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ARTICLE INFO ABSTRACT

Keywords: Integrating field-based and remotely sensed data has proven valuable for assessing on-the-ground diversity of
Argentina plants across a range of spatial scales. Here we assessed whether remotely sensed data is a good indicator of
DesertAeCOSYStem vegetation composition and structure in dry, Prosopis flexuosa-dominated woodlands. Our objectives were (1) to
IIZ gsh?ei Sﬂm‘osa quantify on-the-ground vegetation composition and structure using (A) field-based methods and (B) remotely

sensed images and analysis techniques, and (2) to evaluate how well the data extracted from remotely sensed
data estimate field-based measures of vegetation composition and structure. We selected 40 individuals of P.
flexuosa in Ischigualasto Provincial Park (San Juan, Argentina) and its influence zone. Each individual was the
center of a plot (1500-m?) where we recorded richness (compositional indicator) and abundance (structural
indicator) of trees, shrubs and other plants (i.e. cacti, grasses and forbs). To assess woodland structure, we
evaluated canopy area of each P. flexuosa and the proportion of adult P. flexuosa trees in a plot. In addition, we
used Landsat 8 OLI to calculate SATVI (Soil Adjusted Total Vegetation Index) values from the pixel that cor-
responds with the center of each sample plot, and then estimated first- and second-order texture measures (in
3 x 3 and 5 x 5 moving window sizes). We fitted generalized linear models with different error distributions.
Vegetation richness was significantly and directly related to range and entropy (3 x 3 and 5 x 5 windows). Both
trees and shrubs, were related to SATVI values and first- and second-order means (3 X 3 and 5 X 5 windows).
Moreover, shrub abundance was inversely related to range and entropy (5 x 5 window); and the “other plants”
group was inversely related to first- and second-order means in the same window. Variance of the canopy area
was directly related to range (5 X 5 window); however, proportion of adults was not related to remote sensing
data. Our findings suggest satellite imagery-derived image texture is a valuable tool for management and con-
servation, and can indicate areas of high plant species richness and abundance of trees and shrubs and help
differentiate areas of different canopy sizes in dry P. flexuosa-dominated woodlands of Argentina.

Texture measures
Woodland structure

2015). This approach could include monitoring indicators of composi-
tional, structural, and functional biodiversity. Compositional indicators
include identity attributes, such as species richness, relative abundance,
frequency, and proportions of endemic, exotic, threatened and en-

1. Introduction

Woodlands around the world have undergone substantial change in
the past decades as a result of expanding human populations and

economies (Allen et al., 2010). Changes in the quantity and quality of
woodlands worldwide affect important global-scale ecosystem services
including biodiversity, climate regulation, carbon storage, and water
supplies (Hansen et al., 2013). If maintaining woodland ecological in-
tegrity is a goal of conservation, then it is necessary to evaluate the
condition of this ecosystem using biodiversity indicators that allow
quantifying spatial and temporal changes in vegetation (Lawley et al.,

dangered species. Structural indicators, on the other hand, are measures
of the three-dimensional arrangement of vegetation, such as density of
different plant forms, canopy cover, vegetation biomass, foliage density
and layering, distribution of key physical features and ground compo-
nents (Noss, 1990). Assessing the performance of indicators and their
monitoring is a key aspect of management programs and practices
(Pyke et al., 2002; Gaitan et al., 2013).
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Indicators of compositional, structure, and biological diversity can
be measured using both field- and remotely-based measurements. These
two methods have some differences in their spatial and temporal scales
of application, costs, expertise required and, importantly, in the dif-
ferent environmental attributes and indicators each can quantify
(Lawley et al., 2015). On the one hand, the need to locate site within
homogeneous patches of vegetation probably depends on the research
questions and scale of the study. According to Oliver (2002) for
woodland and open forest vegetation communities in New South Wales
(Australia), indicators of vegetation condition are obtained from field-
based assessment, such as alpha diversity of native trees, cover of native
and exotic species, cover of organic litter, and recruitment of native
tree/shrub saplings, among others. However, shortcomings of this
method are inconsistencies between different plot sizes, lack of re-
plication and lack of multiple spatial scales. Field-based approaches are
thus costly and time consuming, and difficult to implement in remote
areas (see review Lawley et al., 2015). On the other hand, remotely
sensed data is increasingly recognized for its applicability to ecological
research, which includes quantifying and classifying land features,
modeling ecosystem functions such as net primary productivity, map-
ping land cover change, and is used as a proxy for species richness and
biodiversity across multiple spatial scales (see review Bradley et al.,
2012). The ability of researchers to accurately measure vegetation
characteristics using remotely sensed data varies with the sensor (i.e.
spatial, spectral and temporal resolutions), background characteristics,
and vegetation attributes of individual species such as size, shape, ag-
gregation, phenology and physical structure such as canopy cover
(Lawley et al., 2015).

