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ABSTRACT
Linear impulsive systems have been extensively studied in the last decades, mainly in the field of
biomedical research. However, a proper characterisation of the equilibria of such a systems - when
they are out of the origin - and its use by optimising control strategies is still a matter of discussion.
In this work, a novel characterisation of the system equilibria and invariant regions - derived from
the definition of two underlying discrete-time systems - is given, and based on this characterisation
impulsive affine feedback control strategies for non-zero set-points are designed. The closed-loop
performance and benefits of the strategies are assessed through two biomedical examples: the
Lithium ions distribution in the human body and the HIV treatment.
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1. Introduction

Impulsive control systems (ICS) - i.e. those which show
first order discontinuities in the time evolution of the
variables at certain times of a given sequence, and
free responses between these times - have received
great attention in the last decades. A typical appli-
cation is in the field of biomedical research, where
the drug intake is modelled as impulses in the treat-
ment of several human diseases, as it was stated in
the seminal work of Bellman (1971). Just to enumer-
ate some remarkable examples, we mention the human
immunodeficiency virus (HIV) (Chang, Astolfi, Moog,
& Rivadeneira, 2014; Luo, Piovoso, Martinez-Picado,
& Zurakowski, 2011; Rivadeneira & Moog, 2012), the
malaria (Chang, Astolfi, & Shim, 2011), the influenza
with co-infections (Boianelli, Sharma-Chawla, Bruder,
& Hernandez-Vargas, 2016), the tumour-bearing (Chen,
Kirkby, & Jena, 2012) and the type I diabetes (Huang, Li,
Song, & Guo, 2012; Rivadeneira, Ferramosca, & Gonza-
lez, 2016).

However, in spite of its potential to describe such a sig-
nificant dynamics, the regulation to non-zero set-points
- which is usually the case - has received little attention
in the literature, since the only one formal equilibrium of
a typical impulsive system (particularly the linear ones)
is the origin. For instance, in Chen and Tian (2013),
the regulation problem is approached by using Lyapunov
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#65-224 Medellín, Colombia; Instituto de Desarrollo Tecnológico para la Industria Química INTEC - CONICET, Güemes 3450, Santa Fe, Argentina

function methods and sufficient conditions are given
for both, the solvability of the tracking problem and
the output-tracking offset-free property. However, it is
assumed that the output reference (an equilibrium) is at
the origin; otherwise, the methodology does not work
properly. In Fraga (2013), an impulsive feedback is stud-
ied and some invariance notions are introduced, but the
regulation to the origin is still the control framework. In
Wei, Zhang, and Chen (2013), an impulsive state feed-
back is designed and tested in the context of a cheese
whey fermentation application. The work deals with non
zero set-point regulation problems, but the results can-
not be extended to general impulsive systems. Recently,
in Tang and Xiao (2016), an interesting application of an
impulsive feedback control is given. The idea is to com-
bine surgery and immunotherapy in the cancer treatment
context. This work illustrates the importance of this type
of control.

In Sopasakis, Patrinos, Sarimveis, and Bemporad
(2015) a version of model predictive control (MPC) for
ICS has been developed, with an application to the dos-
ing of intravenous bolus of Lithium ions upon oral intake
(Ehrlich, Clausen, & Diamond, 1980; Pierce & Schu-
mitzky, 1976). The strategy also covers the problem to
steer a linear ICS (LICS) to a zone defined by a ‘thera-
peutic window’, which does not necessarily include the
origin. The formulation is based on a polytopic invariant
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target set characterisation, which is difficult to compute
and prevents its use in most application cases. An eas-
ier method to compute the target sets is provided in
Rivadeneira, Ferramosca, and González (2015), also in
the context of Impulsive MPC. These strategies were
applied to the diabetes type 1 problem, in Rivadeneira
et al. (2016)), and to the HIV treatment, in Rivadeneira,
Caicedo, Ferramosca, and González. (2017), where pre-
liminary concepts about non-zero set-point regulation
are also established.

In this paper, the following contributions are pre-
sented. Firstly, a complete dynamic characterisation of
linear ICS is developed and discussed. Non-zero equilib-
rium regions are characterised by means of two under-
lying linear discrete-time systems which naturally arise
when the time instants before and after the impulsive
time are considered. Secondly, the conditions to estab-
lish the impulsive stability of the new equilibria are
described, where the free responses of the impulsive
scheme are also taken into account. Finally, two effi-
cient feedback controllers that take advantage of the latter
impulsive characterisation are given, being the second
one an optimisation-based strategy. The performance of
the strategies is illustrated by means of two biomedical
applications (lying in the central problemof scheduling of
medicaments), as they are the Lithium ions distribution
in the human body and the HIV treatment.

The paper is organised as follows. After the Introduc-
tion, some preliminaries are given in Section 2. Then,
the novel theoretical characterisation of ICS is intro-
duced in Section 3. Based on this latter study, two new
control strategies for impulsive systems are developed
in Section 4. The results of applying these strategies
to two case-studies are shown in Section 5, while the
last Section is devoted to present the conclusions and
perspectives.

1.1. Notation

N, R, Rn and Rn×m denote the sets of non-negative
integers, reals, column vectors of length n and n by m
matrices, respectively. In ∈ Rn×n is the identity matrix.
Given a matrix M,ρ(M) denotes its spectral radius (see
Ortega, 1987). Given a function f : R → Rn, f (a+) �
limt→a+ f (t), i.e. f (a+) is the limit of f (t) when t
approaches a from the right. ‖f ‖ represents any norm
on functions (for instance, ‖f (t)‖ � supt∈(0,T] f (t)). The
convex hull of a collection of sets Vi, i = 1, 2, . . . , k
(i.e. the smallest convex set containing all the sets) is
denoted as ch{V1,V2, . . . ,Vk}. Given a nonempty closed
set V , the distance from a point x to V is denoted by
distV(x) � miny∈V ‖y − x‖, where ‖ · ‖ is the Euclidean
norm.

