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A B S T R A C T

Vegetation management practices, such as defoliation may alter the composition of plant communities and/or
the fungi-forming arbuscular mycorrhiza (AMF). We determined the species identity, density, frequency and
diversity of AMF spores from soil under the canopies of three native perennial grass species in rangelands of
Argentina: 1) Poa ligularis and Nassella tenuis (preferred by livestock) and 2) Amelichloa ambigua (not preferred).
For each species, plants either remained undefoliated or were defoliated twice to a 5 cm stubble height during
the growing season. Most active meristems remained on the plants after defoliations. AMF communities were
sampled prior to (i.e., 48 soil samples) and following (i.e., 72 soil samples) each defoliation event. Spores were
grouped in 15 morphospecies. Density, richness and diversity of AMF spores were not influenced by defoliation,
and species richness and diversity of AMF were similar among species. Total spore density was greatest for P.
ligularis at the sampling prior to defoliation, but this difference did not persist following the defoliation events.
The most abundant AMF families were: Acaulosporaceae, Diversisporaceae and Glomeraceae. These results
demonstrate that responses of the studied variables were insensitive to the defoliation treatments, and were
largely unaffected by the studied grass species.

1. Introduction

Arbuscular mycorrhizal fungi (AMF) affect the structure and dy-
namics of plant communities, especially in nutrient-poor soils (Van der
Heijden et al., 1998). In turn, plant communities are important de-
terminants in the distribution and composition of AMF in the soil
(Johnson et al., 1992). Beneficial associations between individual
plants or species and AMF are largely dependent on the species of the
associated AMF, as AMF species vary in their demand for carbon from
shoots and phosphorous translocation from roots to shoots (Pearson and
Jakobsen, 1993).

Grazing management practices can alter plant species composition
(Distel and Bóo, 1996; Augustine et al., 2017; Porensky et al., 2017),
but their effects are largely unknown for fungal diversity in arid and
semiarid rangelands. Herbivory affects mycorrhizal colonization by
inducing changes in root morphology and soil physicochemical prop-
erties in addition to alterations in plant community structure (Su and
Guo, 2007). For example, herbivory-induced changes in soil structure
can reduce sporulation of AMF due to decrease in soil pore size (Allen
and Allen, 1980). Lower infiltration rates from herbivory-induced
changes to soil bulk density and plant basal cover (Thurow et al., 1986)
can reduce soil moisture, and consequently spore germination (Daniels
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and Trappe, 1980). Thus, reductions in VAM fungi sporulation and
spore germination are often associated with drier and more compacted
soil.

Rangelands in higher ecological states (i.e., greater abundance of
higher seral species), can have a greater quantity and diversity of the
AMF community (Mendoza et al., 2002). Thus, grazing mismanage-
ment, which induces replacement of desirable (i.e. preferred) plant
species by undesirable ones, and degrades the ecological state of ve-
getation community, results in reducing litter decomposition rate and
nutrient mineralization of plant communities (Milton et al., 1994).

Effects of grazing or defoliation on the colonization by AMF have
been inconsistent (Frank et al., 2003; Yang et al., 2013; Saravesi et al.,
2014). For example, increased root growth of the C3 perennial grass
Poa pratensis following defoliation suggests that greater belowground
energy allocation also increased investment in mycorrhizal symbiosis
which in turn increased spore abundance Frank et al. (2003). In con-
trast, defoliation of the legume Medicago sativa decreased plant biomass
and AM colonization; the latter was likely limited by host carbon
availability (Saravesi et al., 2014). Furthermore, grazing in an alpine-
meadow on the Qinghai-Tibetean Plateau in China did not affect AM
root colonization and spore density (Yang et al., 2013). These authors
indicated that it is possible that the AM fungus Rhizofagus intraradices
(= Glomus intraradices) shows a wide tolerance to environmental stress
or there is functional diversity within this species. However, these three
studies differ in the (1) defoliation characteristics (artificial, actual
grazing, intensity, duration and frequency); (2) environmental set ups
(greenhouse, growth chamber, field conditions); (3) study functional
groups (grasses, legumes); (4) abiotic growth conditions (e.g., tem-
perature: from a little more than 1 °C–22 °C), and (5) sampling time
scales (from 3 to 9 weeks). Rodríguez Echeverría et al. (2008) reported
that the number of AMF spores associated to Ammophila arenaria, an
important sand dune-fixing species, varied significantly with sampling
time at various locations of the European coast. Even more, Yang et al.
(2013) pointed out that temperature differences of 1.2 °C during day-
time and 1.7 °C at night determined that warming with grazing sig-
nificantly increased AM fungal operational taxonomic units richness in
roots of A. arenaria, compared to the grazing only treatment. These
authors suggested that AM fungi might demonstrate complex responses
under multiple global change factors in ecosystems.

