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Natalia P. Basań,† Ignacio E. Grossmann,‡ Ajit Gopalakrishnan,§ Irene Lotero,§

and Carlos A. Meńdez*,†
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ABSTRACT: In this work, a mixed-integer linear program-
ming (MILP) model is presented based on a discrete-time
scheduling formulation that allows modeling and optimizing
operational decisions for processes working under time-
sensitive energy prices. The main goal is to find an optimal
production schedule, over a given time horizon, that satisfies
product demand while minimizing total energy cost. This
novel formulation, based on a new concept to model the
transitions between alternative operating modes, is very
efficient and robust. To illustrate the new capabilities of the
model, a comprehensive comparison is performed with a
previous alternative model. The model is also used to
efficiently solve a real-world industrial case study. The
obtained results show optimal solutions for the proposed methodology with modest computational effort.

1. INTRODUCTION

Nowadays, the competitiveness of power-intensive industries is
highly tied to their ability to adjust production according to
time-sensitive electricity prices. In this context, the dynamic
management of electricity demand, also referred to as demand
side management (DSM), emerges as an effective approach to
improve power grid performance and consumer benefits.
Industrial DSM needs efficiently integrating production and
energy management, which requires detailed understanding of
the production process as well as knowledge about power
system economics. Efficient management of complex mecha-
nisms of deregulated electricity markets, which are different
from typical commodity markets in the process industries, is
essential for exploiting DSM opportunities. Particularly in the
process industry, which is a major electricity consumer, DSM is
becoming critical for maintaining profitability, as stated in
Zhang and Grossmann.1

Air Separation Units (ASUs) are a typical example of power
intensive processes, where very large electric-power air
compressors are needed to reach cryogenic temperatures.
Due to the recent volatility in energy markets, there is a
significant opportunity to reduce costs by taking advantage of
lower electricity price periods. In the recent past, a large
number of optimization models have been developed to face
challenging scheduling problems arising in the PSE community.
Detailed reviews of this area can be found in Meńdez et al.2

and, more recently, in Harjunkoski et al.3

Particularly, in the area of detailed production scheduling
with power optimization, there have been several important
contributions in the past decade. Initially, Castro et al.4

proposed a novel continuous time scheduling formulation for
continuous plants operating under variable electricity cost. In
turn, Mitra et al.5 developed an MILP model for the optimal
operational production planning for continuous power-
intensive processes that participate in nondispatchable demand
response programs. The MILP model allows an accurate and
efficient modeling of transitions between operating modes
using a discrete time representation. The model was
successfully applied to two different real-world air separation
plants that supply to the liquid merchant market, as well as
cement plants. One year later, Mitra et al.6 developed a
generalized mode model on a component basis for the optimal
scheduling of combined heat and power (CHP) plants under
time-sensitive electricity prices. The model is capable of
tracking the states of the components in terms of operating
modes and transitional behavior. The optimization model was
applied to a real-world industrial CHP plant, obtaining up to
20% of profit increase in comparison to a constant operation of
the plant. Artigues et al.7 proposed a two-step integer/
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constraint programming approach to solve an industrial case-
study involving energy constraints and objectives linked to
electric power consumption. More recently, Mitra et al.8

introduced a multiscale model for the integrated optimization
of investments and operations for continuous power-intensive
processes under time-sensitive electricity prices and demand
uncertainty. They applied the model to an industrial case study
of an air separation plant for deterministic demand as well as
stochastic demand. Due to the multiscale nature of the
problem, the resulting MILP problems are very large and
hard to solve. Therefore, the authors outlined a hybrid bilevel
decomposition algorithm in part II of the paper9 that was able
to reduce the computational time by up to 2 orders of
magnitude compared to the full-space method and by 45−85%
compared to a Benders decomposition approach. In turn,
Pattison et al.10 addressed the optimal process operation in fast-
changing electricity markets with a novel low-order dynamic
models and an air separation process. Zhang et al.11 developed
a general discrete-time model for the scheduling of power-
intensive process networks with various power contracts. The
proposed model consisted of a process network represented by
Convex Region Surrogate models that are incorporated in a
mode-based scheduling formulation, for which a block contract
model is considered to represent a large variety of commonly
used power contracts. Subsequently, Zhang et al.12 faced the
simultaneous optimization of short-term production scheduling
and electricity procurement under uncertainty for continuous
power-intensive processes. Lately, Zamarripa et al.13 developed
two rolling horizon aggregate scheduling approaches to
simultaneously deal with production and distribution for
industrial gases supply chains, but this time assuming regulated
electricity prices. A very recent comprehensive summary of
existing works on planning and scheduling for industrial DSM
together with the main mechanisms of electricity markets has
been reported in Zhang and Grossmann.1

It is clear that even though very significant progress has been
made in the optimal operational production planning for
continuous power-intensive processes, a highly efficient and
systematic solution strategy of large-scale industrial problems is
still an unresolved issue. In this paper we propose a
conceptually different discrete-time MILP scheduling formula-
tion that is capable of effectively dealing with price fluctuations
by optimizing operating decisions for energy intensive
processes under time-sensitive electricity prices with modest
CPU time. The scheduling problem aims at determining the
mode and the production amount of a liquefier at every hour
such that a given demand is met at minimal energy cost.
Various operational constraints such as feasible transition
modes, minimum and maximum residence times, minimum and
maximum tank levels, and lower and upper bounds on

production rates are also to be considered. In the remaining
sections of the paper, the scheduling problem of power
intensive processes with time-dependent electricity pricing
schemes is first described in Section 2, including a description
of the operation of liquefiers of an air separation plant and the
alternative energy markets. In Section 3, a novel Process State
Transition Network MILP-based model (PSTN) is introduced.
An existing alternative MILP model is also presented in this
section for comparison purposes. The resulting formulation is
then used to solve multiple cases (Section 4), comparing the
computational performance of the novel proposed approach
with the existing one. On the basis of the numerical
experiments, conclusions are drawn, and suggestions for further
research are made in Section 5.

