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Algal Research, 
 

 

 
Dear editor of Algal Research, Dear Prof. Olivares, 
 
Please find enclosed our manuscript entitled “Transcriptome analysis reveals the 

genetic foundation for the dynamics of starch and lipid production in 

Neochloris oleoabundans” by Sturme et al. This is an original research article that 

we would like to submit to Algal Research. The submitted manuscript version is 

approved by all authors, and the authors declare no conflict of interests. Furthermore, 

we confirm that this manuscript was not submitted for publication elsewhere. 

 

Neochloris oleoabundans can accumulate both starch and lipids to high levels under 

stress, and understanding the genetic mechanisms that govern the accumulation of 

storage compounds are important to steer biosynthesis to starch or lipids only. The 

manuscript by Sturme et al. highlights the analysis of the dynamics of starch and lipid 

accumulation and the corresponding transcriptional changes during nitrogen starvation 

in the microalgae N. oleoabundans. 

Our data show that starch and lipid accumulation upon nitrogen starvation follow 

different dynamics: starch accumulates rapid and transiently, while lipids accumulate 

gradually. Accumulated lipids were mainly composed of de novo synthesized 

triacylglycerides (TAG) and characterized by a decreased composition of 

polyunsaturated fatty acids (PUFAs) and an increased composition of mono-

unsaturated (MUFAs) and saturated (SFAs) fatty acids. Transcriptome analysis 

revealed different expression dynamics for starch biosynthesis and degradation genes 

from those of lipid biosynthesis. Starch synthetic transcripts showed an immediate 

rapid increase, followed by an increase in starch degrading transcripts and a decrease 

in starch synthetic ones. In contrast, gene expression for fatty acid and TAG synthesis 

increased later in starvation and occurred more gradually. Expression of fatty acid 

desaturase genes decreased upon starvation, corroborating the observed changes to 

higher MUFAs and SFAs levels. Moreover, several homologs of transcription regulators 

implicated in controlling starch and lipid metabolism in other microalgae showed 

differential gene expression and might play this role in N. oleoabundans as well.  

 

This manuscript provides new insights into the genetic basis of starch and lipid 

metabolism in this industrially important microalga, which should facilitate metabolic 

engineering towards strains with desired storage compound composition. We therefore 

consider it to be of interest to be submitted for publication in Algal Research and are 

looking forward to your reply. 

 

With kind regards, 

 
Dr. Mark H.J. Sturme 
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 Starch accumulates transiently in nitrogen-starved Neochloris oleoabundans

 Lipids accumulate gradually in nitrogen-starved Neochloris oleoabundans

 Accumulated lipids are mostly composed of de novo synthesized triacylglycerides 

 Triacylglycerides show increased mono-unsaturated and saturated fatty acid content

 Transcriptome reveals genetic mechanisms of storage compound accumulation dynamics
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Abstract

The oleaginous microalga Neochloris oleoabundans accumulates both starch and lipids to high 

levels under stress conditions such as nitrogen starvation (N-). To steer biosynthesis towards 

starch or lipids only, it is important to understand the regulatory mechanisms involved. Here 

physiological and transcriptional changes under nitrogen starvation were analysed in controlled 

flat-panel photobioreactors at both short and long time-scales. Starch accumulation was 

transient and occurred rapidly within 24 hrs upon starvation, while lipid accumulation was 

gradual and reached a maximum after 4 days. The major fraction of accumulated lipids was 

composed of de novo synthesized neutral lipids - triacylglycerides (TAG) - and was 

characterized by a decreased composition of the polyunsaturated fatty acids (PUFAs) C18:3 

and C16:3 and an increased composition of the mono-unsaturated (MUFAs) and saturated 

(SFAs) fatty acids C18:1/C16:1 and C18:0/C16:0, respectively. RNA-sequencing revealed that 

starch biosynthesis and degradation genes show different expression dynamics from lipid 

biosynthesis ones. An immediate rapid increase in starch synthetic transcripts was followed by 

an increase in starch degrading transcripts and a decrease in the starch synthetic ones. In 

contrast, increased gene expression for fatty acid and TAG synthesis was initiated later and 

occurred more gradually. Expression of several fatty acid desaturase (FAD) genes was 

decreased upon starvation, which corresponds to the observed changes to higher levels of 

MUFAs and SFAs. Moreover, several homologs of transcription regulators that were implicated 

in controlling starch and lipid metabolism in other microalgae showed differential gene 

expression and might be key regulators of starch and lipid metabolism in N. oleoabundans as 

well. Our data provide insights into the genetic foundation of starch and lipid metabolism in N. 

oleoabundans under nitrogen starvation and should facilitate metabolic engineering towards 

tailored strains with desired storage compound composition. 
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1. Introduction

With a growing world population and declining natural oil and gas reserves, the global demand 

for sustainable and renewable resources becomes ever more relevant. In this respect, microalgae 

are a promising source for sustainable production of food additives, chemical building blocks 

and cosmetic ingredients. Microalgae can accumulate high levels of storage compounds such 

as carbohydrates, lipids and pigments under stress conditions and can serve as a renewable 

source of proteins. They can be cultivated on marginal lands and in (semi-)arid regions and 

many do not require freshwater for their growth. Thereby they do not compete with agricultural 

crop production or affect drinking water supply. Moreover, they are a particularly good 

substitute for vegetable oils since the negative environmental impact of e.g. palm, the main oil 

source currently used in food applications, can potentially be mitigated [1–3]. Nevertheless, the 

market for most microalgae-derived products currently is not economically competitive with 

those derived from existing plant-based and petrochemical resources. To overcome this gap, 

microalgal strain development in combination with improved biorefineries is required [4,5]. 

Many studies for microalgal strain development have focused on metabolic engineering by the 

introduction or mutagenesis of single target genes involved in lipid, starch or pigment 

biosynthesis [6,7] and less on engineering of multiple genes or complete pathways [8]. The 

selected gene targets for metabolic engineering have been identified by transcriptomics or were 

based on detailed biochemical and genetic information from other microalgal or plant models. 

Most of these studies focused on microalgae that accumulate only lipids or starch under stress 

conditions such as nitrogen or phosphorus starvation, while only a few have focused on 

transcriptomics and metabolic engineering of so-called “hybrid” producers: oleaginous 

microalgae that are capable of simultaneous accumulation of starch and neutral lipids such as 

triacylglycerides (TAG). The oleaginous microalgae Neochloris oleoabundans and 

Acutodesmus obliquus and several Chlorella species are known hybrid producers of industrial 
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relevance that accumulate high levels of both starch and lipids under nitrogen starvation [9–

11]. For industrial applications, it would be preferred that in such hybrid producers carbon-

partitioning could be altered to produce mainly TAG or starch and to genetically control the 

switch between starch and lipid metabolism. The genetic foundation for this dual accumulation 

strategy however is unknown in most of these microalgae, due to a lack of well-annotated 

genome sequences and a limited number of transcriptome studies. It is also plausible that the 

regulatory mechanisms for storage compound accumulation in hybrid producers are more 

complex than in microalgae mainly accumulating a single storage compound. N. oleoabundans 

is a hybrid producer with several properties that make it a very suitable candidate for industrial 

production. It can accumulate up to 56% of its cell dry weight as lipids under nitrogen 

starvation, mainly in the form of TAG, and while isolated as a freshwater strain it can also grow 

and accumulate storage compounds under saline conditions and high pH as well [12–15]. 

Furthermore, continuous TAG production in continuously growing cells has been reported [16]. 