In arid and semiarid rangelands, where nutrient availability is
limiting, intensive grazing can negatively affect AMF (Cai et al., 2014).
However, moderate grazing can maintain dominance of preferred spe-
cies (Augustine et al., 2017; Porensky et al., 2017) with a resulting
symbiosis with AMF stimulating organic matter decomposition and soil
nutrient cycling (Nuccio et al., 2013). The key to the resilience of these
higher seral plant communities is that AMF species in the genera Glomus
and Rhizophagus, common in arid and semiarid environments, tolerate
lower levels of carbohydrates coming from the host plants, which in-
crease their growth and abundance (Eom et al., 2001; Saito et al., 2004;
Su and Guo, 2007; Barto and Rillig, 2010; Yang et al., 2013). Since
plants within a community can associate with different AMF species, it
is expected that grazing and defoliation will result in a high variability
in the various plant developmental morphology states and function of
AMF species (Klironomos et al., 2004).

Our objectives were to (1) identify the species of AMF spores rhi-
zospheric soil of three native perennial grasses with contrasting grazing
preferences, and (2) to evaluate the effects of defoliation on AMF spore
density, richness, frequency and diversity. We hypothesized that (1) soil
closest to roots as possible contains a different density of AMF spores on
the different studied grass species, and (2) AMF density, richness, fre-
quency and diversity from soils directly beneath perennial grass plants
will be non-responsive after three to four weeks from a moderate de-
foliation, when active (i.e., intercalary, apical) meristems remain on the
plants after defoliation.

2. Methods

2.1. Study site

The study was conducted in 2012 within a 1.12 ha exclosure where
domestic herbivores were excluded from grazing since 1996 in the
Chacra Experimental Patagones, located at the south of the Province of
Buenos Aires, Argentina (40° 39′S, 62° 54′W; 40m.a.s.l.). This area is
within the phytogeographical province of the Monte (Cabrera, 1976).
The site was cleared of woody vegetation and undergrowth in 1951 and
cropped until 1975. Desertification in this region is evident by a loss of
plant cover, decreases in soil fertility, and increases in soil compaction
and salinization (SAyDS, 2011).

Climate is temperate-semiarid, with 421mm of mean annual pre-
cipitation (1981–2012) with a maximum of 877mm in 1984 and a
minimum of 196mm in 2009 (Torres et al., 2013). Mean annual tem-
perature is 14.1 °C (1981–2012; Torres et al., 2013).

Soil in the exclosure is a typical Haplocalcid (Giorgetti et al., 1997),
with the 0–20 cm depth having pH of 8.26, organic matter content of
2.2%, total nitrogen of 0.12% and extractable phosphorus levels of
9.9 ppm.

2.2. Plant species

The plant community is dominated by perennial grasses with dif-
fering quality for grazing livestock and isolated shrub species (Giorgetti
et al., 1997). Poa ligularis Ness. is a dominant, cool-season, preferred
(i.e., desirable) perennial grass species. As grazing intensity increases
Nassella tenuis (Phil.) Barkworth replaces P. ligularis (Distel and Bóo,
1996), and with further increases in grazing intensity a non-preferred
species (i.e. undesirable: Amelichloa ambigua (Speg.) Arriaga and
Barkworth) becomes dominant (Giorgetti et al., 1997). These C3 per-
ennial grass species not only differ in grazing tolerance but also exhibit
differences in forage and litter quality, and root morphology char-
acteristics (Table 1).

