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Highlights 

 

 Optimal integration of inventorying and distribution of fluid chemicals. 

 Nested column generation embedded within an incomplete branch-and-price 

algorithm. 

 Routes and delivery patterns separately computed by the algorithm. 

 Several real-world examples efficiently solved with moderate computation effort.  
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Abstract 

 

Vendor-Managed-Inventory is a successful business practices based on the cooperation 

between a supplier and its customers in which demand and inventory information from 

the customers are shared with the supplier. This practice is gaining popularity in the 

chemical industry and relies on the inventory-routing-problem, which integrates 

inventory management, vehicle routing, and delivery scheduling decisions. This one is a 

difficult combinatorial optimization problem both theoretically and practically. 

However, because of the large expenses involved in distribution and inventorying of 

chemical products, it is attractive to make use of optimization tools for exploiting as 

many degrees of freedom as possible with the goal of minimizing both distribution and 

inventorying costs. Consequently, we propose a nested column generation algorithm for 

solving an inventorying and distribution problem that models the delivery of several 

chemicals fluids. The approach is building on a column generation & incomplete 

branch-and-price algorithm in which for each delivery route, the delivery patterns of 

fluids are also determined by column generation. We detail the implementation and 

provide computational results for realistic test instances. 

 

Keywords: multi-commodity; nested column generation; incomplete branch-and-price; 

multi-compartment vehicles; inventory-routing-problem. 
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Acronyms 

B&P 

CG 

DP 

EWO 

GUB 

IRP 

LIN 

LLB 

LOX 

PGP 

RGP 

RMP 

RPGMP 

SDVRP 

VMI 

Branch-and-price 

Columns generation 

Delivery pattern 

Enterprise-wide optimization 

Global upper bound 

Inventory routing problem 

Liquid nitrogen 

Local lower bound 

Liquid oxygen 

Pattern generation problem 

Routes generation problem 

Restricted master problem 

Restricted pattern-generation master problem 

Split-delivery vehicle routing problem 

Vendor-managed-inventory 
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Nomenclature 

 
Subscripts 

a minimum-distance arcs interconnecting suppliers and customers 

c vehicle’s compartments 

i,i’,j suppliers or customers 

k products 

n nodes 

p patterns 

r routes 

t,t’ periods of the planning horizon 

Sets 

A minimum-distance arcs interconnecting suppliers and customers 

C vehicle’s compartments 

Currentn next node to explore in the branching tree   

Exceptionr excluded columns in the current node   

Fxnij
0
 pairs (i,j) fixed to zero in the node n 

Fxnij
1
 pairs (i,j) fixed to one in the node n 

Fxij pairs (i,j) fixed in the current node  

I
-
 customers 

I
+
 production plants 

K products 

N nodes of the branching tree 

Newnoden new nodes in the tree after branching 

Pr delivery patterns associated to route r 

Rt feasible routes of period t 

T periods of the planning horizon 

Waintingn nodes in the branching tree without exploring  

Binary variables 

Sij variable for sequencing locations i and j along a route 

Xrt variable for selecting route r of period t 

Xrt
kc

 variable for allocating product k to compartment c on the truck traveling route r of 

period t 

Yi 

 

variable used to determine that the site i belongs to the route designed by a routes-

generator problem 

Zck variable for allocating product k on compartment c 

Continuous variables 

Cr cost of route r 

Cp cost of pattern p 

Di distance travelled to reach customer i 

Qikc quantity of product k to pick-up(deliver) from(to) source(sink) site i on 

compartment c 

Ti time spent to reach customer i 

TV total routing time 

Xrt
kpc

 

 

variable weighting the contribution of pattern p to the load of product k on 

compartment c by route r of period t  
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Xp
r
 variable for weighting the contribution of pattern p on route r 

Λikrt quantity of product k picked(delivered) from(to) site i by route r of period t 

Parameters 

airt binary parameter stating that route r of period t visits location i 

ai earliest service time at customer i 

αrt
ikpc

 quantity of product k picked(delivered) on compartment c from(to) site i by route 

r of period t according to pattern p  

bi latest service time at node i 

bestri saving the facilities i visited in the route r for the best solution found 

bestXrt saving the routes r  selected for the period t in the best solution found 

bestBound for selecting the node with the lower bound more promising 

bestFound best solution found in the branching tree 

boundn lower bound (LLB) of the node n 

cij traveling cost of arc i - j 

crt cost of route r of period t 

cp cost of pattern p 

cfv fixed vehicle utilization cost 

cvv distance unit travelling cost 

dij distance between locations i and j 

ditk demand of product k by customer i during the period t  

GUB optimal solution of the integer RMP  

iik
0
 initial inventory of product k on location i 

iik
Max

 maximum storage capacity of product k on location i 

iik
Min

 minimum inventory level or safety-stock for product k on location i 

LLB optimal solution of the linear RMP  

MD, MT upper bounds for travelled distance (D) and travel time (T) varibles 

pitk production of product k by plant i during the period t 

qitk upper bound on the quantity of  product k to pickup/deliver from/to source/sink 

node i during period t 

qc cargo capacity of compartment c 

sti service time on customer (plant) i 

t
max

 maximum vehicle routing time 

tij traveling time between locations i and j 

vi minimum number of visits to customer (plant) i 

πi
-
 price associated to the visit to customer i 

πi
+
 price associated to the visit to plant i 

πitk-
Max 

 

price associated to constraint on the maximum storage capacity of product k on 

customer i 

πitk+
Max 

 

price associated to constraint on the maximum storage capacity of product k on 

plant i 

πitk-
Min 

 

price associated to constraint on the minimum inventory level of product k on 

customer i 

πitk+
Min 

 

price associated to constraint on the minimum inventory level of product k on 

plant i 

πikt   price associated to covering constraint of the pattern generation master problem 
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1. Introduction 

The scale of the chemical industry is global, being logistics a crucial area of this type of 

industry, because raw materials sources, production facilities and consumer markets are 

globally distributed. Also, due to the increasing pressure for reducing costs, inventories 

and ecological footprint, and in order to remain competitive in the global marketplace, 

Enterprise-wide optimization (EWO) has become a major goal of the chemical industry 

(Grossmann, 2012). In this way, fluctuating demand, seasonal imbalances of raw 

materials and products flows, as well as expensive transportation and inventorying 

motivate a dynamic and integrated management of logistic activities. Vendor-managed-

inventory (VMI) is a successful business practice based on the cooperation between a 

supplier and its customers in which demand and inventory information from the 

customers are shared with the supplier (Desaulniers et al, 2016). In VMI, customer 

inventories are replenished by the vendor using monitoring and forecasting in a way that 

each product-inventory on each customer must be replenished so as to never fall under 

the safety level. Under the modality, illustrated in Figure 1, the supplier is responsible 

for managing the inventory level of the customers, deciding when and how much to 

deliver to each one. 

 

Figure 1: VMI relies on monitoring customer stocks to allow the supplier to decide 

when and how much products to deliver 
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VMI modality allows the supplier to better integrate the visits to several customers and 

thus smooth its production, inventory, and distribution efforts (Adulyasak et al. 2015). 