2. PROBLEM STATEMENT
2.1. Power-Intensive Processes Scheduling. The

scheduling problem addressed here focuses on the efficient
operation of industrial power-intensive processes. These
processes may comprise a set of units. In Section 2.2 we
introduce a specific case study related to a liquefier producing a
single product (e.g., liquid nitrogen) where the production
planning is adjusted to time-dependent electricity pricing
schemes.
Due to the significant energy consumption of liquefiers, a key

factor that influences the operating decisions is the energy price
volatility.6,14 Electricity can be purchased from the power grid
by using alternative power contracts. The different types of
markets and how they may differ in price and availability are
described in Section 2.2. In particular, in this work we assume
that the plant participates in the day-ahead market. Electricity
price forecasts for the following days on an hourly time grid h ∈
H, are available to us.
Given electricity price and demand forecasts, a set of

operating constraints, such as minimum and maximum
production rates based on the plant state, storage capacities
of the plant, and minimum final tank inventory, the problem is
to determine a production schedule that minimizes the total
energy cost while meeting the demand for a given time horizon.
Note that the demand can fluctuate on an hourly, daily or
weekly basis. The main objective is to find the optimal
production schedule that defines operating modes, production
and inventory levels.

2.2. Air Separation Plant. Continuous power-intensive air-
separation processes use air from the atmosphere and electric
energy. The air is compressed and dried for cryogenic
separation to obtain industrial gases according to the required
specifications of quality.
The composition of dry air is predominantly 78% nitrogen,

21% oxygen, and 1% argon by volume. A main compressor is

Figure 1. State graph of the feed and recycle compressors of external liquefier cycle.
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used to compress air from atmospheric pressure to elevated
pressure. Additional compression followed by expansion can
supplement the main air compressor, providing extra
refrigeration to produce liquid and/or high pressure products.
After compression, air is cooled down and partially liquefied in
the main heat exchanger. The partially condensed air enters a
cryogenic distillation column, where is separated into its basic
components. The huge electricity power used to drive the
compression equipment to produce gaseous and liquid air-gases
(nitrogen, oxygen and argon), is the largest single operating
cost in this process.
At certain plants, the nitrogen gaseous stream can be sent to

a liquefier cycle, where the gas is cooled down to liquid phase.
Liquefiers typically consist of a feed compressor, a recycle
compressor, an expansion turbine booster, a heat exchanger and
a separator. For the rest of the paper, we will focus only on the
optimal operation of an external liquefier as an example to test
the performance of the models. Furthermore, we discuss
different operating modes for the feed and recycle compressors
and the possible transitions that may occur between them.
Figure 1 shows a schematic representation of the feasible
configurations and allowed transitions. There are five possible
operating modes considered in this illustrative example:

• start-up operation: three operation modes are used to
model the start-up procedure: “Ramp-up compressor A -
Phase I”, “Ramp-up compressor A - Phase II”, and
“Ramp-up compressor B”. The liquefier must follow
strict ramp-up transitions respecting a minimum
residence time in each mode of 1 h in order to switch
from modes “off” to “on”. Note that the start-up
operation can only be performed after the liquefier
stays in the “off” mode for at least a certain time periods.

• shut-down operation: Contrary to the start-up procedure,
after the liquefier remains in the “on” mode longer than a
given lapse of time, it can start the shut-down procedure.
Ramp-down characteristics are modeled using the
following operation points: “Ramp-down compressor A
- Phase I”, “Ramp- down compressor A - Phase II”, and
“Ramp- down compressor B”. The duration of each
transition mode involved is 1 h.

• normal operation (on operation): the liquefier is up and
running. Once the liquefier has remained in this state
during a minimum amount of time (3 h in our example),
a transition may occur to a different mode. Hence, it can
switch from “on” to “stand-by” mode immediately or
from “on” to “off” mode following the shut-down
procedure described above.

• stand-by operation: the liquefier can transition from
normal operation to stand-by mode after its minimum
stay time is satisfied. Once in stand-by, this configuration
must also be maintained for a minimum stay time (3 h

for the example). The stand-by mode does not include
any level of production. In the plant, it is usually used for
short stops due to inventory restrictions. In this way,
turning the compressors off and on in a short time is
avoided.

• off operation: the liquefier is entirely shut-down and
must remain in the “off” mode for a specified minimum
time before it can be started-up. According to Figure 1
the start-up procedure must be performed through an
“on−off” transition mode. In this particular example, the
“off”, “on”, and “stand-by” modes have a minimum time
residence of 3 h. However, this time may vary depending
on the configuration.

Note that a transition between alternative operating modes
represents how the liquefier changes from one operating point
to another. An important aspect in this problem is to consider
that the system has operating modes with different minimum
durations: 1 h (ramp-up and ramp-down times) and 3 h
(uptime, standby time, and downtime). Therefore, any
deviation from expected operation will affect several time
periods. In addition, in some plants there are some constraints
concerning both the minimum and maximum residence time of
operating modes, such as “on”, “off”, and “stand-by” modes.
The air separation plant under study is assumed to be able to

purchase energy in the day-ahead market, in which the
nominations are decided from the expected production for
the next day. We assume that forecasts of energy prices are
available for the day-ahead market for the next 9 days. Later, we
propose a novel systematic way of representing the transitory
state of the system between modes.