2.3. Experimental design and treatments

Using a completely randomized experimental design, 12 individual
plants per species and 12 sites approximately 1m2 in surface area
without vegetation (controls) were randomly selected at the end of the
growing season in December 2011. Unvegetated sites among vegetation
patches were irregular as the result of topographic characteristics and
previous grazing mismanagement. These sites were useful as a control
for evaluating species-specific effects of the various perennial grasses.

Soil samples (2.5 cm diameter, 0–10 cm depth) were collected from
beneath each individual plant and the control plots at the beginning of
the experiment, prior to initiation of defoliation treatments (n=48
samples). Soils were re-sampled beneath individual plants approxi-
mately 35–40 days following each defoliation event.

When plants were at the dormant stage of developmental mor-
phology (January 2012: Giorgetti et al., 2000), they were all defoliated

Table 1
Major characteristics of the native perennial grass species under study (Distel
and Bóo, 1996; Giorgetti et al., 1997; Saint Pierre et al., 2004a; Moretto and
Distel, 2003).

Poa ligularis Nassella tenuis Amelichloa
ambigua

Successional stage Late Intermediate Early
Forage quality Highly Preferred Preferred Non preferred
Litter quality High (high N,

low C/N and
lignin)

High (high N, low
C/N and lignin)

Low (low N, high
C/N and lignin)

Root morphology Fine Fine Coarse
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(clipped) to 5 cm height which removed senescent, dead shoots accu-
mulated during the previous growing seasons. Half of the plants (n= 6)
for each species were defoliated to 5 cm height on 6 August 2012 (mid-
winter) during the vegetative developmental morphology stage. These
same plants were again defoliated to 5 cm on 14 September 2012 (late
winter-early spring) after the differentiation of the growth apex from
vegetative to reproductive. This allowed apical and some intercalary,
active meristems to remain on the plants after the defoliation treat-
ments without affecting their biological growing capacity (Giorgetti
et al., 2000; Briske and Richards, 1995). Control plants (n=6 per
species) were not defoliated at any time.

2.4. Spore isolation and identification

Spores were isolated from 100 g of dry soil using the wet sieving and
decanting method (Gerdemann and Nicolson, 1963) and centrifugation
in a sucrose gradient (Walker et al., 1982). Spores were isolated with
Pasteur pipettes under a stereoscopic microscope. They were then se-
parated in individual groups, according to common morphological
features (e.g., size, color, hyphae connections, surface area spore
characteristics), which were then transferred in water to glass watches.
Each spore type was placed in polyvinyl-lactic acid-glycerin (PVLG:
Koske and Tessier, 1983) and PVLG in a mixture 1:1 (v/v) with Melzer
reagent (Brundrett et al., 1999). Spore identification was based on
taxonomic criteria currently accepted for spore size, color, surface or-
namentation and wall structure [Schenck and Perez, 1990; INVAM
(International Culture Collection of Arbuscular and Vesicular-Arbus-
cular Mycorrhizal Fungi), http://invam.caf.wvu.edu].

2.5. Analysis of the AMF communities

After spore identification, the following determinations were made:
1) frequency of occurrence of the AMF species (percentage of samples
from which spores of a particular species were recovered); 2) spore
density of each AMF family (spore number of each AMF family per
100 g soil); 3) total spore density of AMF (total AMF spore number per
100 g soil); 4) richness of AMF (number of species per 100 g soil), and
5) Diversity index of Shannon and Weaver (1949), H´= -Ʃ pi log2 pi,
where pi is the relative species density in comparison with the total
number of species identified per sample.

