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Abstract: In particle size measurement with dynamic light scattering (DLS), it is difficult to 
get an accurate recovery of a bimodal particle size distribution (PSD) with a peak position 
ratio less than ~2:1, especially when large particles (>350nm) are present. This is due to the 
inherent noise in the autocorrelation function (ACF) data and the scarce utilization of PSD 
information during the inversion process. In this paper, the PSD information distribution in 
the ACF data is investigated. It was found that the initial decay section of the ACF contains 
more information, especially for a bimodal PSD. Based on this, an information-weighted 
constrained regularization (IWCR) method is proposed in this paper and applied in multiangle 
DLS analysis for bimodal PSD recovery. By using larger (or smaller) coefficients for 
weighting the ACF data, more (or less) weight can then be given to the initial part of the 
ACF. In this way, the IWCR method can enhance utilization of the PSD information in the 
ACF data, and effectively weaken the effect of noise at large delay time on PSD recovery. 
Using this method, bimodal PSDs (with nominal diameters of 400:608 nm, 448:608 nm, 
500:600 nm) were recovered successfully from simulated data and it appears that the IWCR 
method can improve the recovery resolution for closely spaced bimodal particles. Results of 
the PSD recovery from experimental DLS data confirm the performance of this method. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (290.3200) Inverse scattering; (290.5820) Scattering measurements; (290.5850) Scattering, particles; 
(290.1990) Diffusion; (290.3700) Linewidth. 
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1. Introduction 

The particle size distribution (PSD) is an important characteristic of many colloidal materials 
[1]. Dynamic light scattering (DLS) has been widely used in science and industry for 
measuring the PSD of submicrometer particles [2]. In this technique the autocorrelation 
function (ACF) of scattered light intensity is measured using the photon correlation 
spectroscopy (PCS) method [3, 4] and the PSD is determined by analyzing the ACF data. 
However, inverting the ACF to recover the PSD is a highly ill-posed mathematical problem, 
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and the results can be variable due to the limited PSD information using the common single 
angle DLS technique. Noise in the ACF data also reduces the robustness of the PSD recovery. 

To improve the accuracy of the PSD recovery, multiangle dynamic light scattering 
(MDLS), which combines ACF data sets detected at different scattering angles and can 
provide extra information than single-angle analysis, has been developed [5–8]. Numerous 
approaches have been proposed to solve the inverse problem based on MDLS. These include 
the regularization method [9, 10], the CONTIN constrained regularization method [11, 12], 
Bayesian strategies method [13, 14], and the neural network method [15], for example. These 
methods generally work well for unimodal PSDs, but less well for bimodal PSDs with a peak 
position ratio less than ~2:1, although bimodal PSDs with a peak position ratio larger than 
~3:1 can be recovered accurately with the CONTIN method [16, 17]. Zhu et al. [18] proposed 
a weighted constrained regularization (WCR) method, and applied it to single-angle DLS 
measurements, in which a bimodal PSD with peaks at 200nm and 350nm was successfully 
recovered giving resolution for a peak position ratio of ~1.7:1, and in spite of considering 
particle sizes <350nm. 

There are two factors that limit acceptable PSD recoveries in DLS: i) the low information 
content on the PSD in the ACF data; and ii) the unavoidable presence of noise in the ACF 
data [19]. To overcome these problems, a novel information-weighted constrained 
regularization (IWCR) method is proposed in this paper, using the distribution of PSD 
information in the ACF. In this method, the noise and the PSD information in the ACF are 
considered simultaneously and applied in MDLS analysis (M = 1, 3, 6). The results show that 
there are distinct and significant advantages using this method in MDLS analysis for 
recovering bimodal PSDs. It appears that this method can effectively reduce the effect of the 
noise in the ACF data, enhancing the ability to extract PSD information as well as improving 
the capacity to discriminate the peaks of bimodal distributions. Results of PSD recovery from 
experimental data support these observations and provide the experimental basis for the 
feasibility of this method. 

2. Basic DLS theory 

When a laser beam is focused into a dilute suspension of colloidal particles, light is scattered 
in all directions. If the scattered light is detected over a small solid angle [20] at a particular 
angle, it is observed to undergo light intensity fluctuations, which are due to the Brownian 
motion of the particles. The timescale of the fluctuations relates to the diffusion coefficient of 
the particles in the medium, which in turn is related to their sizes. The fluctuations are 
characterized by measuring the ACF of the scattered light intensity [20], as follows: 

 ( ) ( ) ( ) ( )0

0

2
00

lim .
T

T
G i t i t dt Tθ θ θτ τ

→∞
= ⋅ +  (1) 

where ( )i tθ and ( ) ( )2Gθ τ  are the scattered light intensity at the scattering angle θ and the 

corresponding ACF, respectively. T0 is the total analysis time and τ is the delay time. In 
practice, the intensity ACF of scattered light is calculated by Eq. (2), which can be obtained 
by using a digital correlator. 

 ( ) ( ) ( ) ( )2

1
lim .

M

j k k jkM
G i i Mθ θ θτ τ τ +=→∞

= ⋅  (2) 

where ( ) ( )2
jGθ τ  is the discrete ACF of the scattered light intensity, τj the discrete delay time, 

and M the total number of samples acquired by the correlator. 