In vegetation science and landscape ecology, remotely sensed
images can be processed and classified using image processing software
(Palmer et al., 2002). Classification of landscape into discrete units with
specific climate, landforms, soils and vegetation provides a foundation
for monitoring, conservation and management. Landscape stratification
has been practiced worldwide and classifications are refined or updated
as more information and data become available (Miicher et al., 2010).
However, classification of an image to obtain discrete land cover classes
can result in an important loss of information, such as within-class
spatial variability in on-the-ground local attributes (e.g., vegetation
cover or density). Moreover, another difficulty could be defining
boundaries at transition zones between different land cover types (i.e.
ecotones), or could involve an expensive process when an extensive
ground-truthing survey is necessary to discriminate between different
cover types (St-Louis et al., 2006). An alternative that addresses these
drawbacks is the use of raw, unclassified imagery (Nagendra, 2001).

The reflectance of an image could be assessed by using spectral
vegetation indices, which allow us to detect green vegetation re-
flectance and can be calibrated to indicate biomass, vegetation cover,
productivity and vegetation types (see review Goiran et al., 2012). The
variability in reflectance values among neighboring pixels, caused by
horizontal and vertical variability in plants, can be captured by mea-
sures of an image texture, which quantify heterogeneity within a de-
fined area of an image as a continuous variable (St-Louis et al., 2006,
2009; Bellis et al., 2008; Wood et al., 2012, 2013; Campos et al., 2015,
Campos et al., 2016a,b). Image texture is an image analysis approach
that can be applied to remotely sensed images to measure spatial
variability in gray tones (e.g., for Digital Aerial Photographs) or re-
flectance values (from multi-spectral satellite data, Haralick et al.,
1973). These indices have been used for characterizing vegetation
patterns (Ge et al., 2006) and have been successfully applied to dif-
ferent species and environments to predict occurrence of bird species in
grassland (Bellis et al., 2008), desert ecosystem (St-Louis et al., 2006,
2009), grassland, savanna, and woodland (Wood et al., 2012) as well as
occurrence of large-sized mammals (Tragelaphus eurycerus isaaci, Estes
et al., 2008) and small mammals (Octomys mimax, Campos et al., 2015).
Since remote sensing data represents a powerful tool for deriving
quantitative information about diversity, attempts were made to predict
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species richness by means of spectral heterogeneity. Species richness is
a compositional indicator that has been widely used in research, since it
is a direct proxy for a-diversity, i.e. the local diversity of a site (see
review Rocchini, 2007). NDVI (Normalized Difference Vegetation
Index) texture, as opposed to NDVI only, accounted for 65% of the
variability in plant species richness in the Canadian Arctic (Gould,
2000) and predicted up to 43% of the variability in hardwood forest
leaf area index (LAI) in Canada (Wulder et al., 1998). Moreover, texture
of NDVI was the best predictor of bird species richness among all of the
measures from individual Landsat TM bands in the Chihuahuan Desert,
New Mexico (St-Louis et al., 2009). Identification and monitoring of
sites with high species richness within a landscape can provide a basis
for future monitoring and an ecological basis for species management
and conservation (Rocchini, 2007).

In our research, we assess whether remote sensing data-derived
image texture metrics are a good indicator of vegetation composition
and structure at different scales, using as case study the dry woodlands
of Prosopis flexuosa in the Monte Desert of Argentina, a dominant tree
and therefore a key species in this ecosystem (Rossi and Villagra, 2003;
Cesca et al., 2012). Our objectives were: (1) to quantify on-the-ground
vegetation composition and structure using (A) field-based methods
and (B) remotely sensed images and analysis techniques; and (2) to
evaluate how well the data acquired from remotely sensed imagery
estimates field-based measures of vegetation composition and structure
in dry woodlands.