However, the genomic foundation for these favourable industrial traits of N. oleoabundans 

currently is not yet established. The few studies that addressed the transcriptional changes upon 

nitrogen starvation in this species, have analysed either a single timepoint at an early-stage (<24 

hrs) [15] or a late-stage (11 days) during batch N-starvation [17] or investigated transcriptomes 

during nitrogen limitation under turbidostat cultivation [18]. For a full understanding of the 

cellular and transcriptional changes upon N-starvation it is necessary to track the temporal 

dynamics of metabolite concentrations, physiological parameters and transcript abundances 

over both a short and long timespan, to identify key regulatory genes controlling metabolic 

switch-points. Some recent studies in e.g. Chlamydomonas rheinhardtii, Chlorella spp., 

Nannochloropsis spp. and Monoraphidium neglectum have performed this correlation analysis 

of storage compound accumulation and transcriptome patterns, which indicated possible 

transcription factors and metabolic nodes that are involved in or even control the “switch” 
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between starch and lipid metabolism [20–25]. In addition, integration of transcriptomics with 

genome-scale metabolic models could aid in pinpointing the critical metabolic nodes that 

should be targeted in metabolic engineering.

In this study, we therefore set out to perform an in-depth analysis of the temporal dynamics of 

storage compound accumulation and transcriptome changes during nitrogen starvation in N. 

oleoabundans, with the aim to identify the metabolic genes and transcriptional factors that are 

involved in the switch between starch and lipid metabolism in this microalga. Our results 

revealed the differences in temporal dynamics of gene expression for the starch and lipid 

pathways upon nitrogen starvation, and identified transcriptional regulators that might be 

involved. These insights are valuable for rational metabolic engineering in this important 

industrial microalga.

2. Materials & Methods

2.1 Culture conditions and nitrogen starvation experiment

Neochloris oleoabundans UTEX 1185 (culture collection of Algae, University of Texas, 

Austin) was grown in Bold’s Basal Medium (BBM) at pH 7.5 and 25ºC, with 25.2 mM KNO3 

(N-replete conditions) or without nitrate (N-starvation). Experiments were performed in 1.7L 

flat panel air-lift photobioreactors (Labfors 5 Lux, Infors HT, Switzerland) at pH 7.5 and 25ºC, 

and sparged with 2% CO2 at an air flow of 1.2 L min-1 and photon flux density (PFD) of 800 

µmol s-1 m-2 at a 12:12 day:night cycle. A nitrogen-replete batch pre-culture of N. oleoabundans 

(250 mL) was used to inoculate the photobioreactors, and microalgae were further batch 

cultivated until a biomass concentration of 2 g cell dry weight (CDW)/L was reached. 

Subsequently, fed-batch nitrogen-replete cultivation (N+) was continued for several days until 

a stable biomass concentration was maintained. For the nitrogen starvation experiment biomass 

from the nitrogen-replete fed-batch culture was collected, spun down, rinsed and resuspended 
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in nitrogen-free BBM medium. The reactors were rinsed with distilled water, filled with 

nitrogen-free BBM medium and inoculated with the same volume of the collected microalgae. 

During the nitrogen-depleted phase (N-), the reactors were run in fed-batch mode. Medium was 

fed at 800 mL/d to compensate for the volume-loss due to sampling. Samples for analysis of 

biomass and cell parameters from the nitrogen-replete fed-batch phase (N+) were collected at 

four timepoints in the light-phase preceding nitrogen starvation (-25, -23, -19 and -15 hrs; Fig. 

1). Samples for biomass, cell parameter and molecular analysis from the onset of nitrogen 

starvation (N-) were collected at time-points at the start, middle and end of each light-phase and 

at the end of each dark-phase over a 4-day period (0, 2, 6, 10, 23, 29, 33, 46, 53, 71, 77 and 99 

hrs; Fig. 1). Samples were centrifuged, and cell pellets snap frozen in liquid nitrogen and stored 

at -80ºC. The experiments were performed as three biological replicates.

2.2 Biomass analysis

2.2.1 Cell dry weight, cell count and cell parameters

Cell dry weight (CDW) concentrations were determined as described by Kliphuis et al. [26], by 

filtering culture broth (around 10 mg of biomass ) through pre-dried (100°C overnight) and pre-

weight Whatman glass fibre filter paper (GF/F; Whatman International Ltd, Maidstone, UK). 

The filter was washed with filtered demineralized water and subsequently dried overnight at 

100°C before weighing. Cell numbers were determined using a Multisizer™ 3 Coulter 

Counter® (Beckman Coulter). Quantum yield (QY) was determined using an Aquapen-C 

(Photon Systems Instruments, Czech Republic) and pigment content measured by 

spectrophotometric absorbance at 480, 680, and 750 nm.

2.2.2 Total fatty acids

Extraction and quantification of total fatty acids (TFA) were adapted from Breuer et al. [27]. 

Around 20 mg of pellet was transferred to bead beating tubes (Lysing Matrix E; MP 
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Biomedicals, Santa Ana, CA, USA) and lyophilized overnight. Freeze-dried cells were 

disrupted by a bead beating step in a Precellys® 24 bead beater (Bertin Technologies) for 2x 

(3x60sec with 120sec pause in between at 2500rpm), followed by 1x (2x60sec with 120 seconds 

pause in between at 2500 rpm) in the presence of a chloroform:methanol mixture (1:1.25) to 

extract the lipids from the biomass. The internal standards C15:0 (tripentadecanoin - T4257; 

Sigma-Aldrich, St Louis, MO, USA) and C19:0 (trinonadecanoin - T4632; Sigma-Aldrich, St 

Louis, MO, USA) were added to the extraction mixture to enable fatty acid quantification. 

Methylation of the fatty acids to fatty acid methyl esters (FAMEs) and the quantification of the 

FAMEs by GC/MS analysis were performed as described by Breuer et al. [27]. TFA 

concentration was calculated as the sum of triacylglycerides (TAG) and polar lipids (PL).

2.2.3 Triacylglycerides and polar lipids

Quantification of TAG was similar to the TFA analysis method with some modifications. After 

TFA extraction, the chloroform-methanol mixture was evaporated under N2 gas and the TFA 

fraction dissolved in 1 mL hexane and separated based on polarity using a Sep-Pak Vac silica 

cartridge (6 cc, 1,000 mg; Waters, Milford, MA, USA) equilibrated with hexane. The neutral 

TAG fraction was eluted with 5 column volumes (10 mL) of hexane-diethyl ether (7:1 v/v). 

Subsequently the polar lipid fraction containing glycolipids and phospholipids was eluted from 

the silica cartridge with 5 column volumes (10mL) of methanol:acetone:hexane (2:2:1 v/v/v). 

All solvents were then evaporated from the fractions under N2 gas. TAG and PL fractions were 

then methylated and analysed as described in the TFA analysis section. 

2.2.4 Total carbohydrates

Total carbohydrates were extracted and analysed by a colorimetric assay according to DuBois 

et al. (1956). A biomass dry-weight of ∼20 mg was hydrolysed in 5 mL 2.5 M HCl in a heat 

block at 100°C for 3 h. Samples were neutralized using 5 mL of 2.5 M NaOH. Then 0.5 mL of 

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

http://www.sciencedirect.com/science/article/pii/S0960852415016429#b0055
http://www.sciencedirect.com/science/article/pii/S0960852415016429#b0055


8

5% w/w phenol and 2.5 mL of concentrated sulfuric acid was added to 0.5 mL of hydrolysed 

sample. The samples were incubated at 35°C for 30 min before reading of the absorbance at 

485 nm against a blank of 0.5 mL 5% w/w phenol, 2.5 mL concentrated sulfuric acid and 0.5 

mL of deionized water. Glucose was used as a standard. 

2.2.5 Starch 

Starch content was analysed by enzymatic degradation of starch to glucose using the 

thermostable α-amylase and amyloglucosidase enzymes from the Total Starch Assay 

Kit (AA/AMG) (Megazyme International, Ireland) using the protocol described by de Winter 

et al. [28]. Around 10 mg of freeze-dried cells were disrupted by bead beating in bead beating 

tubes (Lysing Matrix E; MP Biomedicals) in the presence of 80% ethanol. Starch was then 

converted to glucose using the α-amylase and amyloglucosidase enzymes from the kit. 