In DLS, the light intensity ACF is related to the normalized electric field ACF, ( ) ( )1
jgθ τ , 

by the Siegert relationship [20, 21] 
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 ( ) ( ) ( ) ( ) ( )( )22 11 .j jG B gθ θτ β θ τ= +  (3) 

where B is the measured baseline of ( ) ( )2
jGθ τ , β(θ) (≤1) is the instrumental coherence 

constant, and j (1≤ j ≤M) is the channel number. 
For a polydisperse system of colloidal particles, the normalized electric field ACF has the 

form 
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and 

 ( ) ( ) ( ).i I i ih d k C d f dθ θ θ=  (6) 

where θ, di, kB, T, λ0, nm(λ0), and η are the scattering angle, the diameter of spherical particle, 
the Boltzmann constant, the absolute temperature of the medium, the wavelength of the 
incident light, the refractive index of the non-absorbing suspending medium, and the viscosity 

of the dispersing medium, respectively. The decay constant, Γ, of ( ) ( )1
jgθ τ , can be calculated 

with the parameters above and Eq. (5) [2, 16]. CIθ(di) is the fraction of the light intensity 
scattered by a particle of diameter di at θ and is calculated by the Mie scattering theory [22], 
f(di) is the discrete PSD which represents the number particle concentration in the range  
[di, di + 1] and the points of the PSD are evenly spaced in the range [dmin, dmax] with the 

(chosen) total number N, and kθ = ( ) ( )
1

1
N

I i ii
C d f dθ= , is an a priori unknown 

proportionality constant for each θ. 
In vector form, the discrete MDLS model can be written as: 

 (1) .kθ=
θ θg A f  (7) 

where (1)

θ
g (M × 1) is a vector with elements ( ) ( )1

jgθ τ ; f (N × 1) is a vector with elements f(di), 

Aθ (M × N) is a kernel matrix corresponding to the measured ACF at the scattering angle θ. 
The elements of Aθ are given by 
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3. Noise in ACF data 

Generally, the scattered light signals detected in DLS are weak (usually less than ~10−15 W) 
and may be extremely weak when data are recorded for short times or low count rates. Such 
situations arise in evolving systems or online applications where measurement time may be 
limited. Although the PCS technique can reduce the noise with time averaging to improve the 
statistics [23], the noise mixed in the scattered light signals can still make the intensity ACF 
inversion uncertain. So an understanding of the noise in ACF data is of importance for 
improving the performance of the DLS. 

In 1983, Schatzel analyzed the sources of noise in ACF data [24]. In his classification, 
there are two types of noise, intensity noise and photon noise [24, 25]. Other types of noises 
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(e.g., those inherent to the light source) are typically negligible particularly for well-stabilized 
laser sources. The intensity noise, which can be characterized as Gaussian under certain 
assumptions, is related to the scattered light signal, while the photon noise, is Poissonian and 
inherent to the photon counting process. The intensity noise is strongly correlated and may 
dominate the photon noise after auto-correlation calculation [26, 27] and give rise to an 
intensity ACF baseline error which causes the estimated electric field ACF data to deviate 
from the theoretical data, especially at large lag time. In DLS measurement, it is impossible to 
avoid this distortion although we can get a less biased estimation [28]. 

Taking the experimental data of sample AE (details in Section 7) as an example, the 
normalized light intensity and electric field ACF data at 90°, G(τ) and g(τ) are shown in the 
Figs. 1(a) and 1(b) respectively. It can be seen that the effect of noise on fitted data is worse 
in G(τ) and g(τ), especially at large delay time. 

To further study the noise in ACF data, wavelet analysis, a common method to extract the 
noise mixed in noisy data, was used to extract the noise distribution nI(τ) and nf(τ) from the 
noisy ACF data G(τ) and g(τ) (Figs. 1(c) and 1(d)). The db3 wavelet, one of Daubichies 
wavelets, was used to compute the detail coefficients vector (cDg), via a single-level wavelet 
decomposition of G(τ) (or g(τ)) based on a one-dimensional wavelet transform (i.e. dwt in 
MATLAB software). The detail coefficients, substantially the noise distribution nI(τ) (or 
nf(τ)), were reconstructed with cDg using the db3 wavelet and a direct reconstruction function 
(i.e. upcoef in MATLAB software). As shown as Figs. 1(c) and 1(d), it is obvious that the 
noise in the light intensity ACF is not significantly different at different delay time. However, 
for the electric field ACF, larger noise occurs at long delay times, as a consequence of square 

root transformation required to calculate the electric field ACF ( ) ( )1
jgθ τ  from the light 

intensity ACF ( ) ( )2
jGθ τ , on the basis of Eq. (3). 

Actually, the ACF data at small delay times contain the measurement information used for 
recovery of the PSD, while very little or no PSD information is contained in the ACF data at 
large delay times [19, 29, 30]. Additionally, at the large delay times, much more noise is 
mixed in the ACF data than at the small delay times and this seriously affects the PSD 
recovery. The WCR method, which uses the ACF weighted with the noise distribution, can 
reduce the effect of noise in ACF data [18], but the lack of the information on closely spaced 
components in bimodal samples, needed in the PSD recovery, remains a shortcoming. 