3. MODEL FORMULATION
In this section, we present a mathematical formulation of the
scheduling problem that corresponds to a mixed integer linear
programming problem (MILP). The model developed
comprises several components that deal with features of the
problem mentioned in previous section, and serves as a
fundamental tool to achieve the production schedule that
minimizes the total energy cost over a given time horizon.
Although different continuous time models have been

effectively used for multiple production scheduling problems
with energy constraints,15−19 given the specific operational
restrictions and time characteristics required in this problem, a
discrete time representation is used in this paper. It should be
noted that discrete-time formulations are better under hourly or
smaller changing electricity prices. However, if consecutive
hours with the same price or seasonal variations in electricity
prices are considered, continuous-time formulations become, in
some cases, competitive. In the problem addressed, the
scheduling horizon is divided into fixed intervals of time of
equal length. Each of these intervals is represented by a period

Figure 2. Process State Transition Network.
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with the length of 1 h. According to the selected time
discretization a scheduling horizon of a week is considered.
Therefore, it consists of 168 periods (hours) and is defined by
the set of time periods T = {1,2, ..., FT} (see Nomenclature
section).
A novel network to systematically represent the scheduling of

a process with operating modes and transitions is presented in
section 3.1 A list of indexes, sets, parameters, and variables are
detailed in the Nomenclature section, and operational
constraints are described in section 3.2 Note that all continuous
variables such as power consumption, production, and
inventory levels in this model are constrained to be
nonnegative.
3.1. Process State Transition Network. We propose an

explicit modeling formulation of feasible operational transitions
and a systematic way of representing the transition states,
denoted as the Process State Transition Network (PSTN).
Figure 2 shows this novel concept where the feasible transitions
between operational states are represented by directed arcs
reflecting the process dynamics. In addition, each node
(denoted by rectangles) represents a specific transitional state
of the liquefier cycle according to the state graph (Figure 1).
Note that both nodes and arcs involve operational constraints
which must be satisfied at all times.
We introduce operational or transitional “states” correspond-

ing to possible operating points of the system. This concept
allows the disaggregation of operation modes and a more
detailed modeling of the transitional behavior. For instance,
states with minimum duration of 3 h are decomposed in three
substates of 1 h each and are called initial sequential transition
states, intermediate transition states, and critical transition
states, respectively. This decomposition occurs in stand-by, on,
and off operating states in which the liquefier can remain 3 or
more hours. Consequently, the main methodological contribu-
tion of the proposed paper is the disaggregation of the
transition process from one mode to another into predefined
discrete-time operation states. This disaggregation allows us to
represent the scheduling problem in a conceptually different
way with fewer binary variables and simpler constraints
compared to previous models.
Due to the fact that air-separation processes are power-

intensive and are exposed to time-sensitive energy markets, the
plant undergoes a dynamic switching behavior.6,14 Note that an
operational constraint imposes the minimum amount of time
that any piece of equipment should be running in the same
operation mode. There are transitions between different
operating states or to the same state. For instance, the liquefier
should be off in periods of high prices, provided that demand
and minimum final tank level constraints are satisfied. Once the
system remained in the off state for at least 3 h, i.e., transitioned
through the OFFi, OFFn−1, and OFFn states, it can start to
operate according to the states sequence of the start-up phase
with a fixed duration of 1 h in each: RUCAI, RUCAII, and
RUCB. Consequently, after 3 h (of the start-up procedure) the
liquefier will operate in normal production mode for at least 3
h.
3.2. Operational Representation. The MILP-based

scheduling formulation requires modeling of a set of constraints
to represent the new state graph shown in Figure 2. The PSTN
model includes constraints regarding operational decisions,
such as production and inventory levels, demand constraints,
operating modes and transitions constraints, timing constraints,
and energy balance constraints. Additionally, the energy

consumption is computed to minimize the total energy cost
associated.
We introduce the binary transitional variable Ws,t to indicate

in which state s the system is operating at time period t (Ws,t =
1).
Next, we present a set of constraints to satisfy the start-up

and shut-down requirements, residence times, mass balance,
and constraints concerning power consumption according to
time-dependent electricity pricing schemes.

3.2.1. Operation Modes. As shown in the Nomenclature
section, the different operating states s in which the system can
be operating are defined by the set (s ∈ S). Since the liquefier
has to operate in a single state each hour, constraint (1) forces
it to select a single production mode at each time period by
using the binary variable Ws,t.

∑ = ∀ ∈W t T1
s

s t,
(1)

3.2.2. Sequential Transition States. The operating modes
are discrete decisions which correspond to the state of the plant
or a set of equipment. According to the PSTN network in
Figure 2, transitions between states can occur provided that
they are executed in the correct order. In other words, there are
predefined sequences of operation states that describe the
switching behavior of the liquefier.
Constraints (2) and (3) represent the operating sequence at

on, off, or stand-by states. If the operating point of the liquefier
in the time period t is in the initial state of on, off, or stand-by
mode, then at time t+1 and t+2 the liquefier has to operate in
the corresponding states, intermediate and critical, respectively.

∑= ′ ∀ ∈ ∈
′∈

+W W t T s S,s t
s S

s t, , 1
initial

inter (2)

≤ ′ ∀ ∈ ∈ ′ ∈+W W t T s s S, LIC ,s t s t s, , 1
critical

(3)

The start-up and shut-down procedures may not be
interrupted. Consequently, during these processes the liquefier
has to comply with given transition sequences of states through
three different states which have the same residence time (1 h).
The feasible sequences off → startup → on and on →
shutdown → off are effectively guaranteed by constraints (4)
and (5), respectively. For instance, if the liquefier is turned off,
it cannot be turned on directly due to the fact that the start-up
procedure must be satisfied. Hence, the specific sequence of
transition states corresponding to that process is modeled by
consuming 1 h in each state: RUCAI, RUCAII, and RUCB.