2. Preliminaries

The class of dynamic systems of interest in this paper
consists of a set of linear impulsive first-order differential
equations of the form

ẋ(t) = Acx(t), x(0) = x0, t �= τk,

x(τ+
k ) = Adx(τk) + Bu(τk), k ∈ N, (1)

where the independent variable t ∈ R denotes time, τk,
k ∈ N, denotes the impulse time instants, x ∈ X ⊆ Rn

denotes the state vector and u ∈ U ⊆ Rm denotes the
impulsive control inputs. It is assumed that the state
trajectories are left continuous, i.e. limt→a− x(t) = x(a).
Matrices Ac ∈ Rn×n and Ad ∈ Rn×n are the continuous
and discrete transition matrices, while B ∈ Rn×m is the
impulsive input matrix. Notice that when Ad = In, the
first order discontinuities of the solution are exclusively
due to the controls u(τk). Furthermore, as part of the sys-
tem description, a target state set X Tar ⊂ X is defined,
which is the region where the system is desired to be
driven to and kept.

Let t0 = 0 be the initial time and T = {0, τ1, . . . , τk,
. . .} a set of time instants, with Ti � τi+1 − τi. The state
response of system (1) for τk < t ≤ τk+1, with k impulses
applied to the system, is described by:

x(t) = �(t, 0)x0 +
k∑

j=1
�(t, τj)Bu(τj), (2)

where the state transition matrix � is given by:

�(t, τj) = eAc(t−τk)
k∏

i=j+1
Mk−i, (3)

and Mi � Ad eAcTi . The state transition matrix is invert-
ible for all t ∈ [0,∞) if and only if thematrixAd is invert-
ible, and in this case, �(0, t) = �−1(t, 0). In this work,
however, it will be assumed for simplicity that the time
period is constant. This way, the impulse time instants τk
are given by τk = kT, k ∈ N, being T the constant time
period.

Let u be an input sequence of length N,

u = {u(τ1), u(τ2), . . . , u(τN)}, (4)

drawn from U . And let ϕ(t; x0,u) be the solution to sys-
tem (1), with ϕ(0; x0,u) = x0. Let t>0 and let τk be the
largest impulse time such that τk ≤ t, with k ≤ N. Then,
for τk < t ≤ τk+1 it is ϕ(t; x0,u) = eAc(t−τk)ϕ(τ+

k ; x0,u),
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Figure 1. Typical state system evolution.

which can be expressed as

x(t)= ϕ(t; x0,u)� eAc(t−τk)

⎛
⎝Mkx0 +

k∑
j=1

Mk−jBu(τj)

⎞
⎠
(5)

where nowM = Ad eAcT . Notice that if B �= 0 and Ad =
I, the state response equation becomes

x(t) = eAct

⎛
⎝x0 +

k∑
j=1

e−AcτjBu(τj)

⎞
⎠ , (6)

which agrees with the solution of the system presented
in Yang (2001). A typical state evolution of an impulsive
system is shown in Figure 1.

Let κ(·) be a control law, in such a way that u(τk) =
κ(x(τk)), for k ∈ N. Then, the closed-loop impulsive sys-
tem is described by:

ẋ(t) = Acx(t), x(0) = x0, t �= τk, (7a)

x(τ+
k ) = Adx(τk) + Bκ(x(τk)), k ∈ N. (7b)

This way, the closed-loop trajectory is denoted by x(t) =
φcl(t; x0, κ(·)), for t ≥ 0, with φcl(0; x0, κ(·)) = x0, and
clearly, the ‘jump’ depends now only on the state.

3. Dynamic characterisation

3.1. Underlying discrete-time systems

The impulsive control system given by Equation (1) is a
hybrid system characterised by an autonomous and con-
tinuous part - modelled by differential equations - and
by a discrete sequence where the state has discontinuities
of the first kind. This discrete sequence is represented
by the ‘algebraic equation’ in (1), and relates the state at
time τ+

k with the state and the impulsive input at times
τk. However, it is possible to expand this characterisation
by defining two discrete-time systems, obtained by sam-
pling the LICS at τk and τ+

k , respectively, for k ∈ N. This

way, the so defined primary and secondary underlying
discrete systems, UDS, are given by

x(τk+1) = eAcT

x(τ+
k )︷ ︸︸ ︷

[Adx(τk) + Bu(τk)], (8)

x(τ+
k ) = Ad

x(τk)︷ ︸︸ ︷
eAcTx(τ+

k−1) +Bu(τk), (9)

respectively, where x(τ+
−1) � e−AcTx(τ0), and the inputs

u(τk) are assumed to be known at time instantsτ+
k .

If matrices A◦ � Ad eAcT , A• � eAcTAd, B◦ � B and
B• � eAcTB are defined, and u◦(j + 1) = u•(j), for j ≥ 0,
the primary and secondary UDS can be written as:

x•(j + 1) = A•x•(j) + B•u•(j), x•(0) = x(τ0), (10)

x◦(j + 1) = A◦x◦(j) + B◦u◦(j), x◦(0) = x(τ+
0 ), (11)

respectively. The initial conditions of these two systems
are related by x◦(0) = x(τ+

0 ) = Adx(τ0) + Bu(τ0) =
Adx•(0) + Bu(τ0), while the inputs fulfil u◦(j + 1) =
u•(j), which means that the two discrete time systems
share the same control input. These two systems describe
the original system (1) at the impulsive times, τk, and
an instant after this time, when the jump has already
occurred (τ+

k ). That is why (11) and (10) are called the
underlying discrete-time systems of the ICS (1).