 

Fig. 1. Normalized light intensity ACF data (a), G(τ), obtained from experimental sample AE 
at 90°scattering angle; Normalized electric field ACF data (b), g(τ), calculated from G(τ); The 
noise in G(τ) (c) and g(τ) (d), nI(τ) and nf(τ), extracted by wavelet analysis. 
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4. PSD information in ACF data 

The ACF data contains different amounts of the PSD information at the different delay times, 
and more PSD information content usually exists at the initial damping section. Generally, the 
fact of neglecting the PSD information distribution in the common constrained regularization 
(CR) method or the WCR method, can limit the PSD recovering efficiency. 

Here, five simulated DLS data sets with different mean diameter (95nm, 188nm, 350nm, 
500nm, 800nm) are used to investigate the PSD information distribution in the ACF data and, 
the relationship between the PSD information and the recovered PSD. For the simulation, 
unimodal and bimodal PSDs are used to generate the corresponding ACF data, and the 
properties of each data set are shown in the Table 1. 

All simulations assumed that the particles were dispersed in water at 298 K (refractive 
index n = 1.33, viscosity η = 0.89 cP). The light source was vertically polarized with 
wavelength λ0 = 633nm. The ACF data were simulated by Eq. (4) at a scattering angle of θ = 
90°, adding Gaussian random noise to make the simulated ACF data more realistic. 

The noisy light intensity ACF data were simulated by 

 ( ) ( ) ( ) ( ) ( )2 2
_ I .noise j j jG G nθ θτ τ δ τ= +  (9) 

where nI(τj) is the zero-mean Gaussian random noise, and δ denotes the noise standard 
deviation. 

Taking the PSD with a mean diameter of 95nm as an example, a unimodal PSD and three 
bimodal PSDs (25/300nm 50/200nm 75/125nm), with peak position ratio of 12:1, 4:1 and 
1.67:1 respectively, were used to simulate the ACF data. Figure 2(a) shows the simulated 
light intensity ACF data for the respective PSD. It can be seen that the light intensity ACF 
data from the 95nm unimodal PSD and the 75/125nm bimodal PSD are quite similar, which 
makes it highly difficult to discriminate these two sets of light intensity ACF data. 

To make the difference between the ACFs more clear, we define the particle size 
information distribution for bimodal PSDs of Fig. 2(b) as the absolute value of the difference 
between each datum point of the bimodal ACFs and the ACF corresponding to the equivalent 
monodisperse PSD (e.g. the 95 nm unimodal ACF in this case). Here, the equivalent 
monodisperse PSD was obtained by the cumulants method [31, 32]. It can be seen that, as the 
peak position ratio decreases, the difference between the ACFs decreases and less particle 
size information is provided as the bimodal PSDs approach a unimodal PSD. So it is 
increasingly difficult to recover this kind of bimodal PSD. 

To illustrate the limitation of the common CR method, the PSD estimations were made by 
this method and the results are shown in Table 1 and Fig. 2(c). It is easy to see that an 
accurate recovery of bimodal PSDs was reached when the peak position ratio is > 2:1, such as 
the 25/300nm and 50/200nm bimodal PSDs, but only one peak was found for the 75/125nm 
bimodal PSD, with the peak position ratio of 1.67:1. 

Simulations were also made for PSDs with different mean diameters (188nm, 350nm, 
500nm, 800nm), and the results are shown in Figs. 3-6. In all cases, the less PSD information 
in the ACF data, the worse the PSD recovery. This effect was particularly evident in the 
bimodal PSDs with a peak position ratio < 2:1. Clearly, it is critical to make the best use of 
the PSD information in the ACF data during the inversion to improve the recovery of bimodal 
PSDs with close peaks. 
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Table 1. Properties of Simulated ACF Data Sets for the Unimodal and Bimodal PSDs, 
and a Summary of Particle Sizing Results from Single-angle DLS with a Constrained 

Regularization Method. 