2.6. Statistical analysis

Data were analyzed using the software INFOSTAT (Di Rienzo et al.,
2013). Principal component analysis (PCA) was used for correlating the
major species of AMF with the perennial grass species or unvegetated
sites, defoliation treatment and sampling date. Data corresponding to
spore density of each family and total spore density were transformed
to log2 (x + 1) to comply with the assumptions of normality and
homocedasticity. At the initial sampling, spore density, richness and
diversity were analyzed using one-way ANOVA with plant species/un-
vegetated site as the main factor. Remaining data were analyzed using
two-way ANOVA with species and defoliation treatment as the main
factors. When F tests were significant at the 5% significance level, mean
comparisons were made using Fisher LSD test at a significance level of
5%.

3. Results

3.1. AMF species

The total number of isolated spores (5,297) during all sampling
dates were grouped in 15 morphospecies in the Acaulosporaceae,
Ambisporaceae, Claroideoglomeraceae, Glomeraceae, Diversisporaceae
and Pacisporaceae families. Spores were identified to species level
every time it was possible, and genus level when the species-level
identification was unsuccessful. Unidentified spores of Glomeraceae
and Pacisporaceae were named to a genus level (Tables 2 and 3).

Dominant species of AMF (100% frequency) across the three sam-
pling dates were Funneliformis mosseae (T.H. Nicolson & Gerd.) C.
Walker & Schüßler, F. geosporum (T.H. Nicolson & Gerd.) C. Walker &
Schüßler, Rhizophagus irregularis (Błaszk., Wubet, Renker & Buscot) C.
Walker & Schüßler, Diversispora spurca (C.M. Pfeiff., C. Walker & Bloss)
C. Walker & A. Schüßler and Acaulospora mellea Spain & N.C. Schenck.
Sub-dominant species were Glomus sp. (first sampling= 75% fre-
quency; second and third sampling= 83%) and Claroideoglomus etuni-
catum Walker & Schüßler (first sampling=50%; second and third
sampling= 58%; Tables 2 and 3).

The first component of the PCA, major species, separated D. spurca
and R. irregularis from Glomus sp., C. etunicatum and F. geosporum
(Fig. 1). This is, D. spurca and R. irregularis appeared positively

Table 2
Density (spore number/100 g soil, mean ± 1 SE of n= 12) and frequency of occurrence (F: percentage of appearance from which spores of a particular species were
recovered) of AMF species under plants of Poa ligularis, Nassella tenuis, and Amelichloa ambigua, and unvegetated sites (i.e., without vegetation) at the initial sampling,
August 2012.

AMF species Poa ligularis Nassella tenuis Amelichloa ambigua Unvegetated sites F (%)