Subsequently glucose was coloured, and absorbance was measured against a D-glucose 

calibration control series at a wavelength of 510 nm.

2.2.6 Protein

Protein concentration was determined on 5 and 10 mg of freeze-dried cells using the Lowry DC 

protein assay (BioRad).

2.2.7 Biomass productivity/production rates

Biomass productivity, , was computed according to equation (1). In equation 1,  is the xr x

biomass concentration changes in the PBR during the period ;  is the averaged biomass t x

concentration (considering the initial and final biomass concentration of each period);  is the AQ

media flow rate,  is the reactor volume; and,  is the actual biomass productivity. RV xr
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Equation (1) A A
x x

R R

Q Qdx xx r x r
dt V t V


    



The productivities of each metabolite were calculated from equation (1), considering their 

intracellular concentrations.

2.3 RNA isolation, RNA-Seq library preparation and sequencing

Total RNA was extracted from microalgal cells (~100-200 mg wet weight) by cell disruption 

by bead-beating in bead-beater tubes (Lysing Matrix E; MP Biomedicals, Santa Ana, CA, USA) 

for 1x10 sec at 5500 rpm in a Precellys® 24 bead beater (Bertin Technologies), in the presence 

of RLT buffer with β-mercaptoethanol (Qiagen). Subsequently, tubes were placed on ice and 

spun down for 2 min at 13.000 x g. RNA was further cleaned using the RNeasy Plant Mini Kit 

(Qiagen). In short, supernatant was transferred to a Qiashredder column, and columns 

centrifuged for 2 min at 13.000 x g. Supernatant was transferred to a 2 mL Eppendorf vial, 0.5V 

of 96% ethanol was added and mixed.  The mixture was then processed on Qiagen RNeasy 

columns, including on-column DNaseI treatment, according to the manufacturers’ instructions. 

Further preparation of RNA and RNA sequencing was performed by BaseClear (Leiden, The 

Netherlands). 

RNA quality control and quantification were performed using a BioAnalyzer and an Illumina 

TruSeq strand-specific mRNA library was prepared (average mRNA library size of 345 bp) for 

the construction of the reference transcriptome using 125 bp paired-end sequencing (PE 125) 

from a pool of all RNA samples (N-replete and N-deplete). Individual sample libraries were 

prepared by 50 bp single-end read sequencing (SR 50). Paired-end and single-end sequencing 

reads were generated using the Illumina HiSeq2500 instrument. FASTQ sequencing files were 

generated using the Illumina CASAVA software and internally quality filtered based on 

Illumina’s chastity filtering procedure, then PF reads (raw reads) were used for further analysis. 
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Time series data discussed in this publication have been deposited in NCBI's Gene Expression 

Omnibus [29] and are accessible through GEO Series accession number GSE104807 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104807).

2.4 De-novo transcriptome assembly and functional annotation

RNA-seq raw reads were quality controlled using FASTQC v.0.11.3 and Trimmomatic [30] 

(automatically invoked by Trinity software [31]). The reference transcriptome was assembled 

with Trinity v.2.0.6 using the following parameters: --seqType fq --SS_lib_type FR --

trimmomatic --quality_trimming_params SLIDINGWINDOW:20:25 MINLEN:80 and have 

been deposited at DDBJ/EMBL/GenBank under the accession GFXW00000000.

Trinotate v.2.0.2 (https://trinotate.github.io) was used for transcriptome annotation. 

Transcripts and their predicted ORFs were queried with BLASTx and BLASTp against both 

the SwissProt [32] and UniRef90 [33] databases  and only the top-scoring hit was retained. 

HMMER [34] was used to search for conserved protein domains in predicted ORFs against the 

pfam-A database [35]. BLAST homologs and Pfam domain entries were loaded into the pre-

formatted Trinotate SQLite database which contained UniProt-associated annotation 

information. The subcellular localizations of each protein were predicted using a standalone 

version of TargetP v1.1 [36] in plant mode and without cut-offs (winner takes it all).

2.5 Transcript abundance and differential expression analysis

Scripts bundled with Trinity software were mainly adopted to quantify the transcripts and find 

the differentially expressed subset. Transcript-level rather than unigene-level expression was 

investigated to retain isoform-specific information. Reads from individual libraries were 

aligned to the reference transcriptome with bowtie v.1.1.2 [37] and quantified using RSEM 

v.1.2.19 [38]. A table of TMM-normalized FPKM expression matrix and a separate table of 
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raw fragment counts were generated for further analysis and visualization. Differentially 

expressed (DE) transcripts were identified from raw counts with the Bioconductor package 

EdgeR v.3.1 [39]. Three biological replicates for each condition were provided. The most 

significant differentially expressed transcripts (FDR<0.001 and FC>4) were extracted for 

further analysis. A hierarchically clustered heatmap was generated from the Pearson correlation 

matrix of pairwise sample comparisons based on the most significant DE subset. The most 

significant DE subset was also partitioned into expression clusters by cutting hierarchical 

clustering trees of transcripts using MeV v.4.9.0 (https://sourceforge.net/projects/mev-tm4/).

2.6 Gene ontology analysis

GO terms were extracted from transcriptome annotation using scripts from Trinotate and 

visualized using BGI’s WEGO [40]. GO functional enrichment tests on differentially expressed 

transcripts were performed with scripts from Trinity v2.4.0 that wrapped the Bioconductor 

package GOseq [41]. Blast2GO v.4.0.7 [42] was used to map GO terms to plant GO Slim [43] 

terms in order to obtain a broad overview of the transcriptome. For each time point, enriched 

GO terms were visualized using GOplot v1.0.2 [44]. Most significant over- and under-

represented GO terms (top 10 for each time point, then combined) were extracted using custom 

scripts and visualized using the GOplot package (http://wencke.github.io/). 

2.7 KEGG pathway analysis

A standalone version of KOBAS 2.1.0 [45] was used to functional annotate the transcriptome 

with KO terms, the corresponding pathways and enzymes were extracted from information 

retrieved using KEGG API. The TMM-normalized FPKM expression matrix was filtered by 

removing low expressed transcripts (average expression value below 1) and transcripts without 

proper KO terms, then used as input for Pathview ([46]; online version) to visualize significant 
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pathways (internally use GAGE [47] for pathway enrichment analysis) and some manually 

selected pathways. Pathways with q-values smaller than 0.05 were combined and shown as 

heatmaps.

3. Results

N. oleoabundans was grown in fed-batch mode in controlled flat-panel photobioreactors and 

subjected to full nitrogen-starvation during a 4-day period. Before and during this starvation 

period, culture parameters were monitored and physiological and transcriptional changes in 

culture samples measured to determine the temporal dynamics of the nitrogen-stress response. 

For the fed-batch pre-cultures grown in nitrogen-replete conditions (+N) samples were taken at 

four timepoints in the light-phase preceding nitrogen starvation, while from the onset of 

nitrogen starvation (-N), time-series samples were taken at the start, middle and end of the light-

phase and at the end of the dark-phase over a 4-day period (Fig. 1).

Fig. 1. Experimental design for analysis of the temporal dynamics of cellular content, storage compound 

accumulation and transcriptional response in nitrogen-replete (N+) and nitrogen-starvation (N-) 

conditions in N. oleoabundans. Nitrogen starvation was initiated at t=0 hrs. N. oleoabundans was 
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cultivated in triplicate in flat-panel air-lift photobioreactors at a photon flux density (PFD) of 800 µmol 

m-2 s-1 and a 12:12 day-night cycle. Alternating 12 hrs light phases (white background) and 12 hrs dark 

phases (grey background) are indicated. Individual sampling time points for biomass analysis (open 

circles) and RNA-seq analysis (open diamonds) are depicted, and were taken in the light phase (marker 

at top of light phase) or in the dark phase (marker at bottom of dark phase).