Simulated PSDs 

Noise Recovered PSDs 

dmean/nm d1/nm d2/nm d2:d1 Intensity Ratio 

95 

95 
25 
50 
75 

- 
300 
200 
125 

- 
12.00:1 
4.00:1 
1.67:1 

- 
0.37:0.63 
0.44:0.56 
0.43:0.57 

3 × 10−3 

1 peak 
2 peaks 
2 peaks 
1 peak 

V. good 
V. good 

good 
poor 

188 

188 
50 

100 
150 

- 
600 
450 
300 

- 
12.00:1 
4.50:1 
2.00:1 

- 
0.36:0.64 
0.49:0.51 
0.64:0.36 

3 × 10−3 

1 peak 
2 peaks 
2 peaks 
1 peak 

V. good 
V. good 

good 
poor 

350 

350 
125 
200 
275 

- 
900 
800 
600 

- 
7.20:1 
4.00:1 
2.18:1 

- 
0.37:0.63 
0.51:0.49 
0.65:0.35 

3 × 10−3 

1 peak 
2 peaks 
2 peaks 
1 peak 

V. good 
V. good 

good 
poor 

500 

500 
100 
175 
350 

- 
900 
700 
600 

- 
9.00:1 
4.00:1 
1.71:1 

- 
0.21:0.79 
0.19:0.81 
0.31:0.69 

3 × 10−3 

1 peak 
2 peaks 
2 peaks 
1 peak 

V. good 
V. good 

good 
poor 

800 

800 
175 
250 
450 

- 
1000 
950 
900 

- 
5.71:1 
3.80:1 
2.00:1 

- 
0.10:0.90 
0.10:0.90 
0.15:0.85 

3 × 10−3 

1 peak 
2 peaks 
2 peaks 
1 peak 

V. good 
V. good 

good 
poor 

 

Fig. 2. Simulated light intensity ACF data for the PSDs with 95nm mean diameter (a); PSD 
information distribution in the simulated ACF data for the bimodal PSDs (b); PSDs estimated 
from the simulated ACF data by using the common CR method (c). 
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Fig. 3. Simulated light intensity ACF data for the PSDs with 188nm mean diameter (a); PSD 
information distribution in the simulated ACF data for the bimodal PSDs (b); PSDs estimated 
from the simulated ACF data by using the common CR method (c). 

 

Fig. 4. Simulated light intensity ACF data for the PSDs with 350nm mean diameter (a); PSD 
information distribution in the simulated ACF data for the bimodal PSDs (b); PSDs estimated 
from the simulated ACF data by using the common CR method (c). 

 

Fig. 5. Simulated light intensity ACF data for the PSDs with 500nm mean diameter (a); PSD 
information distribution in the simulated ACF data for the bimodal PSDs (b); PSDs estimated 
from the simulated ACF data by using the common CR method (c). 
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Fig. 6. Simulated light intensity ACF data for the PSDs with 800nm mean diameter (a); PSD 
information distribution in the simulated ACF data for the bimodal PSDs (b); PSDs estimated 
from the simulated ACF data by using the common CR method (c). 
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5. IWCR method 

To increase the ability to extract the PSD information, the here-proposed IWCR method is 
applied in MDLS. This method basically consists on assigning a different weight to each data 
in the ACF, according to the corresponding information content on the PSD. 

For single-angle DLS (SDLS), the IWCR method can be expressed as a weighted 
constrained optimization problem, as follows: 

 ( ) ( )( ) 2 21
0 1.,M α

θ θ θ α ≤ ≤= − + ff W A f g Lf  (10) 

where Mα is the objective functional to be minimized, f the estimated PSD, α the 
regularization parameter, L the regularization matrix, ·  the Euclidean norm, and Lf  the 
penalty functional factor. These parameters guarantee the optimal stable and smooth solution. 

The weighting matrix Wθ in Eq. (10), is described by Wθ = diag(wθ). Here diag is the 
diagonal operator and wθ is a vector of weighting coefficients, wθ_j, that can be calculated by: 

 ( ) _ 21
_ _ .

jPID

j jw g
θ

θ θ=  (11) 

where ( )1
_ jgθ  is the jth element of ( )1

θg , and PIDθ_j is the jth element of the PSD information 

distribution in the ACF data. This information distribution at scattering angle θ, PIDθ, 
substantially is the absolute value of difference between the ACF corresponding to the 
equivalent monodisperse PSD and actual ACF. Here, the equivalent monodisperse PSD was 
obtained by the cumulants method [31, 32]. 

In the IWCR method, a larger (smaller) value of wθ is generally used to weight the ACF 
data which has more (less) PSD information. In this way, it is possible to provide more 
precise PSD information contained in the ACF to improve the PSD recovery. The effect of 
noise at large delay times is also weakened by using smaller weighting coefficients at those 
delay times. 

In MDLS analysis, the estimated ACF data obtained at different scattering angles is 
treated as one set. Correspondingly, with IWCR method Eq. (7) is expressed as, 
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where ( )1

rθg  is the electric field ACF data at scattering angle θr, 
rθA  is the kernel matrix 

corresponding to ( )1

rθ
g , Wr is the weighting matrix corresponding to ( )1

rθ
g , calculated by Eq. 

(11), kr is the a priori unknown constant related to the scattering angle θr, where r is a integer 
within 1 to m. 

Similarly, the PSD recovery with the IWCR method in MDLS can be expressed in a 
weighted constrained functional optimization form as 

 ( ) ( ) 2 21
0 1.,M α α ≤ ≤= − +W Wg ff A f Lf  (13) 

where AW is the kernel matrix of Eq. (12), AW = [
1 11k θW A ; 

2 22k θW A ; …; 
m mmk θW A ], and ( )1

Wg  

is a vector set containing the weighted electric field ACF data at scattering angles θ1, θ2, …, 
θm, as described by the second member of Eq. (12). 
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In what follows, the simulated and experimental PSDs are recovered by the proposed 
IWCR method (W2) with single-angle or multi-angle ACF data and compared with PSDs 
recovered using the standard CR method (W0) proposed by Tikhonov et al. [33] and the 
WCR method (W1) proposed by Zhu et al. [18]. The following four indices are used to 
measure the relative performance of the methods: the peak position (PP), the relative error of 
peak position (EPP), the peak height ratio of bimodal PSD (RPH), and the rms PSD recovery 
error (V). The index PP here is the particle diameter at the PSD maximum. The other indices 
are defined as follows: 

 ( )

[ ]( ){ }1 2

1 2

2

1
( ) ( ) .