Remark 3.1: The continuous time response of the
ICS (1), for a period (τk, τk+1], and a given state x(τk),
can be described by

x(t) = A•(t)x(τk) + B•(t)u(τk), for t ∈ (0,T] (12)

where A•(t) � eActAd and B•(t) � eActB. This way, the
continuous time response for each period is computed
(characterised) by a linear map in which the matrices are
time varying matrices.

3.2. Impulsive system equilibrium set
characterisation

If matrices Ac and B are assumed to be full rank, the
only formal equilibrium point of the ICS (1) is given
by (us, xs) = (0, 0), which is the only pair verifying ẋ =
0 and x(τ+

k ) = x(τk). However, by extending the con-
cept of equilibrium to the one of invariance, it is possi-
ble to find some generalisation that accounts for equi-
librium/invariant entities out of the origin (Sopasakis
et al., 2015).

Definition 3.1 (Generalised control equilibrium set of
ICS): Consider a ICS (1), a period T and a non-empty
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Figure 2. Set Xs into a subspace of dimension 2 in R3, sets X ◦
s

andX •
s , and equilibrium orbitsos of a simulated ICS.

convex set �. A setXs ∈ X is a generalised control equi-
librium set with respect to � if for each xs ∈ Xs there
exists an input us = us(xs) ∈ U such that

φ(T; xs, us(xs)) ∈ Xs, (13)

os(xs, us(xs)) ⊆ �, (14)

where os(xs, us) � {φ(t; xs, us), t ∈ (0,T]}. The set {us(xs)
∈ U : xs ∈ Xs} is denoted as Us(Xs).

In the latter definition, a state trajectory in a period
T, φ(t; xs, us), for t ∈ (0,T], uniquely defines an orbit os.
More precisely, the orbit is given by the free response after
the jump, φ(t; xs, us) = eAct(Adxs + Bus), t ∈ (0,T]. The
orbits os(xs, us), with xs ∈ Xs, are called equilibrium
orbits. Figure 2 shows a schematic plot of some equilib-
rium orbits. Given that os is non-convex, a better charac-
terisation of the generalised equilibrium can be done by
defining its convex hull.

Definition 3.2 (Equilibrium orbits set of ICS): Con-
sider a ICS (1) and a generalised control equilibrium
set Xs, together with the equilibrium input set Us(Xs).
Then, the equilibrium orbits set of ICS, XOs(Xs) =
XOs(Xs,Us(Xs)), is given by

XOs(Xs) � ch {φ(t; xs, us(xs)), t ∈ [0,T], ∀ xs ∈ Xs}
= ch {os(xs, us(xs)), ∀ xs ∈ Xs} . (15)

Now, according to Definitions 3.1 and 3.2, it is clear
that each equilibrium set of the primary underlying sub-
system (10), X •

s , is a (particular) generalised control
equilibrium set.

Proposition 3.3: Let X •
s ⊆ X be a set of states x•

s ∈ X
for which there exists an input us = us(x•

s ) ∈ U such that
x•
s = A•x•

s + B•us(x•
s ). Then X •

s is a generalised control
equilibrium set of ICS with respect to the associated equi-
librium orbit set, XOs(X •

s ) = XOs(X •
s ,Us(X •

s )), where
Us(X •

s ) = {us(x•
s ) ∈ U : x•

s ∈ X •
s }.

Proof: It is easy to see that for each x•
s ∈ X •

s ,

φ(T; x•
s , us(x

•
s )) = A•(T)x•

s + B•(T)us(x•
s ) = x•

s ∈ X •
s ,

os(x•
s , us(x

•
s )) ⊆ XOs({x•

s }, {us(x•
s )}) ⊆ XOs(X •

s ).

�

Condition x•
s = A•x•

s + B•us(x•
s ) implies that there is

a state x◦
s = x◦

s (x•
s ) � Adx•

s + Bus(x•
s ), such that x◦

s =
A◦x◦

s + B◦us(x•
s ) (i.e. x◦

s is an equilibrium of (11) asso-
ciated to the same us(x•

s )).
Let us now introduce the counterpart of the gener-

alised control equilibrium set, for the closed-loop ICS (7):

Definition 3.4 (Generalised equilibrium set of ICS): A
set Xs is a generalised equilibrium set, with respect to �̄,
for the closed-loop system (7), if Xs is a generalised con-
trol equilibrium set, with respect to �̄, for the open-loop
system (1), with u = κ(x).

3.3. Jump set

In many practical applications as, for instance, drug
administration problems, the discrete-time transition
matrix of ICS (1), Ad, is the identity matrix. In this
case, (1) can be viewed as a continuous-time system,
ẋ(t) = Acx(t) + Bu(t), controlled by impulsive inputs.
Let now X •

s be the maximal equilibrium set of the
UDS (10) contained in X . Given that system (1) is
assumed to be controllable both UDS, (10) and (11) are
also controllable. ThenX •

s andX ◦
s (X •

s ) are compact sets
contained in subspaces of dimension m of Rn (Limon,
Alvarado, Alamo, & Camacho, 2008), and it is possible to
define:

Definition 3.5 (Jump set of ICS): The jump set of
ICS (1) is given by the convex hull:

Xs(X •
s ) � ch

{
X •
s ,X ◦

s (X •
s )
} ⊆ R

n. (16)

Next, the main property of Xs(X •
s ) is presented.