3.1 Biomass dynamics under nitrogen starvation

Upon nitrogen starvation, N. oleoabundans could sustain an increase in biomass concentration 

(cell dry weight) during the light phase in the first two days (Fig. 2A). Overall, the biomass 

concentration gradually decreased, which coincided with a decreased biomass productivity over 

time (Fig. 2D). The protein content and quantum yield (QY) also showed a steady decline 

throughout the starvation period (Fig. 2D and Supplementary Fig. A.1). 

Nitrogen starvation induced the fast accumulation of carbohydrates, increasing from 15% at the 

start to a maximum content of 33% of the cell dry weight after 10 hrs starvation. Within the 

same time frame and with the same accumulation pattern, starch content increased from 8% at 

the start to a maximum content of 28% of the cell dry weight (Fig. 2B). This indicated that the 

increase in total carbohydrates was mainly due to starch accumulation. The starch content 

subsequently decreased again to N-replete levels of 18% in the light phase at day 4. During the 

dark phases starch was consumed and decreased to 15% content then. In contrast, accumulation 

of total fatty acids (TFA) was more gradual from a content of 16% at the start to a maximum 

of 41% after 4 days. A decrease of fatty acids in the dark phases, indicating fatty acid 

consumption, was not observed. The increase in lipid content was mainly due to TAG 

accumulation, which increased from a content of 0.4% to 30% after 4 days, while the polar lipid 

(PL) content was stable around 10-13% (Fig. 2C). This indicates that TAG biosynthesis 

occurred mainly de novo, although some interconversion from starch to TAG or from 

membrane lipids to TAG cannot be excluded.
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Fig. 2. Dynamics of cellular content in N. oleoabundans grown in N-replete (+N) and N-starvation (-N) 

conditions in air-lift flat-panel photobioreactor. (A) Biomass concentration [CDW g/L] and protein 

content [g/gCDW]. (B) Total carbohydrates (TCH) and starch content (% of CDW). (C) Total fatty acids 

(TFA), triacylglycerides (TAG) and polar lipids (PL) content (% of CDW). (D) Productivities of 

biomass (rCDW), total carbohydrates (rTCH), starch (rStarch), total fatty acids (rTFA) and 

triacylglycerides (rTAG). Results are shown as mean values ± standard deviations (n=3). The onset of 

N-starvation is at t=0 hrs. The 12:12 day-night cycles used for cultivation are shown as alternating 12 

hrs light phases (white background) and 12 hrs dark phases (grey background).

Concomitant with the accumulation of storage compounds the fatty acid composition of the 

different lipid fractions also changed during nitrogen starvation. A clear change from 

polyunsaturated fatty acids (PUFAs) towards mono-unsaturated and saturated fatty acids was 
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observed in all fractions (Fig. 3). Under N-replete conditions a large part of all lipid fractions 

was composed of C18:3 and C16:3 fatty acids (approximately 30% and 15%, respectively). 

These species decreased during N-starvation (to 5% and 2.5%, respectively), while there was 

an increase in the (mono-)unsaturated fatty acids C18:1, C16:2 and C16:1 and the saturated 

fatty acid C18:0 respectively. The biggest change was observed for C18:1 that increased from 

5% to almost 40% in the lipid fraction.

Production rates for total carbohydrates (TCH) and starch showed an identical rapid increase 

during the first day of N-starvation. This indicates that increased TCH levels in the first day can 

mainly be ascribed to starch production. Subsequently, both TCH and starch production rates 

decreased to levels below those for N-replete growth, although more severe for TCH. This 

means that production rates of carbohydrates other than starch were reduced much stronger. In 

the lipid fraction TAG productivity increased slowly in the first 2 days following N-starvation, 

and then decreased again to N-replete rates. The total lipid productivity remained stable on the 

first day of N-starvation and then started to decrease (Fig. 2D).
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Fig. 3. Fatty acid composition of (A) total fatty acids, (B) TAG and (C) polar lipids fractions of N. 

oleoabundans grown in N-replete (N+) and N-starvation (N-) conditions in air-lift flat-panel 

photobioreactors. Mean values (n=3) are shown. Onset of N-starvation is at t=0 hrs.
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3.2 Differential gene expression dynamics under nitrogen starvation

A total of 25.6 million high-quality RNA-seq clean reads were de novo assembled into 61,010 

transcripts belonging to 42,338 ‘genes’ with a N50 length of 1,838 bp and average GC content 

of 58.9% (Table 1). Functional annotation of the transcriptome was carried out with the 

Trinotate pipeline, and 44,789 transcripts (73.4%) were annotated using UniRef90 database 

(Table 1). The high-quality reference transcriptome served as a solid foundation for subsequent 

gene expression analysis.

Table 1. Summary of de novo transcriptome assembly and annotation for N. oleoabundans.

Features Results
Raw reads 27.19 MReads Clean reads 25.58 M
Number of transcripts 61,010
Transcriptome size (Mbp) 70.8
Mean (bp) 1,161
Median (bp) 800
N50 length (bp) 1,838

Assembly

GC (%) 58.9
Swiss-Prot 27,765 (45.5%)
UniRef90 44,789 (73.4%)
GO 21,591 (35.4%)Annotation

KO 15,336 (25.1%)

3.2.1 Global gene expression analysis

Time series experiments were performed (7 time-points, 3 replicates; GEO accession 

GSE104807), reads from each RNA-seq library were individually aligned back to the reference 

transcriptome and the abundance of each transcript was determined. The hierarchical clustering 

of transcripts from samples obtained from triplicate photobioreactors indicated a good 

experimental reproducibility (Supplementary Fig. A.2). Differentially expressed transcripts 

were then determined from raw count values for each time point from the onset of N-starvation. 

A total of 12,975 transcripts were either up-regulated or down-regulated compared to control 
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samples (0h) and the number varied between different time points (2,014~6,589) 

(Supplementary Table 1). 

Hierarchical clustering of expression profiles of each transcript resulted in 23 distinct 

expression clusters (Fig. 4 and Supplementary Table 1). The largest clusters were cluster 21, 

15, 11 and 4, which contained 2938, 1834, 1145 and 1081 differentially expressed gene 

isoforms respectively. Many transcripts related to fatty acid, TAG and starch metabolism 

belong to these clusters. The diverse expression clusters to which the genes from a metabolic 

route belong to, indicates that different genes from these metabolic pathways are most probably 

under the control of different transcriptional regulators and therefore do not follow 

simultaneous activation. Some transcriptional regulators group into these clusters as well and 

might play a regulatory role in the nitrogen-starvation activated response of fatty acid and starch 

biosynthesis genes. These include transcriptional regulators such as the 5'-AMP-activated and 

SNF1-related protein kinases (TR3188|c0_g1 and_g2, and TR24203|c0_g1), a dual specificity 

tyrosine-phosphorylation-regulated kinase (DYRK3: TR935|c0_g2_i1), PHR1-LIKE 1 protein 

(PHL1: TR19823|c0_g1) and a nitrogen regulatory protein P-II homolog (GLNB: TR228|c0_g1 

and TR228|c0_g3). Clusters 1-3, 12, 19 and 20 showed very distinct expression peaks and 

interestingly several transcripts related to reactive oxygen stress grouped to the clusters 12, 19 

and 20. Detailed description of the transcriptional response to nitrogen starvation is discussed 

below.
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Fig. 4. Hierarchical clusters of gene expression profiles during nitrogen starvation. Expression levels 

are shown as median-centered log2(fpkm+1) values for the time series H0-H99 and the number of 

transcript isoforms in each cluster are indicated.
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The GO terms for upregulated transcripts were enriched with terms related to fatty acid and 

lipid metabolism as well as carbohydrate and starch metabolism, as is expected in view of the 

observed biomass changes (Supplementary Fig. 4 and Supplementary Table 2). In addition, GO 

terms for ammonium uptake and incorporation were enriched (direct response to absence of 

nitrogen) as well as GO terms related to reactive oxygen species (ROS) stress, indicating that 