PH

PP true meas true

K

true measV K

R HIP HIP

E PP PP PP

f d f d=

=

= −

−

 (14) 

where HIP stands for the value of the PSD at PP; and K is the number of modes in the PSD. 

6. Simulation and results 

Using a combination of two PSDs from Johnson’s SB distribution [34], a realistic bimodal 
PSD was simulated as 
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where t = (d-dmin)/(dmax-dmin), and μ1, σ1, μ2, σ2, a, and b are distribution parameters used to get 
different PSDs. Parameter d is the particle diameter, dmin and dmax are the maximum and 
minimum particle diameter respectively, and t is the normalized particle diameter. 

The intensity ACF data without noise can be obtained using Eqs. (3) and (4). Three sets of 
PSD and their corresponding ACF data were simulated with the parameters shown in Tables 2 
and 3. Parameters d1 and d2 in Table 3 are the diameters at the maximum of each peak. And 
Gaussian random noise was added to the simulated data to make it more realistic, using the 
form in Eq. (9). The levels of noise are shown in Table 3. 

Table 2. Parameters of Simulated Bimodal Polydisperse PSD Data Sets. 

Sample μ1 σ1 μ2 σ2 a b 
AS 0.00 8.00 7.90 7.00 0.53 0.47 
BS −2.20 10.00 7.90 7.00 0.53 0.47 
CS 3.20 8.00 5.63 13.80 0.65 0.35 

Table 3. Properties of Simulated ACF Data Sets for the Bimodal Polydisperse PSDs. 

Sample d1/nm d2/nm d2:d1 RPH Noise 
AS 400 608 1.52:1 1:1.046 3 × 10−3 
BS 448 608 1.36:1 1:0.845 3 × 10−3 
CS 500 600 1.20:1 1:0.921 3 × 10−3 

 
All ACF data were simulated with kB = 1.3807x10−23 J/K, T = 298.15 K, η = 0.89 cP,  

nm = 1.3316, λ0 = 632.8 nm, θr = 30°, 40°, 50°, …., 140°; B = 1, and β = 0.7; dmin = 0.01nm 
and dmax = 800.01nm for Sample AS and BS, dmin = 300.01nm and dmax = 800.01nm for 
Sample CS. The number of points was 100. 

Using M-angle DLS (M = 1, 3, 6), recovery of the simulated PSDs was done by analyzing 
the noisy simulated ACF data with different constrained regularization methods (W0, W1 and 
W2). SDLS was simulated at 90°; 3-angle DLS was simulated at 70°, 90° and 110°; 6-angle 
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DLS was simulated at 30°, 50°, …, 130°. Recovered PSDs are shown in Figs. 7-9, and the 
values of the different performance indices are shown in Tables 4-6. 

For the simulated bimodal PSD containing 400:608 nm spheres with 1:1.046 peak height 
ratio (sample AS), the recovered PSDs are shown in Fig. 7 separately using single-angle, 3-
angle and 6-angle analysis. Table 4 shows the performance indices of the true and recovered 
PSDs. 

According to Fig. 7, a better estimation of the 400nm and 608nm peaks was obtained with 
the W2 method. Also, the recovered PSDs were closer to the true PSDs with increasing 
number of scattering angles. The ability to recognize the bimodal PSD of the W0 method was 
very poor for either SDLS or MDLS, although the latter reach more accurate peak position. 
Using multi-angle methods, particularly 3-angle analysis, the recovered peak height ratios 
were closer to the true value (1:1.046) with different inversion methods (particularly, W2), 
which was 1:1.105. The recovered peak position was also more accurate for both the 400 nm 
and 608 nm peaks. In fact, their relative errors were 0.023 and 0.006 respectively, when 
analyzing the 3-angle DLS data with the W2 method. 

For the simulated bimodal PSD containing 448:608 nm spheres with a 1:0.845 peak height 
ratio (sample BS) the recovered PSDs are shown in Fig. 8. Table 5 shows the performance 
indices of the true and recovered PSDs. 

A better estimation of the 448 nm and 608 nm peaks was extracted with 3-angle analysis, 
especially when using the W2 inversion method. With SDLS, this PSD could not be 
recovered well when compared with MDLS, particularly using the W0 method. In addition, 
small, spurious 200 nm and 170 nm peaks were obtained by the W0 or W1 methods in 6-
angle DLS. In contrast, the W2 inversion method did not produce these spurious peaks. 
According to Table 5, better results are obtained when using 6-angle DLS data with the W2 
method. Here the relative peak position errors of the 448 nm and 608 nm peaks were 0.026 
and 0.006 respectively, the recovered peak height ratio was 1:1.083, and the value of V was 
0.067. 