Fam. Glomeraceae
Funneliformis mosseae 7.5 ± 2.5 2.2 ± 1.1 1 ± 0.4 1.7 ± 0.7 100
F. geosporum 23.6 ± 4.6 7.3 ± 1.4 18.5 ± 4.1 9.2 ± 3.4 100
Glomus sp. 10.3 ± 3.7 3.8 ± 3.8 7.7 ± 3 0 75
G. microaggregatum 0 0 0.2 ± 0.2 0 25
Rhizophagus clarus 0 0 0.3 ± 0.2 0 25
R. irregularis 1.2 ± 0.9 2.7 ± 1.4 2.3 ± 1.7 8.7 ± 2 100
Fam. Claroideoglomeraceae
Claroideoglomus etunicatum 1.0 ± 0.7 0 2.0 ± 1.4 0 50
Fam. Diversisporaceae
Diversispora spurca 12.3 ± 2.7 11.2 ± 3.9 6.5 ± 2.5 9.7 ± 2.7 100
Fam. Pacisporaceae
Pacispora sp. 0 0.2 ± 0.2 0 0 25
Fam. Acaulosporaceae
Acaulospora excavata 0 0 0.2 ± 0.2 0 25
A. laevis 0 0.2 ± 0.2 0 0 25
A. mellea 5.0 ± 2.4 1.8 ± 0.6 0.7 ± 0.4 2.5 ± 0.6 100
Fam. Ambisporaceae
Ambispora leptoticha 0.3 ± 0.3 0.2 ± 0.2 0 0 50
A. gerdemannii 0.2 ± 0.2 0.2 ± 0.2 0 0 50
Incertae sedis
Entrophospora báltica 0 0 0.2 ± 0.2 0 25
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correlated in the samples (i.e., when D. spurca was present in a sample,
R. irregularis was also present in that sample most of the times). In the
same way, Glomus sp., C. etunicatum and F. geosporum appeared to-
gether, while D. spurca and R. irregularis were absent, in the same
sample most of the times (Fig. 1). The second PCA component grouped
A. mellea and F. mosseae (Fig. 1). These two components explained
68.4% of the total variation. Proportions of F. geosporum, Glomus sp.
and C. etunicatum associated with P. ligularis and A. ambigua were
greater in August compared to October. At the same time, N. tenuis and
the unvegetated sites had a greater proportion of D. spurca and R. ir-
regularis (Fig. 1). At the second sampling (September), defoliated and
undefoliated plants of P. ligularis and A. ambigua had a high proportion
of F. geosporum and Glomus sp. spores compared to N. tenuis (Fig. 1). In
October, defoliated and undefoliated plants of N. tenuis showed a high
proportion of D. spurca and R. irregularis; the other two grass species did
not appear to associate to any AMF species in particular (Fig. 1). In
September, Glomus sp., C. etunicatum and F. geosporum tended to pro-
duce a greater proportion of spores in soil under the canopy of defo-
liated and undefoliated plants of A. ambigua, compared to P. ligularis.
Within each study species, defoliation effects on the AMF community
were obvious after two successive defoliations (i.e., in October) (Fig. 1).

3.2. Major AMF families

Defoliation treatments did not affect spore density in any of the
three most abundant families associated with perennial grass species
[Table 4 (b)]. For Glomeraceae, spore density was greater underneath
the foliage of P. ligularis compared to N. tenuis and on unvegetated sites,
in the August sampling [Fig. 2 (a)]. Spore density beneath P. ligularis
and A. ambigua was similar for all sampling dates [Fig. 2 (a)].

Spore density of Acauloporaceae among species and unvegetated
sites did not differ neither in the initial sampling [Table 4 (a); Fig. 2 (b)]
nor in October [Table 4; Fig. 2 (a)]. In September, however, spore
density was lower under the foliage of A. ambigua than on that of P.
ligularis [Fig. 2 (b)].

In August, AMF spore density was similar in soil under all three
perennial grasses and unvegetated sites in Diversisporaceae [Table 4
(a); Fig. 2 (c)]. In September, P. ligularis and N. tenuis had similar spore
density values, but greater values than A. ambigua [Fig. 2 (c)]. There
were no differences (p > 0.05) in spore density among species in Oc-
tober [Table 4 (b); Fig. 2 (c)].

3.3. Total density, richness and diversity of AMF

Defoliation treatments did not affect total density, richness and di-
versity of AMF on any of the soil sampling dates [Table 5 (b)]. AMF
density in August and September was greater under P. ligularis than N.
tenuis (Fig. 3), and in the unvegetated sites in August (Fig. 3). In Sep-
tember, P. ligularis and A. ambigua did not differ in AMF spore density
(Fig. 3). AMF spore density was similar for all plant species in October
(Fig. 3). Plant species and unvegetated sites did not differ in AMF
richness and diversity in August [Table 5 (a)], and no differences
among plant species were observed in September and October [Table 5
(b)]. Mean values of AMF richness and diversity were 3.98 ± 0.12
species/100 g dry soil and 1.58 ± 0.04, respectively.

4. Discussion

This study is the first report on the species identity and quantity of
AMF spores in the infertile, semiarid soils of northeastern Patagonia,
Argentina. We worked at the species and family of AMF in the analysis
and presentation of the results in this study. AMF species were grouped
to a family level as functional differences in these fungi occur at the
family rather than species level (Chagnon et al., 2013; Velázquez et al.,
2013).