∑ ∑* =

∀ ∈ ∈
′∈ ′= +

′= +

′ ′

−

−
nd W W

t T s S,

s t
s S t t

t t nd

s t,
1

,

down initial

down inter

(4)

∑ ∑* = ∀ ∈ ∈
′∈ ′= +

′= +

′ ′
−

−

ns W W t T s S,s t
s S t t

t t ns

s t,
1

,
up initial

up inter

(5)

However, additional constraints are necessary to complete
the switching between the on and off states. Constraints (6)
and (7) model the last state transition required to switch from
on to off state, and vice versa, respectively.

= ∀ ∈+W W t Tt tRDCB, OFF, 1i (6)
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≤ ∀ ∈+W W t Tt tRUCB, ON , 1i (7)

In contrast to the OFFi state, the ONi state (first substate of
on operating point) has two possible previous states (see Figure
2): SBn and RUCB. Therefore, constraint (6) is represented by
an equality and constraint (7) by an inequality. Additionally,
constraint (8) is also defined to represent these two feasible
paths to ONi state. For instance, if the liquefier is operating in
the first hour of the on mode (ONi state) at time t, it means
that, according to the feasible transitions represented in Figure
2, the liquefier may have been in SBn or RUCB state at time t −
1. This transition is represented below.

+ ≥ ∀ ∈+W W W t Tt t tSB , RUCB, ON , 1n i (8)

3.2.3. Critical Transition States. Once the system operates
in a critical state (ONn, OFFn, and SBn) in the period t, it can
remain in the same state or switch to other in the next period (t
+ 1). To describe possible transitions that can occur from the
critical states constraint (9) is formulated. The binary variable
Ws,t is used to meet the allowed switches. For example, when
the liquefier operates in ONn state at time t, then in time period
t+1 it can operate in SBi, RDCAI or stay in the ONn state.

∑+ =

∀ ∈ ∈ ′ ∈

′
″∈

″ +W W W

t T s S s, , LIC

s t s t
s NTS

s t

s

, , , 1

critical

s

(9)

Furthermore, the transition between an intermediate state
and a critical state belonging to the same operating mode (on,
off, or stand-by) is also modeled by enforcing constraint (9).
Note that the liquefier can operate only in one state every hour,
so only a binary variable on each side of the equality can be
activated.
3.2.4. Residence Time Constraints. The liquefier has both

minimum and maximum stay constraints which enforce lower
and upper bounds on the residence time of particular operation
modes. These constraints become active when there is a
transition involved, depending on the previous liquefier
configuration. More precisely, after a start-up or shut-down
procedure is performed, then a transition occurs to state ONi or
OFFi, respectively. Then, the liquefier has to remain in that
state at least a given minimum residence time. At the same
time, the liquefier cannot remain in the same mode for a longer
period than a specified time.
To ensure the minimum and maximum residence times, we

formulate constraints (10)−(13), which are applied to those
modes with more than 1 h of minimum residence in on, off,
and stand-by states.
3.2.4.1. Minimum Residence Time. Note that there is an

operational constraint on the minimum amount of time that the
liquefier should remain in the same mode. Whenever the
liquefier switches to a different operation state, the action will
affect several time periods, i.e., 3 h for the suggested example.
Therefore, we introduce constraint (10) to model this
minimum number of hours minres, in which the liquefier is
required to stay in a certain mode.

∑ ∑* =

∀ ∈ ∈ ≤ −
′∈ ′= +

+

′ ′mn W W

t T s S t FT mn, : ( )

s t
s S t t

t mn

s t,
1

,

inter

critical

(10)

where mn represents the number of time periods that the
liquefier must operate in the critical transition state (the last

submode of on, off, or stand-by modes) to satisfy the minimum
residence time. This state must be repeated for mn hours after a
transition from another state occurred. Only then, the system
configuration can switch from the critical transition state to any
of the states belonging to the corresponding NTSs. It is
important to note that the initial and intermediate transition
substates last only 1 h. Thus, mn is calculated by using the
following equation:

= −mn min 2res (11)

According to Figure 2, constraint (10) can be applied to
guarantee the minimum uptime, downtime, and stand-by,
which are represented by on, off, and stand-by operation states.

3.2.4.2. Maximum Residence Time. Similarly to the
minimum residence time constraint, we define constraints
(12) and (13) to fix the maximum number of hours maxres that
the liquefier must operate in particular modes such as on, off, or
stand-by states. For instance, if the liquefier is switched to off, it
cannot stay in this operating point longer than a specified
number of hours. Therefore, the liquefier cannot remain more
than mx time periods in any critical transition state.

∑ ≤ ∀ ∈

∈ ≤ −
′=

+

′W mx t T

s S t FT

,

: ( max )

t t

t mx

s t,

critical
res (12)

= −mx max 2res (13)

3.2.5. Mass Balance. The following set of constraints defines
production rates, inventory levels, and the relationship between
them by mass balances. The liquefier operation is required to
meet inventory levels for each hour of the planning horizon,
taking into account the production levels according to the
operating states applied.

3.2.5.1. Production Rate Constraint. The production level
of each time period depends on its plant configuration and is
denoted by the variable Ps,t. Each operation state s has a
minimum (MinPs) and a maximum (MaxPs) production limits.
Hence, the binary variable Ws,t is used in constraint (14) to
guarantee that production (Ps,t) will always satisfy the
predefined allowed limits, taking into account the liquefier
operation state in each hour.