N-starvation might cause the production of ROS. The GO terms for downregulated transcripts 

were enriched with terms related to the chloroplast and photosynthesis, which makes sense in 

view of the breakdown of pigments (cell bleaching) and reduced photosynthetic capacity (e.g. 

quantum yield) due to the lack of nitrogen (Supplementary Fig. A.4 and Supplementary Table 

3). Taken together, GO analysis indicates that most of the transcripts can be grouped into a 

small number of broad yet distinct functional categories that correlate well to the observed 

biomass and physiological changes. GOBubble plots based on plant GO Slim terms 

(Supplementary Fig. A.4) showed that the highest number of increased and decreased GO Slim 

terms was found after 6 to 10 hrs of nitrogen starvation. This indicates that most transcriptional 

changes upon nitrogen starvation occur relatively rapid. The broader GO Slim terms indicated 

that “carbohydrate metabolic process” (GO:0005975) was the only GO Slim term that for all 

time points significantly increased compared to T=0 (negative z-score H0 versus other time 

points). Other GO Slim terms like “catabolic process” (GO:0009056) and “response to stress” 

(GO:0006950) also increased for an extended period. In contrast, the GO Slim terms for 

“photosynthesis” (GO:0015979), “plastid” (GO:0009536) and “thylakoid” (GO:0009579) were 

clearly decreased from 6 to 29 hrs (positive z-score H0 versus other time points), indicating a 

reduction in the photosynthetic capacity. 

KEGG pathway enrichment was performed using GAGE (Supplementary Table 4) and data 

were mapped on KEGG pathways to generate graphs showing detailed temporal changes 

(Supplementary Fig. A.5). The most striking observations from the KEGG pathway enrichment 
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analysis was an up-regulation of the TCA cycle (ko00020), Proteasome (ko03050), Protein 

processing in endoplasmic reticulum (ko04141) and Phagosome (ko04145) pathways, and a 

down-regulation of the Photosynthesis (ko00195) pathway (Supplementary Table 4). This 

indicates increased protein and organelle degradation and correlates with the increased GO Slim 

terms such as “catabolic process” (GO:0009056), “generation of precursor metabolites and 

energy” (GO:0006091) and “protein metabolic process” (GO:0019538), as well as the 

decreased photosynthesis, plastid and thylakoid GO Slim terms mentioned above 

(Supplementary Fig. A.4) and decrease in quantum yield (Supplementary Fig. A.1). 

3.2.2 Transcriptional changes in starch metabolism

The transient and rapid increase in starch productivity and accumulation in the first 10 hrs of 

N-starvation coincided with increased expression of several genes involved in starch 

biosynthesis (Fig. 5 and Supplementary Table 1). In particular, starch biosynthesis genes 

encoding phosphoglucomutase (conversion of glucose-6-phosphate to glucose-1-phosphate) 

showed a strong up-regulation in expression from the onset of N-starvation, while the ADP-

glucose phosphorylase (conversion of glucose-1-phosphate to ADP-glucose) was only up-

regulated from 10 hrs on. Multiple starch synthase genes showed different responses. While the 

soluble starch synthase SSY3 and the granule-bound starch synthases SSG1 and SSG2 showed 

a fast and transient up-regulation from 2 to 6 hrs from the start, the soluble starch synthase 

SSY2 showed a strong transient increase in expression from 6 to 10 hrs. Likewise, the 1,4-

alpha-glucan-branching enzyme (GLGB1) that modifies amylose to starch was only up-

regulated in the first 6 hrs. Among the starch degradation genes, gene expression of the alpha-

glucan water dikinase (GWD1) was increased from 6 hrs on. This enzyme increases the 

phosphorylation-level of starch and thereby stimulates the degradation of starch in higher plants 

and Chlamydomonas [48]. Starch breakdown involves several amylases and we found that 
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multiple genes for -amylase (AMY1 and AMY3), β-amylase (AMYB, AM1, BAM1) and 

isoamylase (ISOA1 and ISOA3) showed fluctuating expression responses. Overall though, they 

exhibited down-regulation at the start of starch accumulation and up-regulation in the later 

stages, from 6 to 10 hrs on. Hexokinase performs the first step in glycolysis, the conversion of 

glucose to glucose-6-phosphate, and hexokinase genes were upregulated from 10 hrs starvation 

on. This indicates breakdown of glucose, which for a large part could be starch-derived glucose, 

as starch degradation increases from this time on as well. Overall, these results suggest that the 

increased production and accumulation of starch can mainly be attributed to the strong up-

regulation of the starch biosynthesis genes and less to a decrease in starch degradation. The 

subsequent decrease in starch productivity and accumulation from 29 hrs on concurred with 

decreased gene expression for the soluble starch synthase SSY2 as well, which supports this 

hypothesis. 
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Fig. 5. Differential expression of starch biosynthesis genes during nitrogen starvation. Heatmaps of 

expression levels per transcript are shown as median-centered log2(fpkm+1) values sequentially for time 

series T0-T99. The inset shows the log2 colour coding scale. PGM, phosphoglucomutase; AGPase, 

ADP-glucose phosphorylase; SS, starch synthases; HXK, hexokinase; PHS1, alpha-glucan 

phosphorylase; GLGB, 1,4-alpha-glucan-branching enzyme; ISA, isoamylase; α-AMY, alpha-amylase; 

β-AMY, beta-amylase; GWD, alpha-glucan water dikinase; α-1,4-Glc, alpha-1,4-glucan. StarchP 

indicates starch targeted for degradation through increased phosphorylation by GWD.

3.2.3 Transcriptional changes in fatty acid and lipid metabolism

Transcriptional changes for genes related to lipid biosynthesis (Fig. 6 and Supplementary Table 

1) also correlated with the observed increase in productivity and accumulation of TFA and TAG 

(Fig. 2). Several genes required for fatty acid biosynthesis showed increased expression within 

2 to 10 hrs from N-starvation. The first step in fatty acid biosynthesis requires the precursor 

acetyl-CoA, which can be derived from different biochemical conversions. A first route is via 

the pyruvate dehydrogenase complex (PDH) that converts pyruvate to acetyl-CoA. A second 

route is via acetyl-CoA synthetase (ACS), that converts acetate to acetyl-CoA. Finally, a third 

route is via the TCA cycle where ATP citrate lyase (ACLY) can convert citrate to acetyl-CoA 

and oxaloacetate. Gene expression of the PDH subunits ODPA1 and ODPB1 (TR1574|c0_g2 

and TR13897|c0_g2), several acetyl-CoA synthetases (TR16088|c0_g1/g2, TR18695|c0_g1, 

TR2994|c0_g1/g2/g3 and TR26776|c0_g1) and ATP citrate lyases (TR25574|c0_g2 and 

TR26430|c0_g2) clearly increased within 2 to 10 hrs from N-starvation and remained so until 

99 hrs of starvation. Increased expression of PDH, ACS and ACLY genes can result in a higher 

supply of acetyl-CoA, the precursor for fatty acid biosynthesis, and thereby increase the carbon-

flux towards lipid synthesis (Fig. 6). The subsequent steps in fatty acid biosynthesis involve 

acetyl-CoA carboxylase (ACCase) and malonyl-CoA-ACP transacylase (FABD), and gene 

expression for these enzymes also increased in the first 10 hrs from N-starvation. The fatty acid 
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synthesis (FAS) complex genes were up-regulated as well, including the ones encoding 

chloroplastic 3-oxoacyl-ACP synthase I (KASC1), 3-oxoacyl-ACP reductase (FABG), 

NADPH-dependent enoyl-ACP reductase (FABL) and 3-hydroxyacyl-ACP dehydratase 

(FABZ), as well as the acyl-ACP thioesterase (FATA). Overall however, this response was 

more delayed than that for starch biosynthesis. 