Proposition 3.6: Xs(X •
s ) (and any subset ofXs(X •

s ) con-
taining X •

s ) is a generalised control equilibrium set with
respect to XOs(Xs(X •

s )), for system (1).
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Proof: It will be shown that any state xs ∈ Xs(X •
s ) can be

feasibly steered to a state x◦
s (x•

s ) ∈ X ◦
s (X •

s ) in a jump, and
then, after the free response, it reaches a state x•

s ∈ X •
s ⊆

Xs(X •
s ). By Definition 3.5, every state xs ∈ Xs(X •

s ) - not
lying in R(B)) - can be expressed as xs = αx•

s + (1 −
α)x◦

s (x•
s ), for some x•

s ∈ X •
s and some α ∈ R (not neces-

sarily positive). Furthermore, since Xs(X •
s ) is bounded

(given that X •
s and X ◦

s are bounded), α ∈ [α,α], for
bounded minimal and maximal values, α and α. So, if
input û � αus(x•

s ) is injected to the system, then

φ(T; xs, û) = eAcT
(
xs + Bû

)
= eAcT

(
αx•

s + (1 − α)x◦
s (x

•
s ) + αBus(x•

s )
)

= eAcT
(
(1 − α)x◦

s (x
•
s ) + αx◦

s (x
•
s )
)

= eAcTx◦
s (x

•
s ) = x•

s ∈ Xs(X •
s ), (17)

where the equalities follow from the facts that x◦
s (x•

s ) =
x•
s + Bus(x•

s ) and eAcTx◦
s (x•

s ) = A•x◦
s (x•

s ) = x•
s . û =

αus(x•
s ) is feasible, for α ∈ [α,α], because of the con-

vexity of U and Xs(X •
s ). Finally, it is trivial that

the trajectories starting in xs ∈ Xs(X •
s ) will remain

inXOs(Xs(X •
s )). �

Remark 3.2 (Computation of XOs(Xs(X •
s ))): In prac-

tical scenarios set XOs(Xs(X •
s )) can be approximated by

the sampling in t of the map S(t) � eActX ◦
s (X •

s ). Also,
it can be exactly over-approximated by a polytopic set,
following methods as the one proposed in Darup (2015),
which avoids the problemof selecting a sampling time for
the approximation.

4. Closed-loop design

In this section the attractivity of the generalised equilibria
under an impulsive feedback control law is defined and
two new explicit control strategies are discussed.

4.1. Attractivity of the equilibrium sets

In this section some stability definitions of the gen-
eralised equilibria are presented. Based on Sopasakis
et al. (2015), the attractivity of sets that not necessarily
contain the origin can be defined as follows.

Definition 4.1 (Attractive sets): A nonempty, closed
and convex set X1 ⊆ X is attractive for the closed-loop
system (7), with respect to a (nonempty, closed and con-
vex) set X2 ⊇ X1, with X ⊇ X2, if there exists a vicin-
ity of X1 such that limk→∞ distX1(φ(τk; x0, κ(·))) = 0,
and limt→∞ distX2(φ(t; x0, κ(·))) = 0, for all x0 in such
vicinity. If X2 ≡ Rn, then X1 is called weakly attractive.

Weak attractivity only accounts for the closed-loop
system (7) at the impulsive times, while attractivity also
specifies a second set where the continuous-time trajec-
tories between jumps converge. This makes sense given
that the trajectories between jumps are free responses
(nothing can be done until the next jump time) and
they could escape. An asymptotic stability definition is
also presented in Sopasakis et al. (2015), which basically
requires the uniform boundedness of the solution trajec-
tories. In this work, for the sake of simplicity, only the
attractivity of the control strategy is considered.

Next, some results regarding the attractivity of the
generalised equilibrium sets under a feedback control are
presented.

Theorem 4.2: Let X •Tar
s be an attractive set - in

the usual sense of attractivity of discrete-time sys-
tems - for the closed-loop UDS (10), x•(k + 1) =
A•x•(k) + B•κ(x•(k)). Then, the generalised equilibrium
set X Tar

s (X •Tar
s ) (or any subset of X Tar

s (X •Tar
s ) contain-

ing X •Tar
s ) is attractive for the closed-loop system (7),

controlled by κ(·), with respect to X Tar
Os

(X •Tar
s ).

Proof: Assume that X •Tar
s is attractive for the UDS (10),

controlled by κ(·), which means that there exists a vicin-
ity of this set such that limk→∞ x•(k) = x•

s , for some x•
s ∈

X •Tar
s . Then, given that x•(k) � φ(τk; x0, κ(·)), with

x•(0) = φ(0; x0, κ(·)) = x0, and X •Tar
s ⊆ X Tar

s (X •Tar
s ),

it follows that limk→∞ distX Tar
s (X •Tar

s )(φ(τk; x0, κ(·))) =
0 (i.e. X Tar

s (X •Tar
s ) is weakly attractive). Furthermore,

as limk→∞ x•(k) = x•
s for some x•

s ∈ X •Tar
s then, by

the continuity of the solution, the trajectories tr(k) �
{φ(t; x•(k), κ(x•(k))), t ∈ [τk, τk+1)} tend to the equi-
librium orbit os(x•

s , us(x•
s )), associated to x•

s ∈ X •Tar
s ,

as k → ∞. By the definition of the equilibrium orbit
set X Tar

Os
(X •Tar

s ), then os(x•
s , us(x•

s )) ⊆ X Tar
Os

(X •Tar
s ) for

every x•
s ∈ X •

s , which means that limt→∞ distX Tar
Os (X •Tar

s )

(φ(t; x0, κ(·))) = 0, and so X Tar
s (X •Tar

s ) is attractive
with respect to X Tar

Os
(X •Tar

s ) for the closed-loop
system (7). �

This result permits a flexible design of the controllers,
since it means that steering the UDS (10) to its corre-
sponding equilibrium region, X •Tar, implies to steer the
ICS (1) to X Tar

Os
(X •Tar

s ) ⊆ X Tar.

