly is dedicated to wholesale orders and distribution management.

For security reasons, SportsInc wants to keep full control of databases, which will

remain deployed on-premises.

Although TracED provides a visual user interface, where operations are executed

using forms to input the parameters values, and the resulting model versions are

presented using a components-and-connectors viewpoint, the architecture decisions

made in this project are presented in the compact format of sequences of design

decisions applied on a model version.

The first model version of this project was mv0, where SportsIncSystemv1

was the system, and the Retailing module architecture was given by existent

Presentationv1, BusinesLogicv1, and DataAccesv1 components, among other com-

ponents of the Wholesale module and DBSportsIncv1 database. The first decision

was materialized in the sequence of operations φ1, which is applied on mv0 and con-

sists on the identification of new quality requirements that the architecture must

satisfy.

φ1 = {addQualityRequirement(SportsIncSystemv1, ‘Scalability’),

addQualityRequirement(SportsIncSystemv1, ‘Performance’),

addQualityRequirement(SportsIncSystemv1, ‘Availability’)}

The next decision made was to make an agreement with a provider of cloud services,

under an IaaS contract, to migrate the components of the Retailing subsystem (web

store). Therefore, the Cloud Service Provider (CSP) provides a Web server virtual

machine, on which the web store’s presentation layer is going to run. Similarly,

business logic layer and data access layer were moved to the cloud, thus allocating

them on the top of an Application server virtual machine. In order to minimize the

users’ web store perceived latency, a database virtual server was created, to locate

a replica of the database. These decisions were captured by the following sequences

of operations, starting from mv1.

φ2 = {addCloudProviderNetwork(SportsIncSystemv1, ‘CSPNetwork’)}

φ3 = {addV irtualMachine(CSPNetworkv1, ‘VM-WebServer’),

addV irtualMachine(CSPNetworkv1, ‘VM-AppServer’),

addV irtualMachine(CSPNetworkv1, ‘VM-DBServer’)}
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φ4 = {reallocateComponent(Presentationv1,VM-WebServerv1),

reallocateComponent(BusinessLogicv1,VM-AppServerv1),

reallocateComponent(DataAccessv1,VM-AppServerv1)}
To keep a secure access to SportsInc virtual private network, a VPN Gateway service

was contracted. This decision is materialized in the sequence of operations φ5

applied on model version mv4, thus generating mv5.

φ5 = {addComponent(CSPNetworkv1, ‘VirtualNetworkGateway’,

[‘Resp-ConnectVPN’], [‘PortVPNG1’, ‘PortVPNG2’,

‘PortVPNG3’, ‘PortVPNG4’, ‘PortVNPG5’])}

Then, user authentication, data validation, and order submission responsibilities

were assigned to the user interface of the web component (Presentation layer) for

enabling sales representatives to entry orders in the system (sequence of operation

φ7 on model version mv5).

φ6 = {addResponsibility(Presentationv2, ‘Resp-OrderFormPresentation’),

addResponsibility(Presentationv2, ‘Resp-Autentication’),

addResponsibility(Presentationv2, ‘Resp-OrderFormDefaultValues’),

addResponsibility(Presentationv2, ‘Resp-OrderFormValidation’),

addResponsibility(Presentationv2, ‘Resp-Submit’)}

The next decision, materialized in the sequence of operations φ7 applied on

model version mv6, involved the applying of a cloud pattern that added a wrap-

per component, which would be in charge of encapsulating and forwarding order

submissions from the web system to the OrdersManagement component in Whole-

sale subsystem, which, in turn, would place them in the master database. Orders

forwarded by the wrapper were channelized through the VPN gateway component.