For subsequent biosynthesis of triacylglycerides (TAG), transcripts encoding glycerol kinase 

(GK), glycerol-3-phosphate dehydrogenase (GPDA), two glycerol-3-phosphate O-

acyltransferases (GPAT) and the phosphatidic acid phosphatase (PAP) were strongly up-

regulated from 2 hrs after the onset of N-starvation, while gene expression of lyso-phosphatidic 

acid acyltransferase (LPAT) - which is responsible for the intermediate conversion of 

lysophosphatidic acid to phosphatidic acid - only increased from 29 hrs on. These genes 

perform biosynthesis of the lipid backbone glycerol-3-phosphate (G3P) and the subsequent 

incorporation of free fatty acids up to diacylglycerol (DAG). The diacylglycerol O-

acyltransferases (DGAT) genes required for the final conversion of diacylglycerol (DAG) to 

triacylglycerol (TAG) also showed an initial decrease in expression, but were clearly up-

regulated only from 29 hrs of N-starvation on, indicating that the DAG pool is built up before 

the final DAG to TAG conversion. Both a DGAT-1 and a DGAT-2 gene were up-regulated and 

appear to be responsible for the final conversion of DAG to TAG. The transcriptome annotation 

predicted a single DGAT-1 gene and five DGAT-2 gene sequences, and our data indicate that 

only one of the five DGAT-2 genes responds to N-starvation. The subcellular locations of these 

DGAT enzymes and the corresponding TAG biosynthesis pathways in N. oleoabundans are 

still to be determined. Interestingly, a gene encoding a putative lipid body-associated caleosin 

(peroxygenase) protein (TR11980|c0_g1_i1) was also up-regulated from 29 hrs on, indicating 

that increased lipid body formation is concomitant with DAG to TAG biosynthesis. 

Incorporation of free long-chain fatty acids into lipids requires the activation to their acyl-CoA 
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form, which is usually performed by long-chain acyl-CoA synthetases (LACS). A gene isoform 

encoding a chloroplastic long-chain-fatty-acid CoA ligase (TR19322|c0_g1_i1) showed up-

regulation from 53 hrs on and might serve this role. 

Fig. 6. Differential expression of fatty acid and triacylglyceride biosynthesis genes during nitrogen 

starvation. Heatmaps of expression levels per transcript are shown as median-centered log2(fpkm+1) 

values for the time series T0-T99. The inset shows the log2 colour coding scale. PDH, pyruvate 

dehydrogenase complex; ACS, acetyl-CoA synthase; ACCase, acetyl-CoA carboxylase; FABD, 

malonyl-CoA-ACP transacylase; KAS, 3-oxoacyl-ACP synthase; FABG, 3-oxoacyl-ACP reductase; 

FabZ, 3-hydroxyacyl-ACP dehydratase; FABL, NADPH-dependent enoyl-ACP reductase; FATA, acyl-

ACP thioesterase; LACS, long-chain acyl-CoA synthetase, G3PDH, glycerol-3-phosphate 

dehydrogenase; GK, glycerol kinase; GPAT, glycerol-3-phosphate O-acyltransferases; LPAT, lyso-

phosphatidic acid acyltransferase; PAP, phosphatidic acid phosphatase; DGAT, diacylglycerol O-

acyltransferase; TAG lipase: triacylglyceride lipase.
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TAG lipase activity negatively affects TAG accumulation, while phospholipases are involved 

in liberation of free fatty acids from (plastid) membrane lipids and interconversion into TAG. 

Transcript levels of two TAG lipase genes (SDP1: TR9756|c0_g3 and TR22634|c0_g2_i1) were 

decreased in the first 10 hrs of N-starvation, while at the end of N-starvation a marked increase 

was observed (Supplementary Table 1). The late upregulation of TAG lipases follows the earlier 

up-regulation of TAG biosynthesis genes, which could explain the initial steady increase in 

TAG accumulation and final levelling-off in TAG productivity. Besides de novo TAG 

synthesis, interconversion from membrane lipids to TAG is a common mechanism under stress 

conditions in microalgae [49–52], and the enzyme phospholipid:diacylglycerol acyltransferase 

(PDAT) plays an important role in this [51,53]. A PDAT homolog was not identified in our 

reference transcriptome, but several chloroplastic phospholipase A1 genes (DAD1 homologs) 

did show increased expression at different timepoints during N-starvation (Supplementary 

Table 1). Phospholipase activity results in the conversion of phospholipids to lysophospholipids 

and free fatty acids. Lysophospholipase subsequently converts lysophospholipids further to free 

fatty acids and glycerol-phosphate derivates [54,55]. A lysophospholipase gene 

(TR21369|c0_g1_i5) showed increased expression from 29 hrs on. Reacylation of 

lysophospholipids to phospholipids is performed by lysophospholipid transferases, and two 

lysophospholipid transferase genes (LPT1: TR19784 and TR9894|c0_g2_i1) were down-

regulated within the first 10 hrs. The gene expression profiles of the (lyso)phospholipases and 

lysophospholipid transferases could indicate that free fatty acids are liberated from membrane 

phospholipids upon nitrogen starvation, which subsequently can be used in TAG biosynthesis. 

The decrease in chloroplast-related GO Slim terms in the period before the clear increase in 

DGAT expression at 29 hrs also supports that TAG biosynthesis initially was not only de novo, 

but might also be the result of some interconversion from membrane lipids to TAG. Altogether, 

there are several indications that in the earlier stages of N-starvation there is active recycling of 

1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534



27

plastidial membrane phospholipids taking place, therefore incorporation of membrane-derived 

fatty acids into TAG cannot be excluded and awaits further investigation, e.g. by using carbon 

radiolabelling studies. Expression of a chloroplastic monogalactosyldiacylglycerol synthase 

gene (MGDGS: TR23849|c0_g1_i) was down-regulated from 6-53 hrs (Supplementary Table 

1). MGDG synthase couples UDP-galactose and DAG to form the galactoglycerolipid 

monogalactosyldiacylglycerol (MGDG) which is abundantly present in the photosynthetic 

membranes of chloroplasts in higher plants and microalgae [56–58]. It thereby competes with 

DGAT enzymes for the chloroplastic DAG pool and decreased expression of MGDG synthase 

indicates reduced production of chloroplast-MGDG, leaving more DAG available for TAG 

synthesis. Finally, gene expression of chloroplast lipid transporters 

(TRIGALACTOSYLDIACYLGLYCEROL TGD1 and 2: TR2378|c0_g1_i1 and TR29717) 

was up-regulated. TGD proteins are present in the chloroplast membrane in Chlamydomonas, 

and facilitate the transport of lipids derived from the endoplasmic reticulum (ER) into the 

chloroplast [58]. Up-regulation of these genes under nitrogen starvation in N. oleoabundans 

could indicate that in this way starved cells try to compensate for the decrease in chloroplast 

lipids as we hypothesize above. 