* ≤ ≤ * ∀ ∈ ∈W P W t T s SminP maxP ,s t s s t s t s, , , (14)

In addition, production levels cannot abruptly change from
one time period to another; that is, production must gradually
vary over time. For instance, if the liquefier goes into the start-
up operation at time t, it can start to produce at t + 3 but not in
its maximum production rate. Due to the fact that there are
both strict ramp-up/down production limits, we define two
process parameters: inc and dec. The following set of constraints
(15)−(17) describe the above ramping behavior (up and
down). We assume that the liquefier starts to operate in on
state (ONi) at the minimum production level and varies it as
needed.

′ * ≤ ≤ ′ *

∀ ∈ ′ ∈ ∈
− −P dec P P inc

t T s S s S, ,

s t s t s t, 1 , , 1

initial inter (15)

″ + ′ * ≤ ≤ ″ + ′ *

∀ ∈ ′ ∈ ∈ ″ ∈

− − − −P P dec P P P inc

t T s S s S s S

( ) ( )

, , ,

s t s t s t s t s t

inter

, 1 , 1 , , 1 , 1

critical initial

(16)
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= * ∀ ∈ ∈P W t T s SminP ,s t s t s
Prod

, ,
min

(17)

3.2.5.2. Inventory Constraints. We define the variable It
which represents the product stored at each time period t
according to the amounts produced and consumed by the
customers. Thus, a mass balance is formulated by (18) and
(19) to express the relationship between these amounts. Both
constraints are defined in the time period in which the mass
balance is calculated. While the former calculates the inventory
in the first hour (t = 1) considering the production and demand
of that hour, and only the initial inventory of the planning
horizon, the latter establishes that the inventory level at the end
of time period t (t > 1) will be equal to the product inventory at
the end of the previous period (t − 1), plus the current
production level according to the s state, minus the amount
delivered at time t.

∑= + − ∀ ∈ =I I P ED t T t: 1t
s

s t t0 ,
(18)

∑= + − ∀ ∈ >−I I P ED t T t: 1t t
s

s t t1 ,
(19)

Note that the demand, denoted by EDt, is defined on an
hourly basis but can also be specified on a daily or weekly basis.
Moreover, the maximum (Qmax) and minimum (Qmin) amount
of the inventory allowed in the plant must be satisfied at every
time. This inventory level restriction is captured by the
following constraint:

≤ ≤ ∀ ∈Q I Q t Ttmin max (20)

3.2.5.3. Final Tank Level Constraint. Finally, the plant has
to meet a minimum level of inventory at the end of the
planning horizon, corresponding to the last day of the week
under review (FT = 168). We denote the value of the minimum
amount of product stored by MDTLT

last and is calculated as
follows:

≥ ∀ ∈I t TMDTLt T
last

last (21)

3.2.6. Energy Balance Constraints. In order to calculate the
amount of power consumed at every time t, we define the
variable PWt and constraint (22). The summation estimates the
energy requirements in terms of the fixed FPCs and the variable
power consumption VPCs. The first of these terms is associated
with the operating state of the liquefier at any particular time t,
while the second depends on associated production levels.

∑= + ∀ ∈W P t TPW ( FPC VPC )t
s

st s s st
(22)

3.2.7. Objective Function. The objective function aims at
minimizing the total energy cost and can be represented by
constraint (23). Note that the power consumption calculated in
constraint (22) is used as the key factor in the objective
function. Hence, the summation (23) computes the power
consumption cost for the whole scheduling horizon. The
energy price forecast, represented by EPt, can be specified on an
hourly or daily basis, or a flat energy price can also be used.

∑=Min Cost (PWEP )
t

t t
(23)

3.3. Alternative Model. An alternative approach proposed
by Mitra et al.5 has been previously reported as an efficient
scheduling model to optimize production planning for

continuous power-intensive processes. Mitra et al.5 developed
a discrete-time scheduling formulation to determine the
production and inventory levels and the operation modes for
each time period according to time-dependent electricity
pricing schemes. Their MILP model was also used to evaluate
an industrial case study on an air separation plant which
produces multiple liquid and gaseous products, such as oxygen,
nitrogen, and argon.
The major difference between the Mitral et al.5 model and

the PSTN model proposed in this paper is the way to represent
the operation points of the plant and to capture the transition
mode behavior. While Mitra et al.5 represent the operational
transitions defining global transitional modes m (m ∈ M) as a
set of operating points to capture the transitional behavior of
the plant during a specific time period, such as off, ramp-up
transition, or on, in the PSTN model disaggregates these
operation modes in operational states at each time period.
To model the production modes of the air separation plant,

Mitra et al.5 use the binary variable Yp,m
t which is equivalent to

the one used in this paper to produce a product, Ws,t, and also
determined the operational mode each hour by eq 1. In
addition, they incorporate the continuous variable Prt to
calculate the total production level at each hour t using the
following equation:

∑= ∀ ∈
∈

t TPr Prt

m M
m
t

(24)

where Prmt represents, as well as Ps,t, the production level of
each operational point of the plant. Note that both MaxPs of
our model and M̅m of constraint (25) by Mitra et al.5 represent
the maximum production.

≤ ̅ * ∀ ∈ ∈M Y m M t TPr ,m
t

m m
t

(25)

As a major key difference, Mitra et al.5,6 introduced the
binary transitional variable Zm′,m

t , which is true whenever a
transition from mode m′ to mode m occurs from time period t
− 1 to t. In order to reduce the number of switching constraints
proposed by Mitra et al.,5 Mitra et al.6 reformulated them by
obtaining constraint (26).