In order to operate along such a strategy, the supplier should solve an inventory-routing 

problem (IRP), which combines over a multi-period time-horizon inventory 

management, vehicle routing, and delivery scheduling decisions. In such a context, the 

supplier has to take three simultaneous decisions: (i) when to serve a given customer, 

(ii) how much to deliver to this customer and (iii) how to combine customers into the 

design of the vehicle-routes. The aim is to find the optimal trade-off between vehicle 

routing costs and inventory holding costs, such that total costs are minimized. The 

problem is rooted in a classic paper from Bell et al. (1983) about distribution and 

inventorying of gas but it was later extended beyond that scope. The IRP has been 

researched considering different replenishment strategies but the two most popular 

replenishment policies are the order-up-to-level and the maximum-level policies 

(Desaulniers et al, 2016). In the order-up-to-level policy each delivery must fill the 

customer inventory to its maximum capacity, so once the decision to visit a customer is 

taken, the quantity to be delivered is computed as the difference between its maximum 

capacity and its current inventory level. This policy has been proposed by Dror et al. 

(1985). In the maximum-level policy, any quantity can be delivered as long as the 

maximum capacity is not exceeded. The ML policy encompasses the order-up-to-level 

alternative and is more flexible, but also more complex given the additional decision to 

be taken. The IRP is a difficult combinatorial optimization problem, both theoretically 

and practically, and different methods for solving it have been proposed. See for 

example the paper by Dong et al (2017) that presents interesting algorithms for solving 

the problem. 
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Several applications of the IRP have been recorded in the literature and many of them 

arise in maritime logistics, i.e. in ship routing and inventory management. Reviews 

about the subject are provided by Ronen (1993); Christiansen at al. (2004); Christiansen 

et al. (2007) and Christiansen et al. (2013). Non-maritime applications of the IRP arise 

in a large variety of industries, including the distribution of gas by tanker trucks (Bard 

et al. 1998; Campbell and Savelsbergh 2004; Golden et al,  1984; Trudeau and Dror, 

1992), distribution of automobile components (Alegre at al., 2007; Blumenfeld et al. 

1985; Stacey et al., 2007), distribution of perishable items (Federgruen and Zipkin 

1984; Federgruen at al., 1986), transportation of groceries (Custódio and Oliveira 2006; 

Gaur and Fisher 2004; Mercer and Tao 1996), distribution of cement (Christiansen et al. 

2011), distribution of fuel (Popovic et al., 2012), of blood (Hemmelmayr et al. 2009), of 

livestock (Oppen et al., 2010), of waste vegetable oil collection (Aksen et al. 2012), of 

crude oil (Shen et al., 2011) and production and distribution of industrial gases (You et 

al., 2014; Marchetti et al., 2014; Zamarripa et al., 2016, Singh et al., 2015). 

This work is the second one on a research line aimed at the optimal integration of 

inventorying and distribution of fluid chemicals. It follows a previous one by Cóccola et 

al. (2017) focused on optimizing the order-based-resupply of chemical fluids. The 

current work aims at modelling and optimizing the inventorying and distribution of 

several chemical fluids by multi-compartment trucks. Its main contributions are the 

following: 

1. A set-partitioning model for optimizing the multi-period inventorying and 

distribution of several chemical fluids is presented. We consider here the case of 

bulk delivery by multi-compartments trucks. 
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2. An incomplete branch-and-price algorithm based on a nested column generation 

procedure is codified to solve relatively large instances of the above described 

problem. 

3. Computational experiments on instances featuring different characteristics are 

performed to test the capability of the algorithm for providing effective and 

efficient solutions. 

The remainder of this paper is organized as follows: Section 2 describes the 

methodology for bulk delivery of multiple fluid products by multi-compartments trucks. 

The mathematical formulation developed to represent this resupply modality is 

presented in Section 3. Then, this model is reformulated on section 4 in order to develop 

an incomplete branch and price algorithm based on the separated generation of routes 

and delivery patterns by a nested column generation algorithm. Numerical experiments 

over a series of instances featuring different characteristics are presented in Section 5. 

Finally, the concluding remarks follow in Section 6.  

 

2. Inventory and distribution of multiple fluids 

To address the inventorying and distribution problematic illustrated in Figure 2, let’s 

consider some customers spread over a given geographical area. Each customer 

consumes several fluid products, which are sourced from plants producing them. 

Customers are equipped with a multi-commodity storage and similarly, each plant has a 

multi-commodity storage from which the products can be pumped out. Customer 

demands and plants production volumes over each period of the whole planning horizon 

are known data and the following issues must be addressed by the planner: 

1. When to resupply a given customer? 

2. What quantity of products must be supplied to each visited customer?   
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3. Which clients to deliver on each period and from which plant? 

4. How many vehicles must be used on each period? 

5. How to fill each vehicle for servicing the assigned clients? 

 

Figure 2: Illustration of the inventorying and distribution problematic 
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Considering the complexity and the dimension of the addressed problems, which 

typically involve several plants, dozens of clients and several products; it is practically 

impossible to optimally solve a monolithic mathematical model for finding solutions 

useful as answers to the above stated questions. Therefore, this paper presents a 

decomposition approach developed to find near optimal solutions for real world 

problems with moderate computational effort. The solution strategy is based on a nested 

column generation algorithm which decouples routing decisions from delivering 

decisions. 

 

3. Model formulation 

In order to formally define the problem previously defined let us consider a set of 

suppliers, denoted by set I
+
= {i1+, i2+, . . . in+}. Each supplier i  I

+
 produces a known 

quantity pitk of commodity k  K during the period t of the planning horizon T = {t1, t2, . 

. ., tt }. By using a homogeneous fleet of multi-compartment vehicles, each one with 

│C│ compartments of capacity qc, the supplier supply a set of customers I
- 

= {i1-, i2-

,…,in-}. Each customer i  I
-
 consumes a known quantity ditk of commodity k  K 

during the period t of the planning horizon T. Both the suppliers i  I
+ 

and
 
the 

customers i  I
-
 have multi-compartment storage tanks with a storage capacity (Iik

Max
 - 

Iik
Min

),
  
where Iik

Max 
is the maximum storage capacity and Iik

Min
 is the minimum operative 

capacity or “safety stock” below which the inventory of the product must never fall at 

the end of any time-period. In addition, for each product k  K, a known initial 

inventory Iik
0
 at the start of the first time-period is available both on suppliers i  I

+
 and 

on customers i  I
-
. All facilities are connected through a network represented by a 

graph G (I
+
 ∪I

-
, A), where A is the network of minimum-distance arcs interconnecting 

suppliers and customers. Associated to every arc a ∈ A, there are a distance-based 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12 

 

traveling cost cij and a travel time tij. Costs incurred for operating the vehicles are a 

fixed utilization cost cfv and a distance-unit travelling cost cvv. The visiting time of a 

vehicle on a location i  I
+∪I

-
 is denoted by sti. The problem aims at finding the 

optimal set of delivery routes during each period t  T such that, for each product k  

K, the storage maximum-capacity is respected and no stock-outs occur on each 

customer and each plant. A vehicle route is considered feasible if it satisfies the vehicle 

compartments-capacity constraint and a maximum time-length t
max

. The objective is to 

minimize the sum of vehicle travelling costs and inventory holding costs at both the 

suppliers and the customers. Frequently, holding costs are considered negligible with 

respect to routing costs when non-perishable products, like fuels, are distributed. In this 

paper, we research this option.  