 

Fig. 7. Simulated and estimated values for Sample AS, a bimodal particle size distribution with 
peaks at 400 nm and 608 nm. The recovery of PSD is estimated by different constrained 
regularization methods (W0, W1 and W2) in single-angle DLS (a), three-angle DLS (b) and 
six-angle DLS (c). 
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Fig. 8. Simulated and estimated values for Sample BS, a bimodal particle size distribution with 
peaks at 448 nm and 608 nm. The recovery of PSD is estimated by different constrained 
regularization methods (W0, W1 and W2) in single-angle DLS (a), three-angle DLS (b) and 
six-angle DLS (c). 

 

Fig. 9. Simulated and estimated values for Sample CS, a bimodal particle size distribution with 
peaks at 500 nm and 600 nm. The recovery of PSD is estimated by different constrained 
regularization methods (W0, W1 and W2) in single-angle DLS (a), three-angle DLS (b) and 
six-angle DLS (c). 

Table 4. Performance indices (PP, EPP, RPH and V) of the true and recovered PSDs for 
Sample AS. 

True PSD 
PP /nm EPP RPH V 

400/608 0.000/0.000 1.000:1.046 0 

R
ec

ov
er

ed
 P

S
D

s 

1-angle 
DLS 

W0 
W1 
W2 

401/630 
418/613 
417/621 

0.003/0.036 
0.045/0.008 
0.042/0.021 

1.000:0.738 
1.000:0.682 
1.000:0.684 

0.104 
0.095 
0.096 

3-angle 
DLS 

W0 
W1 
W2 

409/613 
409/613 
409/604 

0.023/0.008 
0.023/0.008 
0.023/0.006 

1.000:1.287 
1.000:1.262 
1.000:1.105 

0.088 
0.081 
0.067 

6-angle 
DLS 

W0 
W1 
W2 

392/604 
401/604 
390/596 

0.020/0.006 
0.003/0.006 
0.025/0.019 

1.000:1.385 
1.000:1.206 
1.000:1.422 

0.099 
0.076 
0.073 
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Table 5. Performance indices (PP, EPP, RPH and V) of the true and recovered PSDs for 
Sample BS. 

True PSD 
PP /nm EPP RPH V 

448/608 0.000/0.000 1.000:0.845 0 

R
ec

ov
er

ed
 P

S
D

s 
1-angle 

DLS 

W0 
W1 
W2 

435/613 
443/604 
451/604 

0.029/0.008 
0.011/0.006 
0.007/0.006 

1.000:0.762 
1.000:0.773 
1.000:0.773 

0.098 
0.088 
0.086 

3-angle 
DLS 

W0 
W1 
W2 

401/596 
426/596 
422/596 

0.105/0.020 
0.049/0.020 
0.058/0.019 

1.000:0.968 
1.000:1.169 
1.000:1.026 

0.110 
0.093 
0.100 

6-angle 
DLS 

W0 
W1 
W2 

426/596 
426/596 
436/604 

0.049/0.020 
0.049/0.019 
0.026/0.006 

1.000:1.029 
1.000:0.905 
1.000:1.083 

0.076 
0.088 
0.067 

Table 6. Performance indices (PP, EPP, RPH and V) of the true and recovered PSDs for 
Sample CS 

True PSD 
PP /nm EPP RPH V 

500/600 0.000/0.000 1.000: 0.921 0 

R
ec

ov
er

ed
 P

S
D

s 

1-angle 
DLS 

W0 
W1 
W2 

520/590 
480/605 
485/605 

0.04/0.017 
0.04/0.008 
0.03/0.008 

1.000:2.138 
1.000:1.597 
1.000:1.975 

0.135 
0.132 
0.129 

3-angle 
DLS 

W0 
W1 
W2 

505/615 
500/610 
500/605 

0.01/0.025 
0.00/0.017 
0.00/0.008 

1.000:0.598 
1.000:0.667 
1.000:0.609 

0.103 
0.077 
0.060 

6-angle 
DLS 

W0 
W1 
W2 

500/605 
510/615 
500/610 

0.00/0.008 
0.02/0.025 
0.00/0.017 

1.000:0.500 
1.000:0.558 
1.000: 0.575 

0.082 
0.080 
0.056 

 
Figure 9 and Table 6 show the results for the simulated bimodal PSD containing 500:600 

nm spheres with a 1:0.921 peak height ratio (sample CS). The PSDs recovered are shown in 
Fig. 9. In the single angle analysis, there was no significant deference between the recovered 
PSD with the W1 and W2 method. Obviously the recovered PSDs from these two methods 
are more close to true PSD than the recovery with W0 method. As increase of the scattering 
angles, the W2 method could give better recovered PSD, not only than W0 method, but also 
than W1 method. 

The most accurate peak positions were obtained using 3-angle analysis and the W2 
method where the relative peak position errors were 0.00 and 0.008 for the 500 nm and 600 
nm peaks respectively, and the recovered peak height ratio was 1:0.609, close to the true 
value 1:0.921. 