Expression of several chloroplast-specific fatty acid desaturase (FAD) genes was repressed 

from 6 hrs on (Fig. 7), which explains the increased incorporation of mono-unsaturated (C18:1 

and C16:1) and saturated (C18:0) fatty acids in the different lipid fractions and decrease of 

C18:3 and C16:3 fatty acids. The combined reduction in expression of FAD6C (C16:1  C16:2 

and C18:1  C18:2) and FAD3C (C16:2  C16:3 and C18:2  C18:3) supports the increase 

in the C16:1, C16:2 and C18:1 fatty acid fractions. Concomitant with this, expression of the 

elongase-complex genes 3-ketoacyl-CoA synthase (KSC1), very-long-chain (3R)-3-

hydroxyacyl-CoA dehydratase (HACD) and very-long-chain enoyl-CoA reductase (ECR) 

showed increased expression. This could result in higher C16:0 to C18:0 conversion, and higher 
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C18:0 levels could thereby increase C18:1 production as well. Both increased C18:0 and C18:1 

levels were observed, though C16:0 levels were not clearly reduced. This indicates that most 

probably the observed increase in C18:1 and C18:0 is mainly caused by the reduction in fatty 

acid desaturases gene expression. In support of this we did not observe significant differential 

gene expression of two stearoyl-ACP desaturase genes (SAD3 and SAD5) in our reference 

transcriptome, which are responsible for desaturation of C16:0 and C18:0. From the start of N-

starvation a chloroplastic FAD4 desaturase gene expression was also reduced 

(TR22593|c0_g2_i1), which converts [sn-2-C16:0]-containing glycerophospholipids into [sn2-

C16:1]-containing glycerophospholipids, while at the same time expression of a chloroplastic 

palmitoyl-monogalactosyldiacylglycerol delta-7 desaturase (ADS3, TR16760|c0_g1_i1) was 

upregulated in the early phases of N-starvation. This indicates decreased C16:0 to C16:1 

conversion in the glycerophospholipid fraction, while in the glycolipid fraction (specifically 

MGDG) there was an initial increased conversion of C16:0 to C16:1. Overall, the combined 

effect of changes in expression of several desaturase genes involved in C16:0 to C16:1 

conversion, led to an increased C16:1 content in the lipid fractions. Finally, expression of a 

palmitoyl-protein thioesterase gene (TR646|c0_g3_i1) was upregulated in the late stages of N-

starvation. This could supply additional free palmitate (C18:0) derived from lipid-containing 

proteins for incorporation into e.g. TAG. 

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652



29

Fig. 7. Differential expression of fatty acid desaturase genes during nitrogen starvation. Heatmaps of 

expression levels per transcript are shown as median-centered log2(fpkm+1) values for the time series 

T0-T99. The inset shows the log2 colour coding scale. KSC1, 3-ketoacyl-CoA synthase; KCR1, (very 

long-chain) 3-ketoacyl-CoA reductase; HACD, very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase; 

ECR, very-long-chain enoyl-CoA reductase; SAD, stearoyl-ACP desaturase; FAD, fatty acid 

desaturase; ADS3, palmitoyl-monogalactosyldiacylglycerol delta-7 desaturase; MGDG, 

monogalactosyldiacylglycerol. # No significant differential gene expression was observed.

3.2.4 Transcriptional changes in photosynthesis, carbon fixation and oxidative stress

Expression of genes for the photosystems proteins initially increased (chlorophyll a/b binding 

proteins), which coincided with a decreased expression of chlorophyllase (Supplementary 

Table 1). This could indicate that as N-starved cells cannot synthesize novel (N-containing) 

photosystems due to the lack of nitrogen, cells try to maintain the level of active photosystems 

by reducing chlorophyll degradation and maintaining its incorporation chlorophyll into existing 

photosystem proteins.  However, at 10 to 29h post-starvation this can no longer be sustained, 
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indicating a decrease in photosystem biosynthesis and (most probably) photosynthetic 

efficiency (as can also be observed from the decreased quantum yield). The observed decrease 

of chloroplast-related GO Slim terms in this period is in concordance with this. 

Many genes involved in CO2 fixation (RuBisCo, PGK, PEP carboxylase, PEPC kinase) and 

CO2 concentrating mechanisms (carbonic anhydrases) show a rapid up-regulation in expression 

in the first 2 hrs, a decrease afterwards and increase again after 99 hrs (Supplementary Table 

1). This correlates to the initial sustained expression of photosystem genes and indicates that 

N-starved cells initially try to maintain photosynthesis and carbon fixation. Ultimately, when 

because of N-starvation cells cannot maintain active photosystems they can experience 

oxidative stress by the production of reactive oxygen species (ROS) such as hydrogen peroxide 

(H2O2) and superoxide (O2●
-) that can cause cell damage, as has been observed in e.g. Chlorella 

and Acutodesmus species [59–62]. In response to N-starvation, N. oleoabundans showed 

increased transcript abundance for superoxide dismutase (SOD), catalase, peroxiredoxin and 

several peroxidases which indicates that these ROS were produced in this species as well 

(Supplementary Table 1). 

3.2.5 Transcriptional changes in nitrogen uptake and incorporation

As expected, N-starvation induced changes in expression of genes involved in nitrogen 

metabolism. The depletion of nitrate led to reduced gene expression for nitrate transporters, 

nitrate reductase and ferredoxin-nitrite reductase. At the same time, increased expression started 

for ammonium transporter genes and the glutamine synthetase (GS) and NADH-dependent 

glutamate synthase (GOGAT) pathways. This indicates that cells switch to an alternative mode 

of nitrogen incorporation via ammonium uptake (Supplementary Table 1).
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3.3 Transcriptional regulators of starch and lipid accumulation

The patterns in starch and lipid accumulation suggest the existence of a regulatory mechanism 

for redirecting carbon-partitioning (switching) between the associated metabolic pathways. 

Identification of the associated “switch” regulators would be of great interest to improve 

existing metabolic engineering strategies that currently are often based on increased expression 

of a specific metabolic gene or pathway, or introduction of heterologous transcription regulators 

from higher plants [6].

In this study, we identified several transcriptional regulators with significantly altered gene 

expression upon N-starvation, some of which have been implicated in the nitrogen-starvation 

triggered lipid accumulation in microalgae (Supplementary Table 1). Genes encoding 5'-AMP-

activated and SNF1-related protein kinases (TR3188|c0_g1 and g2, and TR24203|c0_g1, 

respectively) clearly showed increased expression from 10 hrs N-starvation on, and very 

strongly from 53h on. This is in line with a previous transcriptome study in N. oleoabundans 

[17] where after 11d of N-starvation the 5’-AMP-activated protein kinase SnRK1 showed up-

regulation. SnRK1 is a global regulator of carbon metabolism in plants [63,64]. 

In Nannochloropsis, bZIP-type regulators have been implied to control several steps in the 

synthesis of TAG [23]. We identified two such bZIP regulators with opposite expression 

profiles in our transcriptome set: TR2010|c0_g1 and TR14421|c0_g1. TR14421|c0_g1 

expression was activated 2 hrs after N-starvation, but showed down-regulation from 29 hrs on, 

while TR2010|c0_g1 was down-regulated until 53 hrs, after which the gene was activated. We 

also identified a transcript (TR935|c0_g2_i1) with homology to the dual specificity tyrosine-

phosphorylation-regulated kinase (DYRKP) from Chlamydomonas, a negative regulator of 

carbon storage that inhibits both starch and lipid accumulation and photosynthetic efficiency 

under N-starvation in this algae [65]. Expression of this transcript was markedly decreased from 

the start but increased from 29 hrs starvation on. Differentially expressed transcripts encoding 
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two homologs of PHR1-like regulators from higher plants were also found (TR19823|c0_g1 

and TR25002|c0_g1). PHR1 and its homolog in Chlamydomonas PSR1 are Phosphate 

Starvation Response transcription factors, and PSR1 was found to be essential for lipid and 

starch accumulation during phosphate starvation in Chlamydomonas [66]. A homolog of the 

nitrogen regulatory protein P-II (GLNB: TR228|c0_g1 and g3) was upregulated from 6 hrs 

starvation on. The P-II regulator from Chlamydomonas was found to negatively control TAG 

accumulation in lipid bodies during acclimation to nitrogen starvation in this green alga [67].

If and how these regulators affect carbon partitioning for the accumulation of starch and lipids 

remains to be investigated through functional analysis.