In order to formulate this problematic as a mixed integer-linear program (MILP), let us 

define Rt as the set of all feasible replenishment routes corresponding to the period t  

T. Each route r  Rt is characterized by a cost crt given by the sum of the costs of the 

arcs travelled by the vehicle plus the fixed vehicle utilization cost. In addition, a binary 

parameter airt is used to indicate whether route r  Rt visits (airt = 1) or not (airt = 0) the 

location i  I
+ ∪I

-
 during the period t  T. For computing the optimal solution, two 

variables are used: a binary decision variable Xrt  valuing 1 if route r  Rt is selected, 

and a positive variable Λikrt that takes a value equal to the quantity of product k  K 

loaded (unloaded) on plant i  I
+
 (customer i  I

-
) by the route r  Rt . Then, the 

problem can be stated as the following MILP: 

 

Mininimize 


 Tt Rr

rtrt

t

Xc  (1) 
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subject to: 

t

irt rt i

t T r R

a X v
 

    IIi   (2) 

    























  

  

  

  

ttTt

Min
ik

ttTt tRr
ikrtitkik

ttTt

Max
ik

ttTt tRr
ikrtitkik

IdI

IdI

':' ':'

0

':' ':'

0

 

 

KkTtIi   ,,  

 (3.a) 

 
 (3.b) 

    





















  

  

  

  

ttTt

Min

ik

ttTt Rr

ikrtitkik

ttTt

Max

ik

ttTt Rr

ikrtitkik

IpI

IpI

t

t

':' ':'

0

':' ':'

0

 

 

KkTtIi   ,,  

 (4.a) 

 
 (4.b) 

Xrt  {0, 1} 

Λikrt ≥ 0 

   

 

The objective function (1) minimizes the total traveling costs; storage costs are assumed 

to be negligible. Constraints (2) state that the minimum number of visits to a 

plant/customer node over the whole planning horizon T, given by the parameter vi, must 

be covered. Constraints (3) are inventory constraints for each product k on every 

customer i  I
-
 during each period t. They state that the initial product-inventory Iik

0 
plus 

the quantities of the product delivered to the customer minus the total consumption of 

the product up to the current time period must be larger than the minimum allowed 

stock Iik
Min

 (at the end of period t  T) and smaller than the maximum storage capacity 

Iik
Max 

(at the start of each period t  T). Eqs. (4) are similar to eqs. (3) but they are 

applied to suppliers defined by the set i  I
+
. The simultaneous determination of 

optimal decisions Xrt and optimal quantities Λikrt for each feasible route may be quite 

cumbersome. In this way, the formulation (1) - (4) may be solved just for small scale 

instances with a realistically enumerable quantity of feasible routes. The resolution of 

large instances of the problem leads to the use of decomposition procedures because the 
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simultaneous determination of optimal values for binary variables Xrt and continuous 

variables Λikrt becomes much harder. 

 

4. Reformulation and solution approach 

The reformulation of the model (1)-(4) represents the continuous variables Λikrt 

associated with a given route as a weighted sum of “extreme” delivery pattern (DP) as it 

was proposed by Desaulniers (2010) for the split-delivery vehicle routing problem with 

time windows (SDVRP). In this way, two different concepts are introduced: routes and 

delivery patterns. A route starts at a supply plant, visits a sequence of customers and 

ends on the same plant. Each route must be completed in a single time-period t  T. A 

delivery pattern (DP) associated to a route r  Rt specifies both the quantity of products 

taken from the supplier and the quantity delivered to each customer along the route. As 

stated by Desaulniers (2010), just “extreme” DPs are needed to generate any DP 

through their convex combination. For the single-commodity single-compartment case, 

in an extreme DP there is at most one customer per route for which a fraction of its 

demand is partially covered (called a split-delivery). The other customers of such a 

pattern receive a zero quantity (called a zero-delivery) or their demands are totally 

covered (called a full-delivery). Any feasible pattern would be obtained as a convex 

combination of extreme DPs involving full deliveries and zero-deliveries to the visited 

customers. It is worth noting that the problem here considered is more complex than the 

SDVRP because of the delivery and inventorying of multiple products through a 

number of vehicles with several compartments. Consequently, the definition of extreme 

DP is more complicated. In this way, the quantity of product k to pick up (deliver) from 

(to) plant (customer) location i during period t by route r can be computed as follows: 
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r

ikpc kpc

ikrt rt rt

p P c C

X
 

 
   

 
   

 
kc

rt

Pp

kpc

rt XX
r




 

 

rt

Kk

kc

rt XX 


 

 

, , ,tt T r R i I I k K        

 
CcKkRrTt t  ,,,  

 
CcRrTt t  ,,  

 

 

(5.a) 
 

 

(5.b) 
 

 

(5.c) 

 

where α
ikpc

rt is the quantity of product k to pick up (deliver) from(to) source(sink) 

location i in compartment c by the extreme cargo-pattern p associated to route r of 

period t; X
kpc

rt is a continuous variable bounded by the interval [0, 1] for weighting the 

contribution of the extreme DP to the optimal DP just in case  the route r  Rt belongs 

to the optimal solution (Xrt = 1) and Xrt
kc

 is a binary value for allocating a single product 

in each compartment of the used vehicle. Eq. (5.a) computes the optimal quantity Λikrt  

as a weighted sum of quantities α
ikpc

rt on all active DPs and on all compartments. Eq. 

(5.b) forces the sum of weights to take the value of binary variable Xrt
kc

 and if route r is 

part of the optimal solution, i.e. Xrt = 1, eq. (5.c) forces that just one Xrt
kc 

variable can 

take value 1. In other words, this equation is formulated for allocating just one product 

per compartment in order to avoid products mixing. By introducing eqs. (5) into eqs. 

(2), (3) and (4) we can now reformulate the model (1)-(4) as follows: 

 

Mininimize 

  
    















Tt Rr Pp Cc Kk

kpc

rtrt

t r

X
C

c
1

 

(6) 

 

subject to: 

1

t r

kpc

irt rt i

t T r R p P c C k K

a X v
C    

 
  

 
    

 
  IIi  

  

(7) 
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
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ttTt Rr Cc Pp
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ttTt Rr Cc Pp
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t kr
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':'
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 (10.a) 

 

 

(10.b) 

 

 

 1,0rtX
 

 1,0kc

rtX  

   

 

Eqs. (6) to (9) are the eqs. (1) to (4) reformulated according to eqs. (5.a). Moreover, eqs. 

(5.b)-(5.c) must be introduced as eqs. (10.a)-(10.b) into the reformulation because the 

best DP for each route r of period t would arise as a sum on all compartments of the 

convex combination of DPs included in the dynamic set Pr.  Eq. (10.a) forces the sum of 

weights X
kpc

rt on Pr to take the value of variable X
kc

rt. In turn, eq. (10.b) allocates a 

single product to a given vehicle compartment just in case Xrt = 1. When column 

generation is used to solve model (6)-(10), each iteration must incorporate new routes 

and associated DPs to sets Rt and Pr. This implies that new constraints (10) must be 

added as well.  