∑ ∑′ − ′ = −

∀ ∈ ∈
′∈ ′∈

−Z Z Y Y

t T m M,

m M
m m
t

m M
m m
t

m
t

m
t

, ,
1

(26)

As shown in Mitra et al.,6 constraint (27) was defined to
model the minimum stay. Note it is a modification of the
constraint presented in Mitra et al.5 In addition, they used the
transitional mode constraint (28) and constraint (29) for
forbidden transitions. Note that both Km,m′

min and min_res
represent the same value.

∑≥ ′ ∀ ′ ∈ ∈
′

θ

θ
′

=

−
−Y Z m m t T( , ) Seq,m

t
K

m m
t

0

1

,

m m,
min

(27)

′ − ′ ″ = ∀ ∈ ′ ″ ∈′−Z Z t T m m m0 , ( , , ) Transm m
t K

m m
t

, ,
m m,
min

(28)

′ = ∀ ∈ ′ ∈Z t T m m DAL0 , ( , )m m
t

, (29)

Finally, the mass balance of the plant is modeled by eqs 20
and 30, where the latter is equivalent to eq 19 used in this
paper.
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+ = + ∀ ∈+I I E t TPr Dt
t

t t1 (30)

4. NUMERICAL EXPERIMENTS
The computational efficiency of the proposed model was tested
in a liquefier cycle that can be typically found at air separation
plants. Real-world electricity prices, setups, and demand input
data for a weekly horizon (168 h) were taken into account.
Next, we describe the application of our model formulation to
this case study, presenting the real industrial data used to
generate different scenarios and numerical results. Moreover,
we show a comprehensive computational comparison between
the proposed optimization model and the one developed by
Mitra et al.5 Finally, we calculate the economic impact of the
PSTN model by optimizing different plant configurations.
4.1. Case Study Definition. In this section we apply the

proposed modeling framework introduced above and illustrated
in Figure 2 to the liquefier cycle of an air separation plant of our
case study. The data used to test the computational
performance of the PSTN formulation is given below. Input
data concerning both the minimum and maximum production
levels and the power consumption are given in Table 1 and
defined for each operating mode. For confidentiality reasons
the corresponding data has been normalized. Note that FPCs
and VPCs values correspond to the fixed and variable power
consumption parameters, respectively, and are used to calculate
the power consumption according to eq 22.
The daily demand data, which have also been normalized,

can be found in Table 2. Furthermore, the storage capacity in
the plant can vary between 34 and 87 [unit], which represent
Qmin and Qmax parameters, respectively.

We consider two typical weeks of the day-ahead market for
electricity price forecast (forecast 1 and forecast 2) which are
shown in Figure 3. It is important to highlight that both
demand levels and energy prices forecasts used in our case
study are provided on an hourly basis over a weekly horizon.
Hence, the input data regarding the expected demand (Table

2) is disaggregated on an hourly basis to generate the demand
scenarios.

4.2. Computational Statistics. 4.2.1. Comparison with
Alternative Model. First, we compare the computational
efficiency of our model with that of the model presented by
Mitra et al.5 In order to obtain comparable results, we
implemented both models in the same computational environ-
ment under same assumptions that are reported in the model
formulation by Mitra et al.5 Therefore, ramping down/up
constraints were not taken into account in this comparison.
We analyzed six cases (1−6) which are defined according to

three expected demand levels and two electricity price forecasts,
given in Table 3. The liquefier configuration evaluated
considers 3 and 8 h of minimum and maximum residence
time, respectively. In all cases, the calculation of the objective
function for both models is performed with eq 23 that
computes the total energy cost necessary for normal operation.
It is important to remark that the termination criterion was

either 0% optimality gap or 3600 s of CPU time. The solutions
were obtained with the commercial solvers CPLEX 12.6.3.0 and
Gurobi 6.5.2 on a PC Intel Xeon X5650 2.6 GHz. The
optimization environment employed to solve all test cases was
GAMS 24.7.6.
The computational statistics and results of six cases using

CPLEX are reported in Table 4 in which the optimal objective
has been normalized. It can be observed that the MIP solutions
for cases 2−4 and case 6 are the same for both models.
However, Mitra et al.5 cannot reach optimality in the maximum
predefined CPU time. In cases 1 and 5, the optimal solution is
reached by the novel MILP model in less than 16.4 s, while
Mitra et al.5 can provide only a feasible result with 2.52% and
1.74% relative gap in 3600 CPUs, respectively. Hence, all cases
solved using the PSTN model reached the desired level of
optimality in less than 30 s, while most cases cannot guarantee
optimality in less than 1 h by using the model developed by
Mitra et al.5

Note also that the problem sizes differ clearly. Mitra et al.5

has fewer continuous variables than the PSTN model, but it has
more equations and practically twice the number of binary
variables. Moreover, the solutions of the relaxed mixed integer
programming problem (RMIP) for our model were closer to
the MIP solutions. In turn, Table 5 reports a comprehensive
comparison of the computational performance of the Mitra et
al.5 model using different optimization codes and relative gap
values. Although we can observe a better computational
behavior when the Gurobi solver is used, the performance is
still worst in comparison with the novel PSTN MILP
formulation. On the basis of all these cases, we can conclude
that our MILP model is computationally much more efficient
than the MILP model previously presented by Mitra et al.5 In
effect, one of the major contributions of this work is to remark

Table 1. Production Rates and Power Consumption for the Different Operating Modes

ramp-down
compressor A

ramp-up
compressor A

mode
on

mode
off

mode
standby phase I phase II

ramp-down
compressor B phase I phase II

ramp-up
compressor B

minimum production [unit/h] 0.8 0 0 0.8 0.8 0.8 0 0 0
maximum production [unit/h] 1 0 0 1 1 1 0 0 0
power consumptiona

[MWh/unit]
FPCs 0 0 1.1 0.63 0.7 2.41 0.36 0.6 3.1
VPCs 11.25 0 0 11.25 11.25 11.25 0 0 0

aPower consumption follows a linear correlation: PWt = ∑s(WstFPCs + VPCsPst), ∀t ∈ T.