2. Methods
2.1. Study area

The study was conducted in Ischigualasto Provincial Park (Fig. 1),
San Juan province, Argentina (29°55’S, 68°05’ W) and its zone of in-
fluence. The Park has an area of 62,916 ha and is located in a hyper-arid
sector of the Monte Desert, which corresponds to the northern section
of Monte of hills and closed basins (Monte de Sierras y Bolsones).
Average annual precipitation is 100 mm (Labraga and Villalba, 2009).
Temperature is characterized by considerable day/night variations and
a wide range throughout the year, (Abraham and Martinez, 2000);
mean annual temperature is 22 °C, with a maximum of 45°C and a
minimum of —10 °C (Cortez et al., 2005). The study area is dominated
by outcrops of sandstones with varying salt content; moreover, there
are areas of fine-textured substrata (sands and clays) where water ac-
cumulates after a rainfall event (Marquez et al., 2005). The vegetation
is xerophytic due to the low rainfall and high temperatures, with het-
erogeneous cover that ranges from 5 to 80% (Marquez et al., 2005).

2.2. Field survey

Fieldwork was conducted from August to December of 2016. We
selected 40 individuals of P. flexuosa about 3m tall (spaced at least
300 m apart, Fig. 2), and each of them was taken as the center of a
1500 m? plot (0.15ha). For the purpose of our study, we wanted to
focus on areas most likely to have one or more individuals of P. flexuosa.
We therefore located our study plots where we could find trees along
roads, which are known to be used for movements of the species’ main
dispersers (medium and large mammals, Campos et al., 2016a,b). Inside
each plot, we ran five 30 m-long transects separated by 10 m, and listed
all species of plants in 20 subplots (3 X 2 m, separated by 6 m), as well
as recorded the number of individuals of each species. Based on this
information, we calculated richness (compositional indicator) and
abundance (structural indicator) of plants. To obtain a plot-level mea-
sure of richness, we recorded the tally of species across all subplots. To
account for variations in the vertical structure of vegetation, we clas-
sified plant species into three groups (trees, shrubs, and other plants
incl. cacti, grasses and forbs) and we summed up the total number of
individuals belonging to each of the three groups across all subplots to



V.E. Campos et al.

Ecological Indicators 88 (2018) 63-70

Fig. 1. Map of Ischigualasto Provincial Park and sample plots.

Fig. 2. Dry woodland of P. flexuosa in Ischigualasto Provincial Park.

obtain a plot-level measure of group abundances.

To assess woodland structure, for each P. flexuosa tree considered in
a sub-plot we recorded: basal diameter of each shaft, tree height and
canopy dimensions (largest and smallest diameters). The equivalent
basal diameter for each P. flexuosa tree was calculated using the for-
mula employed by Alvarez et al. (2006), which considers the diameter
of each shaft. Because basal diameter, height and canopy area were
strongly correlated (p > |0.8|) we considered only the canopy area of
P. flexuosa for the analysis. Because we were interested in knowing
whether P. flexuosa woodland was renewed, we calculated variance of
canopy area in each plot and proportion of adult P. flexuosa trees in
relation to the total number of individuals. We considered an individual
with a basal diameter less than 7.5cm to be a juvenile tree (Alvarez
et al., 2006).

2.3. Remote sensing variables

We used a 30-m resolution Landsat 8 Operational Land Imager (OLI)
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image (path 232 row 081) acquired on 24 January 2016 (U.S.
Geological Survey, Earth Explorer, 2107) for quantifying vegetation
composition and structure. The image was rescaled to the Top Of At-
mosphere (TOA) reflectance with a correction for the sun angle using
coefficients provided in the product metadata file. The image was re-
ported to have less than 1% cloud cover.