The formulation (6)-(10) has a decomposable structure abled to be exploited by the 

column generation (CG) paradigm. CG is an iterative method usually employed to solve 

routing problems involving covering constraints like eq. (2). CG is carried out in two 

phases: a slave problem which generates feasible routes, also named columns, and a 

master problem, where all columns are brought together to find the optimal set of 
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routes. Unfortunately, this method cannot be straightforwardly extended to the 

researched problem because of the complexity of simultaneously computing routes and 

DPs. Consequently, a more complex algorithm aiming at separately computing 

replenishment routes and their associated DPs was developed in this paper. The 

algorithm is based on decomposition into three levels. On the bottom level the 

procedure computes the extreme DPs for each route generated on the intermediate level 

problem. A route and its DPs together form the so called “cargo-routes” that are 

coordinated on the top level master problem. Since some no-generated cargo-routes may 

exist but they may not be present in the current pool, to find better solutions, the 

missing columns must be generated after branching. Consequently, to find the optimal 

(or a better) integer solution, the procedure must be embedded into a branch-and-bound 

algorithm. 

 

4.1 Restricted master problem (RMP) 

CG is a decomposition procedure that solves at each iteration both a master problem 

restricted to a subset of columns (restricted master problem or RMP) and several sub-

problems, also known as pricing problems. The procedure starts with a RMP that 

contains a small number of cargo-routes. For incorporating new columns to the RPM, 

one subproblem per period t   T
 
and per supplier i  I

+ 
is solved. This means that the 

routes and DPs referenced by these columns are computed by solving the respective 

pricing problems for each period and for each supplier. For every new route, associated 

DP must also be generated and new constraints (10.a)-(10.b) need to be added as well. 

This is a drawback because the number of feasible routes exponentially increases on the 

number of visited customers. To overcome this difficulty, we define the RMP by eqs. 

(6) to (9) and drop constraints (10.a)-(10.b) as is proposed by Hennig et al. (2012). Note 
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that this pair of constraints is indexed by the elements of sets Rt and consequently, the 

number of constraints of the RMP will grow accordingly. In this way, after dropping 

these constraints, duals from equations (7) to (9) are used to generate routes (and DPs). 

Constraints (10) are, very likely, unsatisfied by the solution to the linear RMP but they 

must be enforced just by the integer master problem aimed at finding the optimal routes 

and weights of patterns associated to these routes.  

After finding the optimal solution for the RMP, the dual variables values πi
+
 and πi

-
 

from constraints (7) as well as π
Max

itk-, π
Min

itk-, π
Max

itk+ and π
Min

itk+ from constraints (8) 

and (9) are passed to the pricing problems in order to produce more profitable cargo-

routes. At each iteration, the linear problem defined by eqs. (6)-(9) is solved on the 

current set of columns. Afterwards, the new routes and associated DP generated by the 

pricing problems are added to the RMP. The iterative procedure continues as far as the 

optimal solution to the linear problem cannot be improved with the addition of another 

cargo-route. This happens when any pricing problem cannot return a cargo-route 

combination with a negative reduced cost. 

 

4.2. Mid-level pricing problem or routes generation problem (RGP)  

Once the RMP is solved by the simplex algorithm or by any other LP algorithm, dual 

values associated to the problem constraints are used to define the objective function of 

the subproblem. This one aims at identifying new routes with negative reduced cost 

with respect to the current dual variable values. In order to generate useful routes, the 

CG procedure pivot on each time-period t  T and on each plant i  I
+ 

to solve the 

following problems: 
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(12) 

 

 

 (13.a) 

 (13.b) 

 

(14) 

 
(15) 

 

 (16.a) 

(16.b) 

 

(17) 

 
(18.a) 

 

(18.b) 

 

 

 (19.a) 
 

(19.b) 

 

(20) 

 

 (21) 

 

 

(22) 

 

The objective function (11) is defined as the sum of the cost of the computed route Cr 

and the computed pattern Cp minus the prices associated to locations visited along the 

route minus the prices associated to the upper and lower bounds on the quantity of 
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products available during each period both on the pivot plant and on the visited 

customers. Since upper and lower bounds cannot be simultaneously active constraints, 

duals π
Max

itk-, π
Min

itk- (or π
Max

itk+ and π
Min

itk+) cannot simultaneously have nonzero values.  

Eq. (12) computes the minimum distance travelled to reach customer j I
-
 from the 

pivot plant i’ I
+

.
 
Eqs. (13.a)-(13.b) fix the accumulated distance travelled by the 

tanker-truck up to each visited site. I.e. if customers i and j, with i < j, are allocated to 

the route (Yi = Yj = 1), the visiting ordering for both sites is determined by the value of 

the sequencing variable Sij. If customer i is visited before j (Sij = 1), according to (13.a), 

the travelled distance up to the customer j (Dj) must be larger than Di by at least dij. In 

case node j is visited earlier, (Sij = 0), the reverse statement holds and eq. (13.b) 

becomes active. MD is an upper bound for variables Di. Eq. (14) computes the total 

routing cost Cr by converting the total travelled distance on the travelling cost and by 

adding the fixed vehicle utilization cost. Eqs. (15), (16) and (17) are constraints similar 

to eqs. (12), (13) and (14) but in this case, these constraints define the minimum time to 

visit a customer, the visiting time to each customer along the route and the total routing 

time TV, respectively. Eqs. (18) state time-windows constraints. Constraints (19) fix the 

pivot plant to allocate the vehicle that fulfills the generated route. Vehicle-capacity 

constraints are stated by eq. (20) while eq. (21) states that no cargo can be delivered to a 

non-visited customer. Finally, constraint (22) compute the cost Cp associated to the only 

computed DP.  

Note that the routes generation problem computes the minimum-cost cargo-route and 

the objective (11) depends both on visiting-decision variables Yi and the positive 

quantities Λikrt. This, in turn, implies that the same route but with a different DP may be 

generated in several iterations thus complicating the convergence rate and reducing the 

algorithmic efficiency of the CG procedure. In order to avoid this drawback, we decided 
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to decouple the routing decisions from the design of DP by exploiting the key idea 

proposed by Desaulniers (2010), which consists in the use of a few extreme DPs to 

generate any other feasible DP. So, for a given a route, all extreme patterns would be 

generated by a lower level pattern generation procedure. Although neglecting pattern-

costs implies that the integer RMP may provide many solutions with the same objective 

function value and different delivery patterns; the nested CG procedure would not be 

affected by the existence of these solutions.  

Whereas in the SDVRP a convex combination of only two extreme DP is sufficient for 

generating any other DP, for this problem, many DPs may be needed to explicitly list 

them. So, to avoid the cumbersome enumeration of all extreme DPs of a given route the 

procedure uses CG again to generate them. In that sense, this decomposition scheme 

leads to manageability and flexibility. However, the algorithmic structure gets a little 

more complicated since it nests two CG algorithms.  

 

4.3. Lowest level pattern generation problem 

Quantities Λikrt are continuous variables that can be computed as a convex combination 

of extreme DPs. They might be directly generated according to the idea proposed by 

Desaulniers (2010) but the situation in this problem is considerably more complex 

because the multi-commodity nature of the problem and the multi-compartment 

characteristic of the vehicles lead to a combinatory number of extreme DPs. To avoid 

enumerating them, extreme DPs associated to a given route r  Rt are again generated 

by using CG at a lower level of the procedure. This problem is stated as follows:  

 

:,, solveRrTt t  

 

Restricted pattern generation master problem (RPGMP): 
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Minimize: 


 rPp

r

pp Xc  (23) 

subject to: 

1
1

r

r

ikc p

p P c Citk

Q X
q  

 
 

 
   

 

10  r

pX  

KkYIi i   ,1:  

 

 

(24) 

Eq. (23) minimizes the cost of generating DPs associated to the route r  Rt and eq. (24) 

states that the maximum deliverable quantity qitk (see appendix) to each customer must 

be fulfilled at least by one pattern in order to create the “full delivery” of product k  K 

to customer i  I
-
 during the period t  T. This constraint was formulated in order to 

obtain any DP as a convex combination of generated DP. For computing the cargo-route 

cost, if Cp on all patterns is negligible with respect to Cr, the pattern cost is set to 1 (Cp = 

1) with the purpose of minimizing the number of generated DPs and erasing Cp from eq. 