Table 2. Expected Demand for a Week [unit/day]

expected demand

Monday 11.3
Tuesday 13.9
Wednesday 14.1
Thursday 13.2
Friday 11.0
Saturday 5.7
Sunday 5.8
weekly demand 75
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the fact that although both formulations are based on a discrete
time representation, using a more efficient and direct modeling
of key problem decisions and constraints can make a
remarkable difference in terms of computational performance
and solution quality.
4.2.2. Case Studies. In this section, we study a set of

operational configurations to determine experimental results
and the economic impact of the MILP model in the objective
function (Cost). Additionally, the impact of electricity pricing
variability in the day-ahead market is analyzed. Cases (A−E)
are reported in Table 6 and are based on the input data used for
case 1 (Table 3) considering a 1 h time discretization and 1-
week time horizon. Thus, the expected demand and the energy
price forecast are assumed to be the same for all scenarios.
More specifically, scenarios differ in input parameters such as
minimum and maximum residence times. The variation of these

parameters, the problem sizes, and the computational results
can be found in Table 6. Note that all scenarios evaluated were
solved using the ramping constraints (15)−(17) to model the
ramping behavior (up and down).
The results show optimal solutions for all cases using the

proposed methodology requiring a modest computational
effort. We can observe that, as before, all cases can be solved
in a few seconds. Therefore, the MILP model does not require
more than 1 min of CPU time to find optimal solutions with
zero optimality gap.
It can be seen that, for cases B and C, there are no significant

differences in performance and results. This can be due to the
maximum stay constraint (with 16 and 24 h, respectively) not
being active. Note that, if we consider other energy pricing
profiles, these results may be modified.
Furthermore, we can demonstrate that the number of

transitions decrease as the flexibility of the operational
configuration is increased. This can be reflected in terms of
the number of liquefier shutdowns and MIP solutions. For
instance, case D has a longer residence time allowed than case
A. Hence, it involves fewer liquefier shutdowns over the specific
time horizon. The required schedules for both tests can be
found in Figure 4, top and bottom panels.
For the same demand profile, the total energy costs differ

according to the different stay restrictions in critical states. The
improvements concerning energy costs occur due to the fact
that the liquefier operates at its maximum rate during the

Figure 3. Energy price forecasts for two different weeks [$/MWh].

Table 3. Case Studies Based on Demands and Energy Price
Forecasts

casea demand [unit/day] energy price forecast

1 expected demand forecast 1
2 expected demand +15% forecast 1
3 expected demand −15% forecast 1
4 expected demand forecast 2
5 expected demand +15% forecast 2
6 expected demand −15% forecast 2

aMinimum residence time: 3 h. Maximum residence time: 8 h.

Table 4. Comparison of PSTN MILP Model with Mitra et al.5 Model

PSTN model Mitra et al.5 model

case
binary
vars

continuous
vars constraints

RMIP
solution

MIP
solution

relative
GAP

CPU
time
[s]

binary
vars

continuous
vars constraints

RMIP
solution

MIP
solution

relative
GAP

CPU
time
[s]

1 2536 2858 9215 305.3 336.7 0 16.4 4207 1348 13 531 299.1 337.2 2.52 3600
2 2536 2858 9215 356.0 387.0 0 15.5 4207 1348 13 531 355.8 387.0 1.81 3600
3 2536 2858 9215 253.1 290.3 0 19.0 4207 1348 13 531 250.7 290.3 2.60 3600
4 2536 2858 9215 384.8 413.1 0 17.7 4207 1348 13 531 381.3 413.1 0.49 3600
5 2536 2858 9215 449.2 473.7 0 5.1 4207 1348 13 531 447.1 474.2 1.74 3600
6 2536 2858 9215 321.1 355.7 0 7.5 4207 1348 13 531 316.6 355.7 0 2902
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lowest energy prices and switches off during the hours of peak
prices. To illustrate this behavior, we show the results obtained
for cases A and D in Figure 5, in terms of relative power
consumption and electricity pricing (forecast 1). A lower total
energy cost in case D than in case A can be observed. Case D
uses less energy due to the fact that it needs fewer liquefier
shutdowns and its maximum residence time allows it to operate
more extensively in periods of low prices.

The highest levels of energy consumption of these cases were
the hours of the day with lowest prices, typically by the end of
week. Hence, the amount of energy consumed was optimized
by using the PSTN formulation to meet demand and
operational restrictions.
We also compare both cases with regard to their

corresponding inventory profiles and production levels. We
illustrate these profiles in Figure 6, such as the lower and upper
bound of the storage capacity. It can be seen that the inventory

Table 5. Computational Statistics for the Mitra et al.5 Model with Different Solvers and Relative Gap Values

relative gap = 0.05 relative gap = 0.01 relative gap = 0

CPLEX GUROBI CPLEX GUROBI CPLEX GUROBI

case
MIP

solution
CPU time

[s]
MIP

solution
CPU time

[s]
MIP

solution
CPU time

[s]
MIP

solution
CPU time

[s]
MIP

solution
CPU Time

[s]
MIP

solution
CPU time

[s]