Several satellite-derived vegetation indices, especially those ob-
tained from the difference between near-infrared and visible red bands,
such as NDVI (Normalized Difference Vegetation Index), are estimators
of green and vigorous vegetation, but have shown limited success in
measuring senescent and leafless vegetation (Goiran et al., 2012). As in
other deserts around the world, the vegetation of the Monte Desert in
the arid West of Argentina is organized as a two-phase mosaic com-
posed of a phase of shrub- (i.e. Larrea spp.) or tree- (i.e. Prosopis spp.)
dominated patches alternating with sparsely covered areas (Bisigato
et al., 2009). Moreover, most vegetation of the Monte Desert has small
leaf area and non-photosynthetic tissues for extended periods (Goiran
et al., 2012), thus the most commonly used vegetation indices (e.g.,
NDVI) are not appropriate for mapping or quantifying the amount of
green biomass (Goirdn et al., 2012; Campos et al., 2015). Because of
this, we calculated SATVI (Soil Adjusted Total Vegetation Index;
Marsett et al., 2006), which is sensitive to both green and senescent
vegetation, and which includes a parameter that normalizes the effect
of bare soil:

Pbands Pbanda

SATV] = —————————
Pbandse + Pbanda +L

x (1 + L)_pbc;mﬁ

where p is reflectance values in different bands of the OLI sensor. SATVI
considers the shortwave infrared (band 6) and the mid infrared (band
7) reflectance instead of near-infrared used in the calculation of NDVI,
the green index widely used in research. Moreover, SATVI has a para-
meter (L) that minimizes the effects of soil background on the vegeta-
tion signal. Huete (1988) recommended three values of L factor: L = 1
for analyzing very low vegetation densities; L = 0.5 for intermediate
vegetation densities, and L = 0.25 for higher densities. Since our focus
was on areas that were vegetated within dry woodlands of P. flexuosa,
we used an intermediate L value (i.e. 0.5) in SATVIL.

Image texture contains important information about the spatial and
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Table 1

Summary statistic for field-based data at plot-level. Shown here are mean ( = SE), minimum and maximum values of variables. Variance of canopy area in P. flexuosa was logarithmic

transformed.
Field-based data Mean * SE Min-Max Remote sensing data Mean * SE Min-Max
Richness 11.40 = 0.53 7-22 SATVI 0.06 = 0.00 —0.04 to 0.11
Abundance of trees 11.00 + 2.37 0-78 First-order mean at 3 x 3 0.05 = 0.00 —0.03 to 0.10
Abundance of shrubs 86.72 = 17.77 16-574 First-order range 3 x 3 0.04 = 0.00 0.01-0.09
Abundance of cacti 12.05 + 2.71 0-78 First-order mean at 5 X 5 0.05 + 0.00 —0.03 to 0.10
Abundance of grasses 57.25 + 18.22 0-574 First-order range 5 x 5 0.06 = 0.00 0.03-0.11
Abundance of forbs 11.07 + 3.46 0-127 Second-order mean at 3 x 3 33.69 + 0.18 30.22-35.89
Variance of canopy area 7.62 = 0.29 4.00-10.12 Second-order entropy 3 X 3 1.37 = 0.08 0.35-2.20
Proportion of adult trees 0.75 = 0.04 0.33-1.00 Second-order mean at 5 x 5 33.52 + 0.18 30.32-35.80

Second-order entropy 5 X 5 1.80 = 0.07 0.76-2.64

structural arrangement of objects (Haralick et al., 1973). First-order
texture measures are based on the number of occurrences of each gray
level, or reflectance, value within a given processing window. Second-
order texture measures use a gray-level co-occurrence matrix (GLCM) to
calculate texture values, which indicates the probability that each pair
of pixel values co-occurs in a given direction and distance, and there-
fore allows taking into account the spatial relationship among neigh-
boring pixels (Hall-Beyer, 2007; Haralick et al., 1973). We used the
following texture measures: first-order (mean, range, variance) and
second-order (mean, variance, contrast, entropy, and angular second
moment; Appendix 1).