(11). The RPGMP is initialized by a set of single-customer single-product patterns 

delivering the quantity qitk from the plant to each one of the customers included in the 

associated route plus a zero-delivery pattern. 

 

Slave pattern generation problem (PGP): 

Patterns are dynamically generated by minimizing the objective (25), subject to 

constraints (26) to (28):  

Minimize: 

:
: 1

1

i

p ikt ikc

k K c Ci Iitk
Y

c Q
q


  


 
  

 
   

(25) 

subject to: 

1
Kk

ckZ  Cc  

 

(26)  
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: 1i
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

  

ikc itk

c C

Q q


  

 
,c C k K    

 

 

,i I k K    

 

(27) 

 

 (28) 

 

Eq. (25) is the reduced cost of the generated DP. Eq. (26) states that each compartment 

of the vehicle, if used, must be allocated just to a single product while eq. (27) is a 

capacity constraint on the quantity of product loaded to each compartment of the truck. 

Eq. (28) states that the total quantity of product k delivered to customer i I
-
 during 

period t T must not exceed the maximum deliverable quantity qikt. The PGP runs until 

no more DPs with negative reduced cost can be generated. After that, quantities αrt
ikpc

 

are respectively computed for visited customers and for the supply plant as follows:  

 

ikpc

rt ikcQ   

 




 



1:
:

jY
Ij

jkc

ikpc

rt Q  

: 1, . ,i ri I Y p P k K c C       

 

CcKkPpYIi ri   ,,1:  

(29.a) 

 

(29.b) 

It is worth noting that several options to feed columns to the RMP (6)-(9) may arise. If 

we want to provide just the minimum number of extreme DP able to produce any other 

DP, the model defined by eqs. (23)-(24) with Xp
r
  {0, 1} must be solved. If we want to 

avoid the resolution of this problem, all generated DPs associated to a route must be 

supplied to the RMP. The best option depends on the instance to be solved and should 

be determined by numerical testing. 

 

4.4. Improving the solution by branching  

At the root node of the branch-and-price tree, the linear relaxation of model (6)-(9) is 

solved. When negative reduced-cost columns, i.e. cargo-routes, are found, they are 
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added to the RMP which is solved again to start a new iteration. Otherwise, when sub-

problems cannot provide at least a cargo-route with negative reduced costs, the CG 

process stops. Since some non-generated columns pricing favorably may exist but they 

may not be present in the current RMP, to find better solutions, the missing columns can 

be generated after branching. Successive linear relaxations in the tree are obtained by 

adding branching decisions. Since the problem presents a high degree of symmetry (i.e. 

there are many solutions with different variable-values and the same objective function 

value) and a given route can be useful in several time periods, the selection of a 

branching rule is of utmost importance. According to Savelsbergh and Sol (1998), it is 

good to utilize a branching rule focusing on assignment decisions rather than on routing 

decisions because assignment decisions constitute higher level decisions and have a 

greater impact on the structure of the solution. Based on this idea, it is natural to 

develop the following branching scheme: when the solution is not integer, the procedure 

selects a customer i  I 
–
 and a plant i  I 

+
 and creates two subspaces; on the first one 

the customer must be replenished from this plant and on the other one the customer 

must not be replenished from this plant. The idea is similar to that one proposed by 

Savelsbergh and Sol (1998) which selects a vehicle and a customer to create two sub-

spaces but in our case, the vehicle is replaced by a plant i  I 
+
. When solving the mid-

level pricing problem in a given subspace, the first restriction is satisfied by forcing 

customer i  I
–
 to be replenished from i  I

+
. The second branching restriction requires 

a constraint stating that whenever i  I
+ 

is on the tour, this tour cannot visit i  I
–
. 

Successive branching constraints are straightforwardly applied. To enforce branching 

constraints in the RMP of a branch-and-price node, it is necessary to exclude columns 

from the solution space of the branch-and-price node by setting the associated variable 

bounds to zero. Moreover, the branching rule above explained must also be incorporated 
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at the pricing level. In order to improve the global upper bound along the search-tree, 

feasible integer solutions may be recomputed either by exact or heuristic procedures. 

  

4.5. Algorithm setup 

The algorithm, illustrated by Figure 3, has been coded in GAMS 23.6.2 and embeds the 

nested CG within a branch-and-bound procedure that branches according to the rule 

proposed in section 4.4.  

 

Figure 3: Sketch of the nested cargo-routes generation procedure 
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The problem presents a high degree of symmetry that implies that a route generated for 

a given time-period may be useful in other periods. So, in order to avoid generating the 

same route through different slave problems, we maximize the decoupling of routes 

generation from patterns generation. In this way, the procedure first solves a heuristic 

RMP defined by eqs. (6)-(7) in the root node of the branch-and-price tree and load the 

columns generated in such a way for all periods t  T. After a given number of 

iterations, the procedure switches to the exact RMP to generate the remaining columns 

corresponding to each period through the corresponding slave problems. In no-root 

nodes the procedure is similar but the generated routes are loaded just in periods that 

fulfil branching constraints. Since the algorithm collects several routes per master-slave 

iteration via the SolnPool procedure (CPLEX Solver manual, 2012), a solutions filter 

aimed at deleting suboptimal solutions visiting the same customers via non-optimal 

paths was incorporated into the procedure. Afterwards, for each filtered route, the CG 

procedure aimed at generating DPs is run. After the resolution of the routing pricing 

problem, the RMP is fed with just the best routes and their associated DPs. 

The algorithm is used in heuristic mode although, in principle, it may be used as an 

exact algorithm able to locate the optimal solution, if enough computational power and 

time is available. The procedure starts with a feasible solution used to solve the first 

RMP. At each iteration, the dual variables associated to the RMP constraints are passed 

to the mid-level problems to generate the minimum reduced-cost cargo-route. To find 

all extreme DPs associated to a route, the pattern generation problem summarized in 

section 4.3 is solved. A route and its associated DPs are then incorporated to the pool of 

columns of the master problem and the procedure repeats itself until not a cargo-route 

combination with a negative reduced cost can be found by the mid-level problem(s). To 

initialize the algorithm, for each time period t  T, feasible cargo-routes i – j – i, starting 
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from any plant i I+
 and going to any customer j  I

-
 are generated. Single-product 

DPs delivering the quantity qitk, for each product k  K, are associated to each one of 

these single customer routes. From this initial cargo-routes package, the linear RMP can 

be computed to start the master-slave recursion. 

The branching mechanism is sketched in the left column of Figure 4. The right column 

provides brief explanations of the row aligned sentences. The algorithm uses CPLEX 11 

as the MIP solver for generating both routes and DPs and for computing upper and 

lower bounds. Since branch-and-price is an enumeration algorithm enhanced by 

fathoming based on bound comparisons, the strongest bounds should be the best ones 

but the mechanism can work with any bound. Nevertheless, the best upper bound might 

need the resolution of an integer RMP while the best node lower-bound can be obtained 

by solving the relaxed RMP just after no more profitable cargo-routes can be generated. 