1 338.4 414.8 336.8 661.2 336.8 13 432.7 336.7 2028.5 336.7 16 883.4 336.7 3228.4
2 387.6 345.7 387.0 148.4 387.0 6650.6 387.0 1745.7 387.0 13 179.1 387.0 2407.7
3 290.7 1990.7 290.3 672.0 290.6 7037.1 290.3 5202.9 290.3 10 460.3 290.3 6965.3
4 416.7 334.2 413.3 124.7 413.4 2257.1 413.1 922.5 413.1 3905.1 413.1 1327.2
5 474.8 54.0 474.4 91.2 473.7 5547.7 473.7 901.7 473.7 8666.1 473.7 1743.2
6 356.0 481.5 355.7 221.2 355.7 2178.7 355.7 976.7 355.7 2902.0 355.7 1152.3

Table 6. Computational Statistics Applying the PSTN Model

case
minimum residence

time
maximum residence

time
binary
variables

continuous
variables constraints

MIP
solution

relative
gap

CPU time
[s]

liquefier
shutdowns

A 3 8 2536 2863 10 727 348.4 0 33.57 9
B 3 16 2536 2863 10 703 308.7 0 2.51 6
C 3 24 2536 2863 10 679 306.4 0 3.42 6
D 8 24 2536 2863 10 679 318.4 0 13.35 5
E 16 24 2536 2863 10 679 338.4 0 8.14 4

Figure 4. (Top) Optimal schedule for case A. (Bottom) Optimal schedule for case D.
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level is increased in time periods in which the liquefier operates
and therefore has normal production. Similarly, the amount of
stored product decreases in the hours where there is no
production, i.e., during liquefier shutdowns, because demand
can be met with inventory. Moreover, despite both storage tank
profiles satisfying the minimum and maximum tank levels, case
A presents higher inventory levels throughout the planning
horizon.

5. CONCLUSIONS
In this paper we have proposed a discrete-time scheduling
formulation based on a MILP model that is capable of
effectively dealing with price fluctuations by optimizing
operating decisions for energy intensive processes under
time-sensitive electricity prices. We developed the novel
PSTN formulation to systematically represent the operating
states and to model the dynamic transition behavior of this type
of processes. The major advantage of PSTN is that it gives rise

to a discrete-time scheduling formulation that is slightly tighter
and computationally superior to previous MILP models.
The main goal of the proposed model is to minimize total

energy cost while product demand satisfaction is guaranteed
accounting for the volatile nature of the energy markets. Thus,
it allows the evaluation of daily and hourly reactive decisions
based on energy price changes. We were able to successfully
implement the model and evaluate multiple instances for an
industrial case study. The results established that despite the
large size of the MILP model with thousands of constraints and
binary and continuous variables can be solved in only few
seconds. More precisely, we observed that the optimization
model was able to obtain the optimal solution with 0% gap
solution for all test cases in less than 1 min CPU time.
Furthermore, for different baseline demands and energy price

forecasts, we compared the computational requirements of the
PSTN model with the formulation previously presented by
Mitra et al.5 The comparison performed demonstrated that the

Figure 5. Power consumption profiles for cases A and D.

Figure 6. Inventory and production profiles for cases A and D.
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proposed model consistently outperforms the previous one.
Based on the results for different optimality gaps, it can be
concluded that the novel PSTN MILP-based scheduling model
is computationally very efficient and robust for solving real-
world industrial scheduling problems. In effect, a central
achievement of this work is to clearly illustrate the fact that
alternative discrete time MILP formulations may have a
remarkable difference in terms of computational performance
and solution quality depending on the basic ideas that are used
in each model. Based on its high computational performance,
the new model can be easily extended to rescheduling of
extremely dynamic production environments. Therefore, the
proposed scheduling framework is a promising approach for the
application to real-world air separation industrial plants. At the
same time, the PSTN model can be easily adapted to other
operational configurations to find the optimal schedule in a
reasonable computational time.
As future work we plan to extend the proposed efficient

deterministic formulation to deal with multiple products, i.e.,
oxygen and nitrogen. Also, we plan to incorporate the main
PSTN model ideas to a novel framework based on stochastic
programming or robust optimization to address uncertainty in
electricity price data.
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■ NOMENCLATURE

Sets
T (index t) the set of time periods
S (index s) the set of operating states
D (index d) the set of days of a week
Tlast the subset of ending times of each day
Sinitial the subset of initial sequential states of on, off,

and stand-by state
Sinter the subset of intermediate transition states of on,

off, and stand-by modes
Scritical the subset of critical transition states of on, off,

and stand-by modes
Sdown−initial the subset of initial state to ramp-down
Sup−initial the subset of initial state to start-up
Sdown−inter the subset of intermediate states to ramp-down
Sup−inter the subset of intermediate states to start-up
SminProd the subset of states with minimum production

LICs the subset of states that immediately precedes a
critical state s

NTSs the subset of states that immediately succeeds
critical state s

Parameters
MinPs minimum production per hour in each state
MaxPs maximum production per hour in each state
MDTLT

last minimum final tank levels at the end of the day
EDt expected hourly demand
FPCs fixed power consumption
VPCs variable power consumption
EPt energy price forecast at time t
Qmin minimum tank level
Qmax maximum tank level
EPFIXED average energy price of a week
I0 initial tank level
FT final time of the scheduling horizon
nd number of intermediate states in the shutdown

process
ns number of intermediate states in the startup process
minres minimum residence time
maxres maximum residence time
mn minimum residence time in critical transition states
mx maximum residence time in critical transition states
inc percentage of ramp-up production changes
dec percentage of ramp-down production changes

Continuous Variables
Ps,t production amount at time t for state s
PWt power consumption at time t
It inventory available at the end of time period t
Cost total energy cost

Binary Variables
Ws,t indicates whether system operates in state s during time

period t
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