φ7 = {addWrapper(CSPNetworkv1, ‘Orders-Wrapper’,

[‘Resp-ReceiveRequest’, ‘Resp-ForwardRequest’], [‘PortOW1’, ‘PortOW2’],

P resentationv2, V PNGatewayv1)}

In order to improve the web system performance and reduce latency, the architect

decided to replicate the database and deployed it on VM-DBServer (represented

by sequences of operations φ8, φ9, and φ10). The replicated database contains

a reduced data schema, which includes the product catalogue, costs, and current

offers. Additionally a synchronization service was incorporated, which runs on-

premises and communicates the master and replicated databases through the VPN

gateway (some decisions where dismissed to reduce the project size).

φ8 = {replicateDataBase(DBSportsIncv1, ‘DBSportsInc-Catalogue’,

‘Products catalogue and marketing schemes’,VM-DBServerv1)}
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φ9 = {addConnector(CSPNetworkv1, ‘DataAccess-DBCatalogue’,

[‘Role31’, ‘Role32’], [PortDA2v2, PortDBC1v1])}
φ10 = {synchronizeDatabases(SportsIncSystemv1, ‘DBSynchronizer’,

[‘Resp-FindChanges’, ‘Resp-UpdateSchema’],

[‘PortSync1’, ‘PortSync2’], DBSportsIncv1,

DBSportsInc-Cataloguev1, V PNGatewayv1)}
Populating the ontology with the knowledge about this project means that for each

executed sequence of operations, an individual has to be created, as an instance

of traced:ModelHistory. Furthermore, each model history is composed by instances

of VersionHistory, which represent each applied operation. The resulting model

version is an instance of traced:ModelVersion, and each generated object version

is an instance of the traced:ObjectVersion. An instance of traced:ObjectVersion

maintains an object property to its respective traced:VersionableObject, which, in

turn, has an object property (relationship) with the respective design object type.

4.5 SAK Retrieving

Once loaded the project in the dataset, a series of SPARQL queries were executed

using the Apache Jena Fuseki server. Next, some example of queries to retrieve the

SAK about the SportsInc project are proposed:

(i) Which were the architectural elements affected due to certain decisions (applied

operations or sequence of operations)?

(ii) Which design operations/patterns were applied when evolving from model ver-

sion X to model version Z ?

(iii) Which quality requirements were changed, added or improved?

(iv) Which new architectural elements were generated as a consequence of perform-

ing X design decision?

(v) Which responsibilities were added to component C ?

Figure 6 shows the model versions generated from ModelVersion 0 to Mod-

elVersion 4. Particularly, the operations applied during sequenceOfOperations 4

are shown along with the design objects affected by each operation.

5 Related Work

Some of the software architecture ontologies that have been proposed in literature

[2], [8] are focused in the representation of general knowledge, like architectural

patterns for achieving certain qualities, tactics, types of views and their correspond-

ing building blocks, and other knowledge like the trade-off relationships that exist

among quality requirements. ArchVoc [2] is an approach to identify these kind ok

knowledge about software architectures, which employ different techniques. On the

one hand, the approach performs manually searches through back-of-the-book index

of some of the major texts in Software Architecture, and on the other hand, employs
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Fig. 6. Knowledge retrieving from SportsInc project. In this example a query enables to find out the
model versions that were successively generated from ModelVersion 0 to ModelVersion 4. Particularly, the
operations applied during sequenceOfOperations 4 are shown along with the design objects affected by each
operation.

a semi-automatic parsing technique on Wikipedia pages. Only general architecture

knowledge is considered to construct the ontology, skipping the knowledge generated

on projects that software organizations can share.

Other authors [1], [10], [13], [18] proposed ontologies to support the design of

software architectures and the representation of architectural decisions along with

rationale. However, these ontologies are not related to other supporting tools for

architects, which constitute the sources of knowledge to feed such ontologies. Other

ontologies have been proposed to provide semantic to file-based software architec-

ture documents, in order to improve the retrieval of knowledge [11], [5]. Lopez et al.