7. Experimental section 

Real experimental data corresponding to three bimodal samples (AE, BE, CE) were used to 
evaluate the proposed method. Samples AE and BE were both obtained by mixing 306 nm ± 
8 nm and 974 nm ± 10 nm standard polystyrene latex spheres (Polyscience Inc.), all of which 
were diluted into the distilled and deionized water. For sample AE, the number concentrations 
of the small and large particles were 98.95% and 1.05% respectively (which correspond to 
50% in weight for each mode). For sample BE, the number concentrations of the small and 
large particles were 97.90% and 2.10% respectively (which correspond to 34% and 66% in 
weight for each mode). Sample CE was obtained by mixing 300 nm ± 3 nm and 502 nm ± 4 
nm standard polystyrene latex spheres (Duke Scientific) in 1mM NaCl in a number ratio of 
5:1, based on the manufacturer’s nominal concentration. For all bimodal samples, the 
regulated sample temperature was 298.15 K, and the dispersion medium refractive index (nm) 
was 1.33. 
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MDLS measurements were made with a general purpose laser light scattering photometer 
(Brookhaven Instruments, Inc.), fitted with a 20 mW vertically polarized He–Ne laser (λ0 = 
632.8 nm), a photomultiplier tube as a detector, a stepper-motor controlled goniometer 
(model BI-200SM, Brookhaven Instruments Inc.), and a digital correlator (Brookhaven 
Instruments Inc. model BI-2000 AT for sample AE and BE, model BI-2030AT for sample 
CE). The intensity ACF data, from sample AE and BE, were recorded at twelve detection 
angles (R = 12): [30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110°, 120°, 130° and 140°]. For 
sample CE, the MDLS was carried out in the detection angle range 30° to 120° at intervals of 
10°. The angular alignment of the goniometer was checked prior to all measurements. Total 
measurement times ranged from 200 s to 500 s and a single-mode fiber-optic probe was used 
to collect the scattered light, which can ensure high-coherence ACF data [35]. 

As for the simulated bimodal PSDs, the experimental sample PSDs were recovered by M-
angle DLS (M = 1, 3, 6) analysis with different constrained regularization methods (W0, W1 
and W2 method). The SDLS data was obtained at 90° scattering angle; 3-angle DLS data was 
detected at 70°, 90° and 110°; 6-angle DLS was obtained at 30°, 50°, 70°, 90°, 110°, 130° for 
sample AE and BE, as well as 30°, 50°, 70°, 90°, 110°, 120° for sample CE. The value of kr 
was calculated with the iterative recursion estimation method [36]. Figures 10-12 show the 
recovered PSDs, and the value of the different performance indices are shown in the Tables 7-
9. 

For the experimental bimodal PSD containing 306:974 nm spheres with a 1:1 peak height 
ratio (sample AE), the recovered PSDs are shown in Fig. 10. The different performance 
indices of the true and recovered PSDs are shown in Table 7. With these values, we can 
compare the recovery results obtained by different analysis methods. 

For the 360 nm and 974 nm peaks, each of the MDLS analyses successfully obtained a 
good estimation of the PSD with the 6-angle DLS solution being more reliable, especially for 
the W2 method. Furthermore, the height ratio of the peaks recovered with the W2 method is 
much closer to the true ratio than with either the W0 or W1 methods. Also the peak positions 
were more accurate, with relative errors of 0.003 and 0.006 for the 360 nm and 974 nm peaks 
respectively, when we used 3-angle DLS and the W2 method. The recovered peak height ratio 
in this case was 1:1.06, very close to the true value of 1:1. 

For the bimodal PSD containing 306:974 nm spheres with a 1:2 peak height ratio (sample 
BE), the recovered PSDs are shown in Fig. 11. The different performance indices are shown 
in Table 8. 

In all cases, a bimodal PSD is extracted but they are all quite different. The recovered 
peak positions with the W2 method are much closer to the true positions than obtained with 
the W0 and W1 methods. The PSDs recovered from single-angle analysis resolve the large 
size peak poorly. In Fig. 11(b) (3-angle MDLS) the recovered PSDs are also poor, but the 
recovered peak height ratio is much closer to the true value than with SDLS. We can see also 
that a small, spurious 500 nm peak in the PSD is recovered by the W0 and W1 methods for 3-
angle MDLS. Furthermore, 3-angle and 6-angle analysis respectively obtained a closer 
recovered peak height ratio and a small relative error of peak position, when using the W2 
method. 

The PSDs, shown in Fig. 12, are the recovery results of the bimodal PSD containing 
300:502 nm spheres with a 5:1 peak height ratio (sample CE). The performance indices are 
shown in Table 9. Clearly, bimodal PSDs are obtained in all cases, but they are all quite 
different. The recovered peak positions and peak height ratios with the W2 method are all 
much closer to the true value than obtained with the W0 and W1 methods, especially in the 
MDLS measurement. The results suggest that the 6-angle DLS solution with the W2 method 
is more reliable, with smaller relative errors of 0.000 and 0.016 for the 300 nm and 502 nm 
peaks respectively and a closer peak height ratio of 4.914:1 to the true value of 5:1. 
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Fig. 10. Estimated particle size distribution for Sample AE, a 306 nm and 974 nm bimodal 
latex sphere sample mixed in the ratio 1:1, using different constrained regularization methods 
(W0, W1 and W2) in single-angle DLS (a), three-angle DLS (b) and six-angle DLS (c). 