So, the best bounds may imply a higher computational cost than weaker bounds. This 

leads to a trade-off between the CPU time used in computing strong bounds and the size 

of the explored-tree that motivates the use of some standard strategies (Desaulniers et 

al., 2002) to improve the overall algorithmic performance.  

In this way, to reduce the “tailing-off” effect which consists in a very low convergence-

rate at the last iterations, the procedure ends after at most 10 iterations in no-root nodes, 

thus allowing a larger branching tree. Once that the nested column generation procedure 

is unable to provide cargo-routes, the node local lower bound (LLB) is computed and its 

integrality checked. With the purpose of improving the current GUB along the search 

tree, fast integer solutions are searched and provided by GUROBI, just in case the LLB 

is not integer. The node selection strategy is best-first-search; i.e. the node with the 

lowest LLB from the pool of unsolved subspaces is selected.  
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Figure 4: Sketch of the branch-and price algorithm  

Loop(node, Nodes processing Loop selecting the 

    bestbound ← minwaiting(n) bound(n); 
    current(n) ← no; 
    current(waiting(n)):(bound(n) = bestbound)  ← yes; 
    first ← 1; 

minimum bound waiting node. 

    Loop(current: first,  
        first ←  0; 
        waiting(current) ←  no; 

Process the first node current(n) of the 

waiting list waiting(n). 

        Loop(i: iI
+
, loop(j: jI

-
,fxij ← no)); 

        Loop(i: iI
+
, loop(j: jI

- 
and (fx

1
(current,i,j) or             

fx0(current,i,j)), fxi ← yes); 

Fix the branching pair (i,j). 

        Loop(r, exception(r) ← no;); 

        Loop(i: iI+,  

            Loop(j: jI- and fxij and fx
0(current,i,j), 

                if(airt=1 and ajrt=1, then exception(r) ← yes); 
            );     

            Loop(j: jI- and fxij and fx
1(current,i,j),                    

                if(airt = 1 and ajrt = 0,  then exception(r) ← yes);    
                if(airt = 0 and ajrt = 1,  then exception(r) ← yes);                             
            );   
        );  
    ); 

Selects columns allocated to the current(n) 

node by excluding columns recorded in the 

list exception(r). 

 

 

    While (eq. (10) < 0,  
        Solve the linear RMP; 
        Solve the mid-level route generation problem; 
        Solve the patterns generation problems; 
        Feed columns and patterns to the RMP; 
    ); 

Solves the nested column generation 

procedure until no more cargo-routes can 

be generated. 

    LLB ← Obj. Function (linear RMP on the current node columns) Computes the LLB. 

    Loop(i: iI
-
, πi

-
 ← Duals from constraints (7)); 

    Loop(t, Loop(k, 

           Loop(i: iI
-
,   

               π
Max

itk- ← Duals from constraint (8.a); 
               πMinitk- ← Duals from constraint (8.b); 
           ); 

           Loop(i: iI
+
,   

               π
Max

itk+ ← Duals from constraint (9.a); 
               πMinitk+  ← Duals from constraint (9.b); 
           );  
    ); ); 

Update duals. 

    If(LLB = integer,  
       if (LLB < bestFound, 
         bestFound ← LLB; 
         Loop(t, 
             Loop(r, bestX(r,t) ← Xrt;                                                     
                 Loop(i, best(r,i) ← airt;); 
             ); 
         ); 
       ); 
    Else 
       GUB ← Obj. Function (integer RMP on all columns) 
       if (GUB < bestfound, 
          bestfound ← GUB; 
          Loop(t, 
              Loop(r, bestX(r,t) ← Xrt;                                                     
                   Loop(i,best(r,i) ← airt)); 
               ); 
           ); 
       ); 

       Loop(iI+, 

            Loop(jI- and not fxij, π
*
ij ← sum(pr,  π

+
ip + π

-
jp););                              

            Loop(jI-: max π*ij and not fxij, fxij ← yes;); 
       );  
       first2 ← 1; 
       Loop(fx:first2, 
           first2 ← 0; 
           newnode(n) ← newnode(n-1); 
           fx0(newnode,i,j) ← fx0(current,i,j); 
           fx1(newnode,i,j) ← fx1(current,i,j); 
           bound(newnode) ← LLB; 
           waiting(newnode) ← yes; 
           fx0(newnode,fx) ← yes;   
                                        
           newnode(n) ← newnode(n-1); 
           fx0(newnode,i,j) ← fx0(current,i,j); 
           fx1(newnode,i,j) ← fx1(current,I,j); 
           bound(newnode) ← LLB; 
           waiting(newnode) ← yes; 
           fx

1
(newnode,fx) ← yes; 

       ); 
     ); 

Update the best integer solution and 

record it in the list best(r,i). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Selects the unfixed couple (i,j)  with the 

maximum reduced cost to branch. 

 

 

 

Generates two child nodes. 

   wait(n) ← no; wait(waiting) ← yes; 
   waiting(wait):(bound(wait) > bestfound) ← no; 

Terminate waiting nodes with  

LLB > bestFound. 

done:(card(waiting) = 0) = 1 ); Ends the nodes processing Loop. 
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The algorithm runs in a 2-cores 2.8-Ghz 16-Mbytes RAM PC and the mechanism 

settings used to solve the problems are summarized in Table 1. 

Table 1: Setting options for the algorithm 

Option  

MIP solver (routes generation problem) 
MIP solver (DPs generation problem) 
MIP solver (heuristic GUB computing problems) 
Branching rule 
Nodes selection strategy 
Maximum CPU time per master-slave iteration (s) 
Multiple columns generated per iteration 
Filtering of columns visiting the same subset of customers 
Time-windows reduction and pre-processing 
Maximum number of master-slave iterations per b&p node 
Maximum number of heuristic route generation iterations 
Maximum number of branch-and-price inspected nodes  
Columns pool 

CPLEX 11 
CPLEX 11 

Gurobi 

On couples(i  I
+
, i I

-
) 

Best first search 
60 
Yes 
Yes 
Yes 

20 (root)/10(no-root) 
10(root) 

10 
Up to 10000 cargo-routes 

 

5. Computational results 

The solution procedure was first tested on a very small example for illustration 

purposes. Later, the algorithm was used to solve several instances generated from data 

of a case study presented by Marchetti et al. (2014). This is done with the aim of testing 

the capability of the procedure to reach good solutions for realistic-size problems with 

acceptable CPU times. 

5.1 A small illustrative example 

Due to the complex characteristics of the procedure, we first present and solve a very 

small example to illustrate the multiple issues involved in the distribution and 

inventorying of several products and also to show the output provided by the solution 

strategy. In this way, let us consider the delivery of two products (k1 and k2) from a 

single plant P to three customers, i1, i2 and i3, over a planning period of three days (t1, t2 

and t3). Storage, production and consumption parameters for the plant and for the 

customers are summarized in Table 2. Cartesian coordinates that allow computing 
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distances, travelling costs and travelling times between customers and the plant are also 

presented in this table. The Figure 5 sketches the hypothetical and infeasible evolution 

of inventories on the plant and on the customers without any delivery trip. To avoid this 

infeasible evolution, some trucks with two compartments (c1; c2) of 7.5 units-capacity 

each-one must transport a quantity of products from the plant to the customers. The 

amount of product delivered to each customer is a decision left to the solution strategy. 