Property 4.1: Let trk(·) : I → Rn, with k ∈ N, the
sequence of trajectories (functions of t) defined as
trk(t) � φ(t; xk, κ(xk)) = eAct(xk + Bκ(xk)), with I =
[a,T] for some a>0.1 If xk converges to xs as
k → ∞ and κ(·) is continuous w.r.t. x on X , then
limk→∞ trk(t) = os(t), where os(·) : I → Rn is defined
as os(t) � φ(t; xs, κ(xs)) = eAct(xs + Bus(xs)).
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Proof: Given ε > 0, there exists a scalar N(ε) (which
does not depend on t, for uniform convergence), such
that ‖trk(t) − os(t)‖ < ε, for every k > N(ε).

As the sequence of states xk converges to xs, as k → ∞,
and the control law κ(·) is continuous w.r.t. x on X , it is
known that κ(xk) → κ(xs) = us, as k → ∞. This means
that there existNx(ε̃) andNκ(ε̃) such that ‖xk − xs‖ < ε̃

and ‖κ(xk) − xs‖ < ε̃, for an arbitrary ε̃ > 0, for every
k > max{Nx(ε̃), Nκ(ε̃)}. Particularly, this holds for ε̃ =
ε/M(1 + ‖B‖). Then,

|trk(t) − os(t)| =
∥∥∥eAct

(
xk + Bκ(xk) − eAct(xs + Bus

)∥∥∥
≤ ‖eAct‖ (‖xk − xs‖ + ‖B‖‖κ(xk) − us‖)
≤ M (ε̃ + ‖B‖ε̃) = ε,

for any k > N � max{Nx(ε̃),Nκ(ε̃)}, where M �
supt∈(0,T] ‖eAct‖. Given that ε̃ is a function of only ε (not
of t), then N = N(ε). This shows the uniform conver-
gence of trk(t) to os(t). �

Remark 4.1: Notice that the key point to prove conver-
gence is the continuity of trk(t) w.r.t. xk, in the sense
that small distances in xk corresponds to small distance
between the corresponding functions.

This property ensures that any stabilising feedback
control will steer the trajectories of the systems generated
by the control law to the orbit equilibrium, and there will
not be any escape of trajectories.

4.2. Affine feedback control

According to the control objective of steering the impul-
sive system to a non-zero equilibrium inside the target set
X Tar, the following control law is introduced:

Theorem 4.3: Consider an equilibrium x◦
s ∈ X ◦Tar

s ⊆
X Tar and a period T > 0. Assume that the triplet
(Ac,Ad,B) is controllable. Then, x◦

s ∈ X Tar
s is attractive for

system (7), with respect to X Tar
Os

, applying the control law
κ(x(·)) = −Kx(·) + ζ ,where parameters K and ζ are cho-
sen to fulfil ρ(F) < 1 and Bζ = (I − F)x◦

s , respectively,
with F = (Ad − BK) eAcT.

Proof: Consider the control law κ(x(τj)) = −Kx(τj) +
ζ to stabilise the impulsive system (1) at the equilibrium
x◦
s ∈ X ◦Tar

s ⊆ X Tar. Then, the discrete part of system (1)
becomes

x(τ+
j ) = (Ad − BK)x(τj) + Bζ , j = 1, 2, . . . . (18)

The state response after p impulses results

x(τ+
p ) =

( p∏
i=1

(Ad − BK) eAcT

)
x0

+
p∑

j=1

⎛
⎝p−j∏

i=1
(Ad − BK) eAcT

⎞
⎠Bζ . (19)

Since the impulses are periodically applied, Equation (19)
reduces to

x(τ+
p ) = Fpx0 + (

Fp−1 + Fp−2 + · · · + F + I
)
Bζ ,
(20)

where F � (Ad − BK) eAcT . This is a geometric series
based on the matrix F. Given that the triplet (Ac,Ad,B) is
assumed controllable, the parameter K is chosen to fulfil
ρ(F) < 1, which means that the geometric series con-
verges to (I − Fp)(I − F)−1 and Equation (20) becomes

x(τ+
p ) = Fpx0 + (I − Fp)(I − F)−1Bζ . (21)

Since the goal is to asymptotically steer the system to the
equilibrium x◦

s , it is required that

lim
p→∞ ‖x(τ+

p ) − x◦
s ‖ = 0. (22)

Now, replacing x(τ+
p ) by Equation (21) in (22), it follows

that

lim
p→∞ ‖Fpx0 + (I − Fp)(I − F)−1Bζ − x◦

s ‖ = 0 (23)

and, sinceK was chosen such thatρ(F) < 1, thenFp → 0
as p → ∞, which implies that

lim
p→∞ ‖x(τ+

p ) − x◦
s ‖ = ‖(I − F)−1Bζ − x◦

s ‖. (24)

If ζ is chosen to fulfil Bζ = (I − F)x◦
s , then limp→∞ ‖x

(τ+
p ) − x◦

s ‖ = 0, as it is desired. Now, given that
x◦
s ∈ X ◦Tar

s ⊆ X Tar
s , according to Definition 3.2 and

Theorem4.2,X Tar
s is attractive for the closed-loop system

with respect to X Tar
Os

. �

Notice that according to Xie and Wang (2005), the
controllability of the triplet (Ac,Ad,B) implies that there
exists a feedback K such the closed-loop system eigen-
values can be placed in arbitrary locations. Besides, if the
underlying discrete system (10) is such that the rank of
[λI − A•,B•] is n, for all λ ∈ C, then such an eigenvalue
placement problem can be solved by standard methods.