[11], use the Toeska Architecture Ontology and the NFR Design Rationale (NDR)

ontology to represent, recover and explore software architecture and rationale in-

formation from text documents. The extraction mechanism is based on Natural

Language Processing (NLP) techniques, and the identification among terms and at-

tributes has to be performed using sophisticated tools. De Graff et al. [5] employed

a similar approach aimed at addressing the issues of file-based documentation. They

implement a lightweight software ontology and a semantic wiki tool. However, these

proposals have not explored the integration of the ontology’s terms with the IEEE

42010 concepts. Since these proposals are aimed to retrieve knowledge from sources

that provide file-based documents, the set of techniques employed can be adopted

as a solution in the Processing stage of SAK-SIR approach.

The work of Figueiredo et al. [8] proposes a search mechanism to help to find AK.

To achieve this goal, they propose the use of application domain ontologies to enable

the retrieval of the rationale related to the software construction. This architectural

knowledge is relevant in a virtual community environment where many projects

share the same domain abstractions. On the contrary, our approach is aimed to

share projects of organization that manage different abstractions for representing

AK.

Regarding SADP evolution knowledge retrieving, Capilla et al. [8] presented

a review of research tools for AK management, and evaluated their support for

producers and consumers of AK. Among other features, they reviewed their support

on “evolution” of AK, analyzing if the tools offer some kind of versioning or decision

history mechanisms. They report that few approaches consider evolution o history
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traces among design elements, their versions, and the decisions that generated them.

Other authors [22], [12] proposed a documentation framework for design decisions,

which provides a Decision Chronological viewpoint. This view shows the evolution

of architecture decisions in chronological order. The objective of the chronological

view is to show all versions of every architecture decision of a system and to enable

keeping track of every state change of a decision. For instance, a decision that

was tentative, then became decided and finally approved is represented with three

instances in one chronological view. This approach defines the concept of iterations

as versions of the architecture as a whole, which seems to be similar to the concept of

model version proposed in TracED. However, different from the knowledge captured

by TracED approach, the architectural decision artifact used for representing a

decision provides just partial information about the decision made. In order to

complete the knowledge about an architectural decision, the framework provides a

decision detailed viewpoint, which is implemented as a template, thus employing a

textual representation. Therefore, the approach lacks of a adequate representation

of the design elements that are versionable (like components, connectors, interfaces,

responsibilities, etc.), and prevents to recording how they have changed during the

software design process (as a consequence of design decisions, like operations of

refinement, change of property values, splitting, delegation, merging, etc.). It is

worth to clarify, that TracED tool enables capturing SADP knowledge as it takes

place, different from other AKM tools where the decision documentation is made

after the fact, which constitutes the main reason why the chronological views offered

by those tools are not employed in practice.

6 Conclusion

In this work, the SAK-SIR approach was presented. It aims at integrating hetero-

geneous knowledge sources, and providing knowledge retrieving and semantic rea-

soning capabilities, thus making possible sharing SAK among several organizations

or individuals. ISO/IEC/IEEE 42010 standard ontology was used as the basis for

defining a SAK ontology network. The approach was validated with the integration

of the metamodel of TracED tool in the SAK ontology network. The resulting on-

tology was populated with knowledge from the projects of TracED repository. The

concepts, relations, and instances included enable the representation of knowledge

about the evolution of the SADP, while keeping compliance with the standard.

Employing ontologies for SAK representation enables to easily maintain several

relationships among concepts and individuals by means of triplets, and provides

flexible capabilities for the retrieving knowledge setting queries through the triples.

These tools contribute to address some challenges on SAK retrieving that other

authors have stated [4]: a) to understand the ripple effect of decisions; b) to identify

and track the root causes of changes and estimate better the impact analysis; c)

to understand the evolution of the system by capturing the decisions made, their

alternatives and chronology, which can help to revert the original considerations in

case of bad decisions; and d) to understand the underpinning reasons of decisions
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and build on experience.

As a future work, other available AK knowledge sources will be integrated and

alignment techniques will be employed for matching different metamodel/domain

ontologies.
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