The values of the SATVI green index were extracted from the pixel
that corresponded to the center of each sample field plot. Moreover, to
consider different scales, we calculated first-order texture measures
using 3 X 3 (equivalent to 90m X 90m, area 0.81ha) and 5 X 5
(equivalent to 150 m X 150 m, area 2.25 ha) moving window sizes, i.e.
the pixel values within a moving window were used to calculate a
statistic that was assigned to the central pixel (Hall-Beyer, 2007;
Haralick et al., 1973). We did not evaluate a window size larger than
3 X 3 or 5 X 5, because it would be far from the plot level and, as
proposed by Anys et al. (1994), if the window size of analysis is too
large, it could overlap different features and introduce spatial errors.
Second-order texture measures were calculated using the same moving
windows. Considering the distance between two neighboring pixels,
second-order texture measures were calculated from the GLCM in four
directions (0, 45, 90, and 135 degrees) and averaged so as not to infer
directionality (Haralick et al., 1973). All texture measures were calcu-
lated with the SATVI image because we were interested in capturing
spatial heterogeneity in vegetation. All remote sensing variables were
calculated using ENVI GIS (ENVI, 2015) and Quantum GIS (2016,
Version 2.18.2 “Las Palmas”).

2.4. Statistical analysis

To investigate whether spatial variability in on-the-ground compo-
sitional and structural indicators were characterized by SATVI and
image texture measures (first-order mean, range, variance, and second-
order mean, variance, contrast, entropy, and angular second moment)
at different moving window sizes (i.e., 3 X 3 and 5 X 5 window sizes),
we employed generalized linear models (GLMs). We included field-
based data on: a) richness (compositional indicator), b) abundance of
plants (i.e. trees, shrubs, other plants), ¢) variance of canopy size and d)
proportion of adult P. flexuosa trees in relation to all individuals of P.
flexuosa in a plot (b, ¢ and d: structural indicators) as dependent vari-
ables. We used GLM models with a Poisson error distribution to model
species richness and abundance of plants. We used a negative binomial
error distribution for those variables showing overdispersion (abun-
dance of trees, shrubs, other plants; Crawley, 2007). We log-trans-
formed variance of canopy size because model residuals from the raw
data were not normally distributed (Zar, 1999). We used beta regres-
sion models (Cribari-Neto and Zeileis, 2010) for modeling the
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proportion of adult P. flexuosa in a plot because the data is bounded
between 0 and 1. All fixed variables were standardized by z-scores prior
to analysis. To identify collinearity between fixed variables at each
scale (3 x 3 and 5 X 5 moving windows) and order (first and second),
we used Spearman rank correlation, a non-parametric measure of sta-
tistical dependence (Zar, 1999). We excluded variables when the r
coefficient was > |0.6|; therefore, we used the following subset of
texture measures: first-order mean and range in 3 X 3 and 5% 5
moving windows; second-order mean and entropy in 3 X 3 and 5 X 5
moving windows. For each response variable, we considered scales and
different orders of texture measures (i.e. first and second) in different
models, due to their strong correlation when considered within the
same model. For each full model, a backward elimination procedure
was used to remove insignificant variables without losing important
information. We calculated a pseudo R? (Zuur et al. 2009), with de-
viance values of the best models:

null deviance—residual deviance
%100
null deviance

To check for spatial-autocorrelation among sampling points, we
fitted semivariograms with the Pearson residuals of the regression
models (Zuur et al., 2009). 95% confidence envelopes based on 99
permutations of the model residual values across all locations were
constructed to evaluate departure from the assumption of no spatial
autocorrelation (Ribeiro and Diggle, 2016). We found no evidence of
spatial autocorrelation in the model residuals. All statistical analyses
were conducted in R (R Core Team, 2017) using the following packages:
“sp” (Pebesma and Bivand, 2005; Bivand et al., 2013), “geoR” (Ribeiro
and Diggle, 2016), “MASS” (Venables and Ripley, 2002) and “betareg”
(Cribari-Neto and Zeileis, 2010).

3. Results

Shrubs were the most abundant group, represented by Atriplex spp.,
Plectrocarpa tetracantha, Larrea cuneifolia, Lycium spp., Suaeda divaricata
and P. torquata, in decreasing order (Table 1 and Fig. 3). The group
containing cacti, grasses and forbs (i.e. “other plants” group) was
second in abundance, followed by trees (P. flexuosa and Geoffroea
decorticans, Table 1 and Fig. 3). In the “other plants” group, grasses
were first in abundance, followed by cacti and forbs (Table 1 and
Fig. 3). P. flexuosa individuals reached heights of up to 8.20 m, with a
mean of 2.25m. Mean canopy size was 49.58 m? and mean basal dia-
meter was 16.56 cm?, with a maximum canopy size of 395.84 m? and a
basal diameter of 60.00 cm?.