We are not sure where the soil spores came from into our control,Ta
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unvegetated sites. Spores can persist in the soil during long time per-
iods, thus not reflecting the current state of the symbiosis between the
AMF and the plant species (Hijri et al., 2006). They could come from
roots of neighboring plants; this might be because of the extensive,
adventitious root system which is characteristic in perennial grasses
(Caldwell and Richards, 1986). They could also be remnant spores bank
of the vegetation that might have been previously there. This situation
might also occur under the study plants. It was important to compare
unvegetated sites with those where native, perennial grasses were es-
tablished to evaluate the species-specific effects of the studied plants.

4.1. AMF species

Plant species P. ligularis and A. ambigua, which have contrasting
seral stages, livestock preferences and litter quality, were associated
with AMF C. etunicatum and F. geosporum (Fig. 1). Such fungi have been
reported on other perennial grass species with similar plant character-
istics to those of the studied species (Murray et al., 2010; Velázquez
et al., 2013). Claroideoglomus etunicatum has been found (1) in degraded
environments (Irrazabal et al., 2005), (2) to be very efficient when
plants are exposed to high stress conditions (Lozano-Ruiz et al., 1995),
and (3) unaffected by defoliation (Klironomos et al., 2004). Funneli-
formis geosporum is sensitive to high grazing pressures (Uhlmann et al.,
2006). However, this AMF species has been found in restored, ungrazed
or moderately grazed areas (Su and Guo, 2007). This might explain why
the mentioned AMF species were positively correlated between them-
selves and showed tolerance to the first defoliation treatment (Fig. 1).

Nassella tenuis, the intermediate seral stage plant species with high
litter quality and preferred by livestock, was more associated with the
AMF species D. spurca and R. irregularis during August and October, and
A. mellea and F. mosseae in September (Fig. 1). Funneliformis mosseae has
been shown to be sensitive only to high grazing pressures (Su and Guo,
2007), and similarly to D. spurca, they tolerate drought conditions
(Lozano-Ruiz et al., 1995). Spore density of A. mellea increases during
spring (Lugo and Cabello, 2002), and this might explain its greater
association with N. tenuis in September.

4.2. Defoliation

Despite the PCA allows to see some effect after the second defolia-
tion, this effect did not show up when ANOVA were conducted with the

major AMF Families. Therefore, such effect was considered irrelevant.
This emphasizes the importance of making analysis not only to the AMF
species but also to a family scale. This is critical to the time of analyzing
the ecological functionality of AMF. Defoliation treatments did not af-
fect density, richness, or diversity of AMF spore density (as it was
posted in our second hypothesis), despite the differential plant char-
acteristics of the three grass species. Similarly, no consistent patterns in
AMF spore counts were observed for two perennial, C3 tussock grasses
exposed to defoliation under various soil moisture regimes (Allen et al.,
1989). Greater shoot relative growth rates on defoliated than un-
defoliated plants of N. tenuis and A. ambigua (Saint Pierre et al., 2004a)
suggest that carbon is not a limiting factor on defoliated plants as to
maintain mycorrhizal root colonization and subsequent reproduction.
Defoliated plants may benefit from AMF functioning to stimulate
compensatory growth (Kula et al., 2005), but if carbon is a limiting
resource, the interaction between plants and AMF can become parasitic
rather than mutualistic for plants (Fitter and Hay, 1983). Long-term
defoliations, during at least 20 years, have reduced spore density of
AMF (Frank et al., 2003; Su and Guo, 2007; Murray et al., 2010). Also,
Van der Hayde et al. (2017) demonstrated that time since grazing
cessation was an important factor to explain the dissimilarites between
grazed and ungrazed AM fungal communities.