Remark 4.2: Consider the system (7), and the feedback
κ(x(·)) = −Kx(·) + ζ . If the output is affected directly by
the input, then the feedback gains can be chosen as ζ =
((CB)′CB)−1CB, and K = ζC.
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Remark 4.3: Consider the system (7), n=1, the feed-
back κ(x(·)) = −kx(·) + ζ , η ∈ [0, 1], and ε ∈ R+. If
k > (Ad − e−AcT)/B, ζ = ((1 − V)x◦

s /B)(1 − η(1 −
eAcT)), and T ≤ (1/‖A‖) log(sgn(Ac)ε + 1), then x◦

s ∈
X Tar
s is attractive for system (7) with respect to X Tar

Os
,

the systems is stabilised at x̂ = ηx−1•
s + (1 − η)x◦

s , and
‖φcl(t)‖ ≤ ε, for t ∈ (0,T].

4.3. Optimal feedback control

The common method to design a state feedback is by
solving a pole placement problem, as it was stated above.
However, a more challenging choice is to select the feed-
back according to the optimal control theory, in which a
general objective function isminimised. Next, it is shown
that the solution of the infinite continuous-time optimal
control problem - subject to an impulsive system - can be
obtained by solving a discrete-time optimisation problem
associated to the UDS.

The idea is to minimise the cost function

J(x, u) =
∫ ∞

0

{
x(t)′Qx(t) + u(t)′Ru(t)

}
dt, (25)

subject to

ẋ(t) = Acx(t), x(0) = x0, t �= τk,
x(τ+

k ) = Adx(τk) + Bu(τk), k ∈ N, , (26)

where Q ≥ 0 and R>0 are the state and control weight-
ing matrices, respectively.

The above problem is the linear quadratic regulator
(LQR) based on an impulsive system. The closed-loop
systemderived from the latter formulation steers the state
to the origin, as it is stated in the following Proposition:

Proposition 4.4: Assume that the triplet (Ac,Ad,B) is
controllable. Then, the solution of the problem(25)–(26) is
an impulsive feedback control, u(τk) = Kx(τk), with K =
((B•)′PB• + R̃)−1(A•PB• + S̃)′, where P is the solution
of the impulsive discrete-time algebraic Riccati equation
(iDARE)

P = Q̃ + (A•)′PA• − ((A•)′PB• + S̃)((B•)′PB•

+ R̃)−1((A•)′PB• + S̃)′, (27)

and

Q̃ = A′
dQ1Ad, R̃ = R + B′Q1B, S̃ = AdQ1B, (28)

with Q1 = ∫ T
0 eA

′θQ eAθ dθ and
(
Q̃ S̃
S̃′ R̃

)
> 0.

Proof: Note that the cost function J can be written as

J =
∞∑
i=0

∫ τi+1

τ+
i

{
x(t)′Qx(t) + u(t)′Ru(t)

}
dt. (29)

Now, taking into account that during the interval
(τi, τi+1] the state solution verifies x(t) = eAc(t−τi)

(Adx(τi) + Bu(τi)), the integral Ji = ∫ τi+1
τ+
i

{x(t)′Qx(t) +
u(t)′Ru(t)} dt becomes

Ji =
∫ τi+1

τ+
i

{
(eAc(t−τi)(Adx(τi) + Bu(τi))′Q eAc(t−τi)

×(Adx(τi) + Bu(τi)) + u(t)′Ru(t)δ(t − τi)
}
dt,

(30)

where δ stands for the Dirac function. After some
algebraic manipulations, Ji reads

Ji =
∫ τi+1

τ+
i

{
x(τi)′A′

d e
Ac

′(t−τi)Q eAc(t−τi)Adx(τi)

+ 2x(τi)′A′
d e

Ac
′(t−τi)Q eAc(t−τi)Bu(τi)

+ u(τi)′B′ eAc
′(t−τi)Q eAc(t−τi)Bu(τi)

}
dt

+ u(τi)′Ru(τi). (31)

Now, distributing the integral and defining Q1 =∫ τi+1
τ+
i

eAc
′(t−τi)Q eAc(t−τi) dt = ∫ T

0 eAc
′θQ eAcθ dt, Ji

results

Ji = x(τi)′Q̃x(τi) + 2x(τi)′S̃u(τi) + u(τi)′R̃u(τi). (32)

where Q̃ = A′
dQ1Ad, R̃ = R + B′Q1B, S̃ = AdQ1B. Intro-

ducing the last equation into Equation (29), the prob-
lem (25)–(26) is transformed into an infinite discrete-
time optimal control problem, where the cost function

J =
∞∑
i=0

x•(i)′Q̃x•(i) + 2x•(i)′S̃u•(i) + u•(i)′R̃u•(i).

(33)
is minimised subject to the primary underlying discrete-
time subsystem

x•(j + 1) = A•x•(j) + B•u•(j), x•(0) = x(τ0). (34)

As it is well-known, given that the triplet (Ac,Ad,B) is
controllable, the solution of this problem is obtained by
solving the corresponding DARE (27), and the resulting
control law is u(τk) = u•(k) = Kx•(k) = Kx(τk), with
K = ((B•)′PB• + R̃)−1(A•PB• + S̃)′. �

Remark 4.4: Note that the latter result can be extended
to the non-zero regulation problem by considering a new
state xe = r − Cy (where r is the non-zero set-point), the
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extended system with matrices Ae = ( A• 0
−C 0

)
, Be = (

B•
0
)
,

and penalising matrices Q and R of the appropriated
dimensions.

Next, the main Theorem of the subsection, show-
ing the attractivity of the closed-loop under the optimal
control law is provided.

Theorem 4.5: Consider an equilibrium x◦
s ∈ X ◦Tar

s ⊆
X Tar and a period T > 0. Assume that the triple
(Ac,Ad,B) is controllable. Then, x◦

s ∈ X Tar
s is attractive

for system (7), with respect to X Tar
Os

, applying the con-
trol law κ(x(·)) = −Kx(·) + ζ , where parameters K and
ζ are obtaining from the solution of the extended iDARE
equation.