Our models explained up to 24% of the variability in species rich-
ness (Table 2). At different scales, 3 x 3 and 5 X 5 moving windows,
species richness was significantly and directly related to range and
entropy (Table 2). The models for abundance of trees, shrubs and the
“other plants” group explained up to 15%, 29% and 11% of the
variability, respectively (Table 2). Abundance of trees was directly re-
lated to SATVI and first- and second-order means in 3 X 3 and 5 X 5
moving windows (Table 2). Abundance of shrubs was directly related to



V.E. Campos et al.

o [
(=3
S 4
n
)
o (o]
S 4
<
@
o
§ 8
o el
c (o]
3 o
<
o
S
« 8
1 o
o H —
S - ! H
= ° ) '
9 o :
8 E 8 — E
—F H
o 4 EBEe= —_— e
T T T T T
Trees Shrubs Forbs Cacti Grasses

Fig. 3. Box plot for abundance of trees, shrubs and “other plants” group (i.e. cacti, grasses
and forbs) in the study area.

SATVI, first-order mean (3 X 3 and 5 X 5), second-order mean (3 X 3);
and inversely related to range and entropy in the 5 X 5 moving window
(Table 2). The “other plants” group was inversely related to first- and
second-order means in the 5 X 5 moving window (Table 2). The var-
iance of canopy area in a plot was directly related to range (5 X 5), this
model explained up to 16% of the variability (Table 3). However, the
proportion of adult trees was not significantly related to any of the
remote sensing data (Table 3).

4. Discussion

Species richness has been measured in many places and over long
time periods, because it is a useful tool for detecting diversity hotspots,
thus being an indicator of ecological condition or conservation value
(see review Rocchini, 2007). When classified images are used to detect
species-rich sites through remotely sensed data, loss of information
occurs because the classification process by definition uses a wide array
of continuous quantitative information to categorize each pixel into a
few discrete classes (Palmer et al. 2002) that cannot capture within-
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class variability (St-Louis et al., 2006). Continuous variables, such as
texture measures derived from satellite imagery, are increasingly used
to quantify heterogeneity within a defined area (St-Louis et al., 2006,
2009; Bellis et al., 2008; Wood et al., 2012, 2013; Campos et al. 2015,
Campos et al., 2016a,b) because variability in reflectance values among
neighboring pixels can reflect spatial heterogeneity in plant distribution
at a finer scale than image classification, and thus can capture more
subtle changes in vegetation characteristics (St-Louis et al., 2009).
Texture measures have been developed in different environments to
predict habitat for species and to characterize vegetation patterns (Ge
et al., 2006). Range and entropy are measures of image heterogeneity,
since the first is the difference between the highest and lowest values of
SATVI and the second is a measure of disorder in the image. Both
texture measures were positively related to species richness, thus,
higher spectral variability captured higher on-the-ground species rich-
ness. This finding goes hand in hand with that summarized by the
Spectral Variation Hypothesis, which proposes a link between spectral
heterogeneity and biodiversity only in terms of species richness (Palmer
et al., 2002).

The relationship between spectral heterogeneity and species rich-
ness is scale dependent because ecological processes operate at different
scales (Rocchini et al., 2004). Variability in plant species richness was
not captured by pixel-level SATVI values (0.09 ha), however, vegetation
heterogeneity captured by image texture measures explained up to 24%
and 17% of the variability in species richness using 3 x 3 (0.81 ha) and
5 X 5 (2.25 ha) moving windows, respectively. Although the explained
variance was relatively low, these variables had a significant and po-
sitive relationship with species richness. Rocchini et al. (2004) found
that the measure of spectral heterogeneity was able to predict about
20% of the variance of species richness on a 0.01-ha area (high spatial
resolution) and 48% on a 1-ha area (low spatial resolution). However,
our results showed that a 2.25-ha area is too low a spatial resolution to
represent richness in Prosopis woodland, so the explained variability
decreases compared to 0.81 ha. When spatial resolution is too low,
discriminating by spectral variation becomes difficult (see review
Nagendra, 2001).