4. Conclusions and discussion

Metabolic engineering of microalgae towards increased lipid or starch productivity requires 

deeper insight into the genetic details of the metabolic pathways involved and the regulatory 

mechanisms controlling these pathways. For the oleaginous green microalgae N. oleoabundans 

this genetic information is still very limited, therefore we set out to study the biomass and 

transcriptional changes that occur upon nitrogen starvation, to find genetic triggers of starch 

and lipid accumulation in this industrially relevant microalga. Starch and lipid accumulation 

patterns showed different dynamics over the applied 4-day starvation period. Whereas the 

starch content increased sharply and peaked within the first day upon nitrogen starvation, lipids 

(mainly TAG) accumulated more gradually (Supplementary Fig. A.2). A pattern where starch 

accumulates rapidly ahead of lipid accumulation is observed in other hybrid oleaginous 

microalgae [9–11]. Starch seems to be the preferred primary storage compound in these species, 

which is partially due to the fact that its synthesis is biochemically and energetically more 

favourable than fatty acid biosynthesis [10,68]. On the other hand, lipids have a higher energy 
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density and therefore for the longer term might be the preferred storage compound. Several 

studies indicate that starch and lipid accumulation are both dependent on de novo biosynthesis 

and therefore competition for common carbon precursors affects carbon-partitioning between 

starch and lipids. Increasing the carbon precursor supply can thereby be a strategy to influence 

carbon-partitioning and improve lipid accumulation in some cases [69,70]. Nitrogen starvation 

also affected the fatty acid composition of the lipid fractions, with a distinctive decrease of the 

polyunsaturated fatty acids C18:3 and C16:3, concomitant with a large increase of the mono-

unsaturated fatty acid C18:1, and small increases of the mono-unsaturated fatty acid C16:1 and 

the saturated fatty acids C18:0 and C16:0. These changes in fatty acid profile correspond to 

observations from earlier studies on N-starvation in N. oleoabundans [71,72], and was observed 

in other hybrid oleaginous microalgae as well [9,73]. Besides these metabolic factors, several 

biosynthetic genes and transcriptional factors have been identified that play a role in 

accumulation and carbon-partitioning of starch and lipids [6,21,23,53,65]. We therefore 

determined the transcriptional changes upon N-starvation through RNA-sequencing and 

observed that gene transcripts for starch- and lipid-related metabolic pathways correlated well 

with the observed biomass changes. The strong accumulation of starch in the first day could 

mainly be ascribed to a general increase in transcript abundance for several starch biosynthesis 

genes. The peak in starch accumulation correlated particularly well with the rapid increase and 

subsequent decrease in expression of starch synthase genes (SSY2, SSY3, SGG1, SSG2), while 

the ultimate return to N-replete starch levels also appears to be caused by an increase in 

transcript levels of different amylase genes (α-, β- and isoamylases) in the later stages.

Expression of fatty acid biosynthesis genes and TAG biosynthesis genes was in general more 

delayed compared to those for starch biosynthesis and remained at increased levels until 4 days 

of starvation. Transcripts for the enzymatic reactions performed by PDH, ACS, ACLY and 

ACCase, which supply the fatty acid biosynthesis precursors acetyl-CoA and malonyl-CoA 
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respectively, were clearly increased, but especially PDH was constitutively upregulated from 6 

to 99 hrs. Likewise, for TAG biosynthesis the genes for G3PDH and glycerol kinase (glycerol-

3-phosphate synthesis) and GPAT (incorporation of first acyl chain to glycerol-3-phosphate 

backbone) were in general up-regulated constitutively from 2 hrs starvation on, while other 

TAG biosynthesis genes had a more limited time-frame where they showed upregulation. In 

both pathways (fatty acid and TAG biosynthesis) there appears to be a trend where continuous 

supply of pathway precursors is important for the gradual accumulation of lipids/TAG. 

Metabolic engineering of microalgae for increased lipid production has focused on early and 

late genes in both pathways, either based on the hypothesis that the supply of fatty acid 

precursors is key for an increased flux through the FA biosynthesis or on the hypothesis that 

the ultimate conversion(s) steps to TAG are rate-limiting. Effective and ineffective metabolic 

engineering for increased production of lipids/TAG has been reported for both the first (e.g. 

[6,74]) and the second approach (e.g., [6,75]), yet it still remains unclear whether the key 

metabolic nodes for increasing lipid/TAG production are conserved among the plethora of 

oleaginous microalgae. In this respect, a recent study has demonstrated that overexpression of 

a native DGAT-2 gene in N. oleoabundans can more than double the lipid and TAG content 

and productivity, as well as alter the saturated fatty acid composition of cells [76]. This indicates 

that metabolic engineering focused on the final conversion of DAG to TAG is a successful 

strategy for increased lipid production in N. oleoabundans. The DGAT-2 gene that was used 

for overexpression is not the one showing differential gene expression in our study 

(TR20062|c0_g1), but another one of the four DGAT-2 genes found in the reference 

transcriptome (TR12237|c0_g1, g2 and g3). On the other hand, the location of de novo TAG 

biosynthesis remains unclear at this moment. While most of the fatty acid biosynthesis 

transcripts were predicted to be located in the chloroplast, the subcellular location of the TAG 

biosynthesis transcripts was variable or unspecified (Supplementary Table 1). Whether TAG 
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biosynthesis occurs both in the chloroplast and on the endoplasmic reticulum in N. 

oleoabundans, as is the case in many microalgae [77], therefore needs to be verified by further 

biochemical experimentation.

Several transcriptional regulators have been implicated so far to play a central role in lipid 

accumulation in microalgae. These include the bZIP-type regulators that are suggested to 

control several steps of TAG synthesis in Nannochloropsis [23], and the nitrogen-responsive 

regulator (NRR1) and phosphorus stress response regulator (PSR1) in Chlamydomonas [21,53]. 

While these putative switch regulators were identified through transcriptomics and in silico 

studies, the direct role of the PSR1 gene in lipid accumulation was confirmed by mutagenesis 

and overexpression. The kinase DYRKP has been implicated to repress both starch and lipid 

accumulation in Chlamydomonas and to result in sustained photosynthetic efficiency under N-

starvation [65]. From these described transcriptional regulators, we identified several homologs 

in N. oleoabundans that showed significant differential gene expression upon nitrogen 

starvation. The actual role of these regulators in starch and lipid accumulation and carbon 

partitioning now needs to be further analysed through e.g. gene inactivation and gene 

overexpression approaches.

Finally, it remains unclear whether accumulation of these storage compounds in N. 

oleoabundans is controlled by genetic switches only (i.e. via specific activating or repressing 

regulators) or that accumulation and carbon partitioning can also be regulated at the metabolic 

level, e.g. via changes in enzyme quantity or enzyme activity at specific key metabolic nodes. 

To test these hypotheses, a high-quality genome sequence of N. oleoabundans and efficient 

tools for reverse genetics, such as those for targeted gene knockdown [78] and gene editing [79] 

in Nannochloropsis oceanica will be highly valuable.  
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Figure A.1. Quantum yield in N. oleoabundans grown in N-replete (+N) and N-starvation (-N) 

conditions in air-lift flat-panel photobioreactor. Mean values ± standard deviations are shown 

(n=3). The onset of N-starvation is at t=0h. The 12:12 day-night cycles used for cultivation are 

shown as alternating 12h light phases (white background) and 12h dark phases (grey background).



Figure A.2. Sample correlation matrix heatmap of the differential gene expression profiles from 

triplicate photobioreactor runs. Time points can be clearly separated using hierarchical clustering, 

indicating a high experimental reproducibility.



1

Figure A.3. Starch and triacylglycerides (TAG) content in N. oleoabundans grown in N-replete 

(+N) and N-starvation (-N) conditions in air-lift flat-panel photobioreactor. Mean values ± 

standard deviations are shown (n=3). The 12:12 day-night cycles used for cultivation are shown 

as alternating 12h light phases (white background) and 12h dark phases (grey background).



Fig. A.4. GOBubble plots of enriched plant GO Slim terms (compared to H0) in the transcriptome at different timepoints (H2 to H99) 

for nitrogen-starved N. oleoabundans. The p-value threshold level is indicated (orange line).