Proof: It is straightforward from Proposition 4.4 and
Remark 4.4. �

Finally, an algorithm is provided to compute the opti-
mal feedback parameters.

(1) Verify that the triplet (Ac,Ad,B) is controllable.
(2) Choose the penalising matrices Q and R.
(3) Compute the matrices of the underlying subsystem

A• and B•, and their extended versions Ae and Be.
(4) Compute the matrices of the iDARE, Q̃, R̃, and S̃.
(5) Finally, solve the iDARE to obtain the feedback gain

K̂. Then, K = [K̂1 · · · K̂n] and ζ = K̂n+1, where K̂i
its ith element of K̂.

5. Numerical examples

5.1. Example 1: lithium ions distribution in the
human body

In Ehrlich et al. (1980) a physiological pharmacokinetic
model based on experimental data, which describes the
distribution of Lithium ions in the human body upon
oral administration, is provided. The system state vector
is given by x(t) = [CP(t) CRBC(t) CM(t)]T, where CP(t)
is the concentration of plasma (P), CRBC(t) is the con-
centration of the red blood cells (RBC), and CM(t) is the
concentration of muscle cells (M). All these concentra-
tions are given in nmol/L. The input u is given by the
amount of the dose, in nmol. The administration period
is initially fixed inT = 3 h. The dynamics of the drug dis-
tribution is described by an ICS as in (1), characterised by
the matrices

Ac =
⎛
⎝−0.6137 0.1835 0.2406

1.2644 −0.8 0
0.2054 0 −0.19

⎞
⎠ ,

B =
⎛
⎝10.9

0
0

⎞
⎠ , Ad = I3x3. (35)

The state window target is defined by X Tar = {x :
[0.4 0.6 0.5]T � x � [0.6 0.9 0.8]T}, as it is described in
Ehrlich et al. (1980) and Sopasakis et al. (2015).

The maximal intake period T for the given thera-
peutic window X Tar is given by Tmax = 6 h. In fact, for
larger periods the set containing all the orbits starting at
X •Tar
s ,X Tar

Os
(X •Tar

s ) is not contained inX Tar (which was
checked by simulation). This analysis provides a prac-
tical way to find the maximal value of T, according to
control system specifications. The intake period was then
selected to be T = 3 h.

To implement the impulsive affine feedback con-
trol of Theorem 4.3, it is necessary to compute K
and ζ . K was chosen by solving a standard eigenvalue
placement problem (Yang, 2001), and its value is K =
(0.05 0.01 0.02). The spectral radius was approximately
0.6807. The valueζ ≈ 0.0513 was computed from Bζ =
(I − F)x◦

s , with x◦
s = (0.57 0.78 0.55) and us = 0.89. The

input time evolution is shown in Figure 3 (blue) while the
state evolution is shown in 4 (blue). The performance of
the second method is also illustrated in Figures 3 and 4,
red line. To compute the feedback parameters,Q = I3×3,
R=2 were chosen. As the penalty matrix R is bigger than
Q, the control action results smaller than the produced by
the method 1 (pole placement). However, both strategies
steer the state to the desired non-zero set-point.

Given that one of themain advantages of the proposed
controller is its simplicity - mainly in contrast to other
model-based controller - a constrained impulsive MPC
controller (based on Rivadeneira et al., 2015; Sopasakis
et al., 2015) is also simulated. Figures 3 and 4 (black line)

Figure 3. Input time evolution. Method 1: pole placement feed-
back control, blue line; Method 2: impulsive optimal control, red
line; and impulsive MPC, black line.
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Figure 4. State time evolution. Method 1: pole placement feed-
back control, blue line; Method 2: impulsive optimal control, red
line; and impulsive MPC, black line.

also show the input and state time evolutions correspond-
ing to this controller. As it can be seen, the performance
of the feedback controller is satisfactory, while the state
and control constraints are not violated. As it is desired,
both controllers are able to steer the state to the therapeu-
tic window, in a relatively short time. Besides, the input
makes the main effort at the beginning, and after its set-
tling time it remains approximately constant around the
desired equilibrium value us.

The results presented here can be extended to fol-
low time variant trajectories as it is shown in Fig-
ures 5–6. In some biomedical applications it is necessary
to enclosed the behaviour of one state between two

known boundaries (see Tilbury, Felt, Kaciroti, Wang,
&Tardif., 2008). The strategies envisioned here can tackle
this situation. For example, two time variant known
bounds are added to the first state, the goal is that the
output behaviour remains surrounded by the two tra-
jectories (in this case a sine and cosine). To do this,
the same affine feedback tuned before was used, but the
affine part was calculated to compensate the new refer-
ence. This value was ζ = 0.0912. This way the system
follow the upper bound imposed. To track the lower
bound, the switching time (impulsive time instant) is
used as a second input, and it was forced to verify y(τk) =
z2(τk), where z2 is the lower bound. For this example, this
strategy works, but the whole situation must be further
analysed in a specialised case-study.

Figure 6. Control trajectory with lower and upper time variant
constraints.