In our study, abundance of shrubs was higher than that of cacti,
grasses, forbs, i.e. the “other plants” group, and trees. Both, the green
index itself and the first- and second-order mean texture measures (in
3 x 3 and 5 X 5 moving windows) were related to shrub and tree

Table 2
Results of best models between field-based (richness, abundance of trees, shrubs and other plants -cacti, grasses and forbs-) and remote sensing data (i.e. first- and second-order texture
measures of SATVI). Shown here are parameter estimates ( = SE), p-values for significance (* = P < 0.05; ** = P < 0.01, *** = P < 0.001) and pseudo R? for models.
Field-based data Order of texture measures Moving window Remote sensing data Estimate + SE p-value pseudo R?
Richness SATVI 0.03 + 0.05 0.57 0.88
1st order 3x3 Mean 0.06 = 0.05 0.21 13.03
Range 0.10 = 0.05 *
5x5 Range 0.12 + 0.05 * 17.44
2nd order 3x3 Entropy 0.10 = 0.05 * 23.68
5X5 Entropy 0.10 = 0.05 * 12.14
Abundance of trees SATVI 0.39 + 0.18 * 10.94
1st order 3x3 Mean 0.49 = 0.18 i 14.02
5x5 Mean 0.46 = 0.18 ol 11.98
2nd order 3x3 Mean 0.50 = 0.18 wx 14.45
5X%X5 Mean 0.46 = 0.18 o 11.80
Abundance of shrubs SATVI 0.30 = 0.14 * 11.68
1st order 3x3 Mean 0.33 = 0.13 * 15.34
5X%X5 Mean 0.27 = 0.13 * 25.57
Range —-0.29 = 0.13
2nd order 3x3 Mean 0.31 = 0.14 * 13.19
5%x5 Entropy —0.45 = 0.12 el 28.62
Abundance of other plants SATVI —-0.14 = 0.15 0.38 2.12
1st order 3x3 Mean —-0.25 = 0.15 0.10 6.97
5x5 Mean -0.30 = 0.15 * 9.96
2nd order 3x3 Mean —0.25 + 0.15 0.10 11.37
5%x5 Mean —0.30 = 0.15 * 9.58
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Table 3
Results of linear regression between field-based (variance of canopy area in P. flexuosa and proportion of adult trees) and remote sensing data. Shown here are parameter estimates
( = SE), p-values for significance (* =P < 0.05; ** =P < 0.01, *** = P < 0.001) and pseudo R? for models.
Field-based data Order of texture measures Moving window Remote sensing data Estimate *+ SE p-value Pseudo R?
Variance of canopy area in P. flexuosa SATVI —0.10 = 0.33 0.76 0.32
1st order 3x3 Range 0.40 = 0.26 0.14 7.45
5x5 Range 0.62 + 0.26 16.13
2nd order 3x3 Entropy 0.03 = 0.02 0.15 6.89
5%X5 Entropy 0.03 = 0.02 0.28 3.85
Proportion of adult trees of P. flexuosa SATVI -0.11 = 0.18 0.52 1.60
1st order 3x3 Mean —0.08 = 0.18 0.66 0.91
5X5 Range —-0.13 = 0.18 0.49 1.62
2nd order 3x3 Mean -0.10 = 0.18 0.60 1.32
5x5 Entropy 0.11 = 0.18 0.56 1.22

abundance. The satellite sensor would be capturing the most abundant
shrub species, which also have lots of vigorous green leaves, i.e. L.
cuneifolia, followed by S. divaricata and P. torquata. Moreover, we found
an inverse relation between shrub abundance and texture measures of
heterogeneity (range and entropy), which shows that, at large scale,
shrubs are captured by the satellite sensor as homogeneous patches of
vegetation. On the other hand, despite their low abundance, trees were
positively related to SATVI and mean texture measure, probably be-
cause they have green stems, e.g. C. praecox and G. decorticans, and a lot
of green leaves in summer (January), e.g. P. flexuosa. In the Monte
Desert, plant patches are dominated by shrubs and/or trees which are
associated with soils bearing high nutrient concentrations (i.e. fertility
islands) as a consequence of erosion and sedimentation/accumulation
processes, therefore they are key structures throughout this ecosystem
(see review Bisigato et al., 2009).