The algorithm ran to find the minimum cost solution meeting customer demands while 

satisfying inventorying constraints. The procedure generated, in addition to the 18 

initialization cargo-routes, 6 more routes with its associated DPs and reported the 

solution specified in Table 3. Selected routes are illustrated in Figure 6 while the 

resulting inventories evolutions on the plant and on the customers are illustrated in 

Figure 7. The solution involves a single route during the first day, another route during 

the second day and two routes during the last day. 

 

Table 2: Data for the small illustrative example 

I K Ik
0
 Ik

Min
 Ik

Max
 Consumption/production (X, Y) 

Coordinates t1 t2 t3 

P k1 

k2 
13 
13 

0 
0 

15 
15 

3 
3 

3 
3 

3 
3 

X = 2 
Y = 0 

i1 k1 

k2 
3 
- 

0 
- 

6 
- 

2 
- 

2 
- 

3 
- 

X = 0 
Y = 2 

i2 k1 

k2 
- 
4 

- 
0 

- 
5 

- 
3 

- 
2 

- 
3 

X = 2 
Y = 3 

i3 k1 

k2 
3 
4 

0 
0 

5 
5 

3 
3 

3 
3 

3 
3 

X = 4 
Y = 2 
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Figure 5: Hypothetical and infeasible evolution of inventories for the small illustrative 

example 

 

Table 3: Routes and delivery schedules for the small illustrative example. 

Route Location Arrival time c1 load  c2 load  

 Period 1  

1 P 
i3 
i2 
P 

-- 
2.83 
6.07 

10.07 

k2: +1 
- 

k2: -1 
- 

k1: +1 
k1: -1 

- 
- 

Routing time:  10.07 Routing cost: 8.07 

 Period 2                                 (k1) 

1 P 
i3 

i2 

i1 
P 

-- 
2.83 
6.07 
10.3 

13.10 

k2: +4 
k2: -3 
k2: -1 

- 
- 

k1: +4 
k1: -3 

- 
k1:  -1 

- 
Routing time: 13.1 Routing cost: 10.1 

Period 3 

1 P 
i3 

i2 

i1 
P 

-- 
2.83 
6.07 
10.3 

13.10 

 k2: +7 
k2: -4 
k2: -3 

- 
- 

k1: +6 
k1: -1 

- 
k1: -5 

- 
Routing time: 13.1 Routing cost: 10.1 

2 P 
i3 

i2 
P 

-- 
2.83 
6.07 

10.07 

k2: +2 
k2: -1 
k2: -1 

- 

k1: +5 
k1: -5 

- 
- 

Routing time: 10.07 Routing cost: 8.07 
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Figure 6: View of the routes for the small illustrative example 

 

 
Figure 7: Evolution of inventories according to the found solution for the small 

illustrative example 
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5.2.Testing examples 

In this section, the algorithm was tested on instances generated from data presented by 

Marchetti et al.  (2014). The authors proposed an example involving the production and 

distribution of two products (LIN and LOX) from 3 plants in order to supply 50 

customers over a time-horizon of up 14 days. Customers are randomly placed in 

different geographical sites and plants and customer locations are defined by the (X, Y) 

coordinates in the Euclidean plane (See figure 7). Distances (in miles) between plants 

and customers are computed from (X, Y) coordinates as Euclidean distances. The 

travelling times are computed from distances information by assuming an average speed 

of 40 miles/hour and constant loading/unloading times at plants and customers of sti = 1 

h. 

 

Figure 8: Geographical distribution of plants and customers (reprinted from Marchetti et 

al., 2014) 
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Instances data taken from Marchetti et al. (2014) can be downloaded from 

http://dx.doi.org/10.1016/j.compchemeng.2014.06.010. The parameter “redline” 

represents here the safety stock at the end of any time-period while “maximum” 

represents the maximum inventory at the beginning of any time-period. They are 

therefore conservative parameters. The plants host an unspecified number of vehicles 

with two compartments of capacity qv = 630 ft
3
. From these instances, variants with and 

without time windows were here generated by introducing the parameters reported in 

Table S1 presented as supplementary information. The solved instances involve the 

supply of both products from up to 3 plants. Such examples are defined by the number 

of LIN customers, the number of LOX customers, the number of time-periods of the 

planning horizon and the use (or not) of time-windows. Plants productions were 

adjusted to roughly meet the demand of the customers considered in each instances. 

Table 4 lists for each instance the following data: the production of LIN and LOX in the 

plants, the number of LIN’ customers, the quantity of LOX’ customers and the number 

of days of the planning horizon. Instances are named according to the number of 

serviced customers, the number of the supplying plants and the cardinality of the 

planning horizon. E.g. instance 12-1-14 refers to an instance of size-12 (i.e.│I
-
│LIN = 7, 

│I
-
│LOX = 5), a single supply plant and a planning period of 14 days. Solution 

parameters for the minimum-cost solutions to instances without time windows are 

presented in Table 5 while solution parameters for the minimum-cost solutions to 

instances with time windows are summarized in Table 6. Solution parameters are the 

objective function value IS, the number of generated columns, the total CPU time, the 

accumulated CPU time spent on the restricted master problem (RMP), the routes 

generation problem (RGP), the restricted pattern-generation master problem (RPGMP) 

and the pattern generation problem (PGP). 
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The conclusions that can be extracted from the information presented in both tables are 

the following: (i) instances with a given number of customers and plants involving a 14 

days planning horizon are considerably harder to solve than the instances involving a 7 

days planning horizon, except in the last instance (last two rows), which shows a 

reverse behavior. This is explained by the utilization of existing inventories on 

customers and the utilization of the remaining storage capacity on the plants. (ii) The 

bottleneck of the algorithm lies mostly on the RGP. The pattern generation stage 

involving both the RPGMP and the PMP seems to consume less time in large instances.  

 

Table 4:  Production data and number of customers for the testing instances 

Instance I+  

 P1 P2 P3 │I-│LIN │I-│LOX │T│ 

 LIN LOX LIN LOX LIN LOX 

12-1-7 

12-1-14 

25-1-7 

25-1-14 

12-2-7 

12-2-14 

25-2-7 

25-2-14 

37-2-7 

37-2-14 

50-2-7 

50-2-14 

50-3-7 

50-3-14 

750 

750 

1800 

1800 

500 

500 

1200 

1200 

1500 

1500 

2000 

2000 

1500 

1500 

350 

350 

900 

900 

250 

250 

600 

600 

750 

750 

1000 

1000 

800 

800 

- 

- 

- 

- 

300 

400 

600 

600 

1000 

1000 

1500 

1500 

1500 

1500 

- 

- 

- 

- 

150 

200 

300 

300 

500 

500 

750 

750 

750 

750 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

500 

400 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

500 

400 

7 

7 

14 

14 

7 

7 

14 

14 

21 

21 

28 

28 

28 

28 

5 

5 

11 

11 

5 

5 

11 

11 

16 

16 

22 

22 

22 

22 

7 

14 

7 

14 

7 

14 

7 

14 

7 

14 

7 

14 

7 

14 

 

Table 5: Solution data for large scale instances without time windows 

Instances Solution data CPU time 

 IS 

($) 

Columns RMP 

(s) 

RGP 

(s) 