 

Fig. 11. Estimated particle size distribution for Sample BE, a 306 nm and 974 nm bimodal 
latex sphere sample mixed in the ratio 1:2, using different constrained regularization methods 
(W0, W1 and W2) in single-angle DLS (a), three-angle DLS (b) and six-angle DLS (c) 

 

Fig. 12. Estimated particle size distribution for Sample CE, a 300 nm and 502 nm bimodal 
latex sphere sample mixed in the ratio 5:1, using different constrained regularization methods 
(W0, W1 and W2) in single-angle DLS (a), three-angle DLS (b) and six-angle DLS (c) 
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Table 7. Performance indices (PP, EPP, and RPH) of the true and recovered PSDs for 
Sample AE 

True PSD 
PP /nm EPP RPH 

306/974 0.000/0.000 1.000:1.000 

R
ec

ov
er

ed
 P

S
D

s 
1-angle 

DLS 

W0 
W1 
W2 

163/1024 
257/935 
335/811 

0.467/0.051 
0.160/0.040 
0.095/0.167 

1.000:0.555 
1.000:0.343 
1.000:0.671 

3-angle 
DLS 

W0 
W1 
W2 

255/943/1000 
311/989 
305/980 

0.167/0.032/0.027 
0.016/0.015 
0.003/0.006 

1.000:1.426:1.308 
1.000:1.641 
1.000:1.060 

6-angle 
DLS 

W0 
W1 
W2 

305/877 
310/892 
306/881 

0.003/0.099 
0.013/0.084 
0.000/0.096 

1.000:1.101 
1.000:0.754 
1.000:1.048 

Table 8. Performance indices (PP, EPP, and RPH) of the true and recovered PSDs for 
Sample BE 

True PSD 
PP /nm 
306/974 

EPP 
0.000/0.000 

RPH 
1.000:2.000 

R
ec

ov
er

ed
 P

S
D

s 

1-angle 
DLS 

W0 
W1 
W2 

187/989 
243/920 
289/954 

0.389/0.015 
0.206/0.055 
0.056/0.021 

1.000:0.384 
1.000:0.200 
1.000:0.420 

3-angle 
DLS 

W0 
W1 
W2 

280/950 
454/761 
270/617 

0.085/0.025 
0.484/0.219 
0.118/0.367 

1.000:1.758 
1.000:1.676 
1.000:2.285 

6-angle 
DLS 

W0 
W1 
W2 

235/1012 
310/983 
305/978 

0.232/0.039 
0.013/0.009 
0.003/0.004 

1.000:0.838 
1.000:1.065 
1.000:1.641 

Table 9. Performance indices (PP, EPP, and RPH) of the true and recovered PSDs for 
Sample CE 

True PSD 
PP /nm 
300/502 

EPP 
0.000/0.000 

RPH 
5.000:1.000 

R
ec

ov
er

ed
 P

S
D

s 

1-angle 
DLS 

W0 
W1 
W2 

370/660 
370/630 
360/620 

0.233/0.315 
0.233/0.255 
0.200/0.235 

1.346:1.000 
2.289:1.000 
3.251:1.000 

3-angle 
DLS 

W0 
W1 
W2 

260/490 
280/520 
290/510 

0.133/0.024 
0.067/0.036 
0.033/0.016 

1.678:1.000 
1.661:1.000 
2.113:1.000 

6-angle 
DLS 

W0 
W1 
W2 

280/500 
290/520 
300/510 

0.067/0.004 
0.033/0.036 
0.000/0.016 

2.953:1.000 
3.726:1.000 
4.914:1.000 

8. Conclusions 

Under some conditions, particularly with bimodal samples, the resolution of the DLS particle 
sizing measurement is limited by the noise mixed in the ACF data and the inherently lower 
information content of the data, as well as low PSD information utilization during the 
inversion process. Generally, the effect of noise can be reduced by optimizing the DLS 
measurement system and more robust PSD information can be provided by MDLS. A method 
to effectively extract and make the best use of the PSD information hiding in the noisy data is 
critical for PSD recovering methods. 

MDLS can provide more PSD information than SDLS and, hence improve the 
measurement of bimodal PSDs. However, this improvement is restricted by the data inversion 
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routine. Incorporating weighting by the noise distribution, the WCR method can enhance the 
ability to restrain the noise in ACF data and further improve the measurement. However, the 
improvement is still limited by the scarce utilization of PSD information during the inversion 
process. 

This paper shows that there are distinct and significant advantages for recovering bimodal 
PSDs with IWCR data analysis combined with MDLS. The IWCR method can enhance 
utilization of the PSD information in the ACF data, and effectively weaken the noise in the 
ACF data at large delay time. Consequently, the IWCR method can provide considerably 
more accurate PSDs than other common CR methods, and is more able to resolve closely 
spaced components. By using this method, an accurate PSD recovery is possible for a peak 
position ratio of 1.2:1, containing large particles (≥ 350nm). 
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