Measuring the structural heterogeneity of woodlands allows asses-
sing their condition and dynamics, regeneration patterns, microclimate
variation, habitat availability for wildlife and economic aspects (see
review Zenner and Hibbs, 2000). Our results show that variance of
canopy area was positively related to range in the 5 X 5 moving
window, despite the low variability explained by the model. Image
range (i.e. the difference between the highest and lowest values of a
contiguous set of pixels) is a texture measure of heterogeneity, so its
significant and direct relationship with variance of canopy area would
make it an indicator of variability in age structure, which could be a
proxy for the reproductive status of these Prosopis woodlands. Probably,
the low variability explained by the model is because juvenile trees are
poorly captured by the image due to their morphologic characteristics
(i.e. short-statured, simple vertical canopy structure and relatively low
canopy cover). The structural heterogeneity of the woodland affects
important ecological patterns and processes such as availability of ha-
bitat and resources, diversity of organisms, seed regeneration, recruit-
ment and microclimate (see review Valbuena et al., 2012). We consider
that further research is needed to assess the structural heterogeneity of
the woodland through remote sensing data, which ensures a broader
applicability of these measures in desert ecosystems.

In our study area, occurrence of P. flexuosa is strongly associated to
its main dispersers (medium- and large-sized mammals) which use
areas close to roads (manuscript in preparation). Therefore, the sam-
pling plots in our study site were set up near roads. Because of this,
future research should consider assessing these proxies for determining
the composition and structure of P. flexuosa woodland in other areas
with different ecological features. Moreover, possibly the environ-
mental heterogeneity of our study area, characterized by highly diverse
topography, aspect and drainage, has an influence on texture measures

Appendix 1

due to the effect of hills and shadows, even when using a vegetation
index (Matsushita et al., 2007).

Conservation strategies require information on the status of wood-
lands in dryland systems because they are a fundamental determinant
of key ecosystem processes. Field-based and remote sensing data are
two different methods that allow monitoring the woodland status
through ecological indicators. Field-based data provide indispensable
information which can be difficult to acquire across broad spatial ex-
tents. However, remote sensing offers systematic spatial and temporal
data on vegetation attributes, which can be evaluated at broad scale
(Nagendra, 2001; Lawley et al., 2015). Our findings will contribute to
identifying sites with high species richness, abundance of shrubs and
trees, through remotely sensed data. Moreover, measures of texture
could be a useful tool for ascertaining whether the woodland is re-
newed, since they are related to variability in the canopy area of P.
flexuosa. Future work is needed to assess the applicability of image
texture to other ecosystems, using high-resolution spectral or spatial
satellite imagery, and satellite imagery obtained from other sensors
(e.g. radar image). Furthermore, to develop appropriate methods for
predicting biodiversity, scientists need to understand the effects of the
main drivers of biodiversity (e.g. latitude, elevation, climate, pro-
ductivity, human disturbance) and their influence across a range of
spatial scales. These causal variables and these effects are still debated
(Lavers and Field, 2006). Anyway, as a first step, this work expands our
understanding about the relationship between field-based data and
remote sensed data, providing evidence that SATVI and texture mea-
sures could be used as a proxy for richness, abundance of shrubs and
trees, and canopy size in dry woodland of P. flexuosa.
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(GLCM).
Type of Texture measures Description Formula*
measures
1st order Mean Gray level average in the moving window. ENBI ixp (i)
i=
measures Range Difference between maximum and minimum gray level in the moving max{i}—min{i}
window.
Variance Dispersion of gray level around the mean. zN;l (i-p)?p (i)
i=
2nd order Mean Gray level average in the GLCM window. Do ) ho Lip ()
i= j=
measures Variance Gray level variance in the GLCM window. N ) Y L (=P (iy)
1= =
Contrast A measure of the amount of local variation in pixel values among N-1 [N N L
n?y ) i
neighboring pixels. o {zl:{l;ll:?fﬂp ( ")}
Entropy Shannon-diversity. High when the pixel values of the GLCM have varying

values.
Angular second
moment

*From Haralick et al. (1973).

p(i): the probability of each pixel value.

N: the number of distinct gray levels in the image.
u: mean of gray level.

High when the GLCM is locally homogenous.

- 2 pli)logp i)
PN I

p(ij): is the(ij) th entry of the normalized GLCM matrix, = P (i,j)/R where R is a normalizing constant.
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