RPGMP 

(s) 

PGP 

(s) 

Total 

(s)  

12-1-7 

12-1-14 

25-1-7 

25-1-14 

12-2-7 

12-2-14 

25-2-7 

25-2-14 

37-2-7 

37-2-14 

50-2-7 

50-2-14 

50-3-7 

50-3-14 

221.4 

855.7 

405.4 

855.7 

221.8 

911.1 

409.3 

2050.1 

639.4 

3531.9 

1002.9 

3222.1 

894.7 

2640.7 

77 

266 

210 

68 

70 

140 

322 

672 

413 

812 

414 

812 

623 

770 

0.4 

1.7 

1.9 

1.7 

0.5 

1.1 

2.4 

5.1 

3.0 

5.9 

3.4 

6.1 

5.9 

8.5 

8.7 

13.1 

731.1 

13.0 

5.6 

6.4 

723.6 

694.7 

1535.6 

1518.6 

1808.4 

1806.7 

2710.4 

2346.7 

3.5 

11.1 

12.6 

11.6 

2.6 

4.8 

12.7 

28.2 

16.5 

26.8 

16.4 

28.9 

36.0 

40.8 

23.1 

99.8 

84.4 

96.6 

17.8 

40.9 

107.3 

259.0 

137.8 

273.1 

137.4 

228.2 

248.9 

276.5 

35.8 

125.6 

827.0 

122.9 

26.5 

53.2 

846.0 

987.0 

1692.9 

1824.5 

1965.6 

2069.9 

3001.2 

2672.6 
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Table 6: Solution data for large scale instances with time windows 

Instances Solution data CPU time 

 IS 

($) 

Columns RMP 

(s) 

RGP 

(s) 

RPGMP 

(s) 

PGP 

(s) 

Total 

(s)  

12-1-7-TW 

12-1-14-TW 

25-1-7-TW 

25-1-14-TW 

12-2-7-TW 

12-2-14-TW 

25-2-7-TW 

25-2-14-TW 

37-2-7-TW 

37-2-14-TW 

50-2-7-TW 

50-2-14-TW 

50-3-7-TW 

50-3-14-TW 

254.2 

924.5 

441.6 

1091.9 

254.3 

934.8 

447.6 

2376.9 

740.6 

4005.1 

1196.9 

5912.8 

943.4 

4944.7 

112 

196 

210 

1190 

126 

182 

210 

392 

211 

420 

220 

423 

210 

420 

0.6 

1.6 

1.8 

1.2 

0.9 

1.2 

2.0 

4.0 

2.2 

4.4 

2.4 

5.1 

3.3 

6.1 

4.5 

3.9 

19.6 

21.1 

2.4 

3.0 

19.7 

23.5 

126.6 

129.5 

281.8 

380.6 

340.1 

331.7 

3.8 

7.3 

11.8 

80.6 

5.4 

8.8 

11.2 

24.1 

11.3 

20.7 

10.1 

20.7 

11.7 

23.0 

39.1 

63.5 

80.6 

439.8 

44.9 

68.1 

77.2 

169.0 

78.2 

146.7 

69.4 

141.7 

83.2 

162.0 

48.0 

76.3 

114.8 

1069.2 

53.5 

81.1 

110.3 

220.6 

218.3 

301.3 

363.7 

548.2 

438.4 

521.8 

 

 

From Table 5, it follows that instance 50-3-7 consumed more CPU resources than 

instance 50-3-14. This anomaly may be originated from a slow convergence rate of the 

PGP problem of instance 50-3-7. Note that CPU times consumed in RGP, RPGMP and 

PGP problems are consistent with the pattern observed in remaining instances. The 

anomaly is also observed by comparing CPU times of the RGP stage of instance 50-3-7-

TW with the RGP stage of instance 50-3-14-TW. 

In Table S2, presented as supplementary information, we detail the solution provided to 

example │I
-
│LIN = 7; │I

-
│LOX   = 5; │T│ = 7 with a single plant producing 750 ft

3
 of 

LIN and 350 ft
3
 of LOX. Such a table details the routes corresponding to each day of 

the planning horizon and the evolution of inventories both in the plant and in the 

customers. It seems that the number of routes used on each period grows as the time 

goes on. This pattern, which was also observed in other unreported instances, seems to 

indicate that products inventories and idle storage capacities are used as far as possible 

to save routing costs. As the allocation of products to compartments is in itself another 

combinatorial problem, the number of DPs per route depends mainly on two factors: the 

number of customers visited along the route and the assignment of products to 
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compartments.  In spite of this, it seems that CPU spent on PGPs grows, with instances 

sizes, at a slower rate than the growth of CPU times spent on RGPs. This is because 

scheduling decisions, necessary to sequence clients along a route, are not involved in 

the patterns generation phase. This is another reason to decouple routing decisions from 

delivering decisions. 

  

6. Conclusions 

This work developed a decomposition strategy based on a nested CG procedure for 

planning, over a multi-period time horizon, the distribution and inventorying of several 

chemical fluids. Products demands and plants productions were assumed to be known 

data after statistical forecasting. 

This one is the second work of a research line aimed at the optimal integration of 

inventorying and delivery of chemical fluids. The procedure is used for designing over a 

multi-period time-horizon the best routes for distributing multiple chemical fluids from 

plants to customers. Moreover, the solution indicates the time to serve a given customer, 

the quantity of products to deliver to the visited customers and the optimal sequence of 

visited customers by each vehicle-route on each time period. The procedure is able also 

to consider the allocation of several products on the same vehicle by fixing the quantity 

and type of product transported on each compartment. The freedom to select the 

delivery-period and to fix the quantity of products to deliver to each customer allows 

saving transportation costs through a very efficient use of the compartments of the 

vehicles, inventories and idle storage capacities. For developing the decomposition 

strategy, an inventorying-routing problem tailored to the distribution of chemical fluids 

was first modeled as a set partitioning problem with additional balances constraints over 

the whole planning horizon for each product.  
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Routes and delivery patterns were separately computed through a nested CG mechanism 

on each node of an incomplete branch-and-price tree. The goal was to decouple routing 

decisions from delivering decisions in order to avoid convergence problems happening 

in a conventional column generation algorithm. The proposed mechanism has been used 

to solve numerous instances featuring two different planning-horizons and several 

numbers of customers and plants. In all examples, the solutions were obtained with 

moderate computational effort. 

The next step of this research line, to consider in a future work, aims at dealing with 

service times depending both on the cargo to load and unload and to take into account 

the delivery-time within a time-period for getting less conservative solutions. 

Inventorying costs on customers, additional restrictions to consider stability issues on 

vehicles as well as modulation of production levels on plants should also be taken into 

account in order to research inventorying and distribution of perishable products. 
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Appendix A 

 

Minimum number of visits to customers and production plants. The minimum number 

of visits to a given customer along the whole planning period can be computed from the 

following expression: 
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(A.1) 

 

In the same way, the minimum number of vehicles used for evacuation the production 

from each plant can be computed from this expression: 

 

 














































 






Kk c

ikik

Tt

itk

i
q

IIp

C
v

0;max
1

0max

 

 

 
 Ii  

 

 

 

(A.2) 

 

Upper bound on the quantity to pick up/deliver from/to source/sink nodes. The 

maximum quantity of product k that can be picked-up (delivered) from each plant 

(customer) is calculated according to the following expressions: 
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