Figure 5. State evolution with lower and upper time variant constraints.
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5.2. Example 2: HIV infection dynamics with
treatment

The second example is taken fromRivadeneira andMoog
(2012), a ‘3D HIV model’ (defined by T, y, z) which
describes the virus infection dynamics and incorporates
the effect of drug intake (w, u) (Legrand et al., 2003;
Mhawej, Moog, Biafore, & Brunet-Francois, 2010). The
completed impulsive model is given by:

Ṫ(t) = s − δT(t) − βT(t)z(t),

ẏ(t) = βT(t)z(t) − μy(t),

ż(t) =
(
1 − w(t)

w(t) + w50

)
ky(t) − cz(t),

ẇ(t) = −Kww(t),

w(τ+
k ) = w(τk) + u(τk), k ∈ N,

(36)

where healthy CD4 cells T are produced from the thy-
mus at a constant rate s (cells mm−3 day−1) and die
with a half life time equal to 1/δ (day). The healthy cells
are infected by the virus at a rate that is proportional to
the product of their population and the amount of free
virus particles. Constant β (ml copies−1 day−1) indicates
the effectiveness of the infection process. The infected
CD4+ cells (y) result from the infection of healthy CD4
cells and die at a rate μ (day−1). Free virus particles (z)
are produced from infected CD4 cells at a rate k (copies
cells−1 mm−3 ml−1 day−1) and die within a half life time
equal to 1/c (day). The pharmacokinetics and pharmaco-
dynamics phases of the drug administration are related
to w (the amount of drug in the body at time t) and
η = w(t)/w(t) + w50 (the efficacy of an anti-HIV treat-
ment, where w50 is the concentration of drug that lowers
the viral load by 50%). Although a cocktail of drugs is
generally used, only Zidovudine therapies will be con-
sidered. The model parameters are given by: s = 9, δ =
0.009, β = 4e − 6, μ = 0.3, k=80, c=0.6, Kw = 8.4
(day), w50 = 89.6 (mg) (see Rivadeneira & Moog, 2012
for details).

This model has two equilibria, the first one (or the
‘healthy’ equilibrium) characterised by the absence of
virus, i.e. (Th, yh, zh,wh) = (λ/δ, 0, 0, 0), and the sec-
ond one (or the ‘endemic’ equilibrium) dominated by
a virus concentration (Te, ye, ze,we) = ((ue + w50Kw)μc
/βκw50Kw, (s − δTe)/μ,w50Kwκye/c(ue + w50Kw),
ue/Kw). Notice that for ue = 0 (equilibrium control), the
maximum virus concentration is achieved.

To design both impulsive control strategies described
previously, the system is linearised around the endemic

equilibrium. The resulting matrices Ac and B are:

Ac =

⎛
⎜⎜⎜⎜⎝

−δze 0 −βTe 0
βze −μ βTe 0

0
kw50

we + w50
−c

−kw50ye
(we + w50)2

0 0 0 −Kw

⎞
⎟⎟⎟⎟⎠ ,

B =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ ,

The selected intake period is T=0.5 day. The state and
input constraints are imposed as X = {x : [0 0 0 0]T �
x � [1000 20 1500 100]T} and U = {u : 0 ≤ u ≤ 450},
respectively. The state window target is defined by
X Tar = {x : [900 0 0 0]T � x � [1000 5 250 60]T}. As it
is described in Rivadeneira andMoog (2012), the control
goal is to steer the system from the endemic equilibrium
to a healthy zone defined by X Tar. Besides, the anti-HIV
treatment is considered successful if z is below the thresh-
old of 50 copies/ml. These two objectives are represented
by the therapy or target window. However, this set should
be determined by the treating physician.

According to Theorem 4.3, K and ζ can be com-
puted as the impulsive system is controllable. K is
selected by a standard eigenvalue placement prob-
lem (Yang, 2001), and its value is K = [0.0349 −
33.8248 − 0.8414 0.9876]. The spectral radius was
approximately 0.92, which ensures attractivity. ζ is com-
puted from the condition Bζ = (I − F)x◦

s , with x◦
s =

[968.3053 0.3636 29.5146 52.2726] and its value is 4500.
The state and input time evolutions are shown in Figure 7
(blue circles and dotted line).

Also for comparison a MPC controller is tuned as:
N=35,Q = diag([1 1 1 1]), R=0.1 and p=10000 based
on Rivadeneira et al. (2015). Figure 7 (black stars and
solid line) shows the state and input time evolutions. The
impulsive feedback for the HIV example does not gen-
erate a feasible control at the beginning; its values are
beyond the medical constraint settled in 450mg of drug.
This forces to saturate the doses, which is not a recom-
mended practice. However, this situation has not a great
impact in the overall performance, and the simplicity of
the feedback remains being its main feature.

Other behavioural difference between the two control
strategies is that the impulsive feedback injects to the sys-
tem a bigger amount of drug, to compensate the elevated
initial virus concentration. On the other hand, MPC is
more conservative because of its well-known anticipative
properties. This way, the feedback fulfils the medical goal
of steering the virus concentration below the threshold of
50 copies/ml faster than the MPC. However, it should be
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Figure 7. State time evolution. Feedback control, blue line; MPC,
black line.

emphasised that an excessive amount of drug can pro-
duce dangerous side-effects on the patient (Costanza,
Rivadeneira, Biafore, & D’Attellis, 2010). On the whole,
this situation must be analysed more deeply in an ade-
quate framework and it will be certainly studied in future
works.

6. Conclusions

In this work, the non-zero set-point regulation problem
of a linear impulsive system has been tackled. To this
aim, the impulsive system dynamic was characterised
by means of two discrete-time underlying subsystems,
that allow not only to cope with the transient impul-
sive behaviour but also to define generalised equilibrium
regions out of the origin. The idea is to determine these
regions in such away that they contain both, the disconti-
nuities (jumps) and the free responses of the system, once
it reaches a pure periodic behaviour. Based on the latter
framework two feedback controllers were proposed, and
the necessary-sufficient conditions for stability were pro-
vided. The benefits of the proposal were finally tested in
two biomedical applications, which naturally incorporate
the impulsive scheme. Future works include the study of
impulsive systems with variable impulse times, in order
to cope more efficiently with drug administration appli-
cations, such as HIV, influenza, cancer and other similar
diseases.

Note

1. We consider here, for simplicity, the fixed time interval I
instead of (τk, τk+1] because τk+1 − τk = T for all k ∈ N
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