The lack of defoliation effects on AMF spore density in this study are
in agreement with the second hypothesis, in accordance with previous
studies in rangelands exposed to light or moderate grazing (Lugo and
Cabello, 2002; Yang et al., 2013) or defoliation treatments (Allen et al.,
1989; Bentivenga and Hetrick, 1992; Klironomos et al., 2004). They
disagree, however, with results of Busso et al. (2001) who reported that
defoliated plants of perennial, tussock grass species had a higher mean
spore number than undefoliated plants. In our study, defoliation in-
tensity might not have been sufficient to remove enough photosynthetic
tissue as to reduce substrate availability to the fungi for sufficient
periods to inhibit AMF colonization rates or induce mortality (Trent
et al., 1988). Additionally, Van der Hayde et al. (2017) found that
differences in the AMF communities between defoliated versus un-
defoliated plants increased with time from defoliation.

4.3. Major AMF families

Identified families in the AMF communities agree with results pre-
viously reported in plant studies from semiarid rangelands (Yang et al.,

Fig. 1. Principal component analysis: Bi-plot graphic of the proportion of spores of the major AMF (number of spores of each species/total spore number) and its
relationship with either defoliated (D) or undefoliated (UD) plants of P. ligularis (Pl), N. tenuis (Nt), and A. ambigua (Aa) or unvegetated sites (Us) in August (Aug),
September (Sep) and October (Oct) 2012. AMF species are graphed as vectors from the origin. Observations (grass species/unvegetated sites; treatments and
sampling times) which are graphed in the same direction than AMF species represent high values for that variable, and low values for variables which are graphed in
the opposite direction. Cophenetic correlation: 0.941.
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2013). Members of Glomeraceae are able to produce a large spore
quantity during a short time period and regulate their growth as a
function of host activity, which are typical characteristics of r-strategy
species (Chagnon et al., 2013). Because of this, it is possible that sea-
sonal or sampling effects were not detected on them. The genus Rhi-
zophagus has a great tolerance to environmental stress and grazing
(Yang et al., 2013), while Glomus is well adapted to a variable host
quality, likely enabling sufficient capacity to establish symbiotic re-
lationships with numerous plant species (Mendoza et al., 2002; Cai
et al., 2014). Mendoza et al. (2002) demonstrated that Claroideoglomus
etunicatum was in a greater proportion in the rhizospheres of De-
schampsia flexuosa and Poa rigidifolia than in other grass species, and
that the quantity and diversity of AMF is associated with a greater
rangeland forage quality. These results are in agreement with ours, and
with the first hypothesis, where P. ligularis showed a higher AMF spore
density than N. tenuis and the uncovered sites in August, and that N.
tenuis in September in the Glomeraceae [Fig. 2 (a)]. Poa ligularis has aTa
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Fig. 2. Density (total spore number/100 g dry soil, mean±1 S.E., n= 12) of
AMF spores in soil under the canopy of Nassella tenuis (Nt), Poa ligularis (Pl), and
Amelichloa ambigua (Aa), and on unvegetated sites (Us) of (a) Glomeraceae, (b)
Acaulosporaceae and (c) Diversisporaceae. Different letters indicate significant
differences among plant species and unvegetated sites in August, and among
species in September and October. Fisher LSD test was used to detect differ-
ences among means to a significance level of 5%. Note the differences in scales
in the Y axes.
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greater forage value than N. tenuis (Cano, 1988).
Developmental morphology (i.e., phenological) stage differences of

the perennial grasses were hypothesized to affect spore density in the
Acaulosporaceae and Diversisporaceae. At the second sampling date in
early spring [Fig. 2 (b, c)], rapid differentiation of P. ligularis apical
meristems from vegetative to reproductive (20% at sampling time)
elongated internodes (Giorgetti et al., 2000), which increases stem
growth but reduces production of new leaves (Busso and Richards,
1995). This results in a reduced allocation of carbon resources to roots
and an associated decrease in root biomass (Dawson et al., 2000). This
in turn translates into lipid translocation from fungus vesicles to re-
sistance structures (i.e., AMF spores: Bentivenga and Hetrick, 1992).
The greater density of the Acaulosporaceae and Diversisporaceae spores
in P. ligularis compared to A. ambigua in the September sampling
highlights the influence of the differential plant characteristics on AMF
(Bentivenga and Hetrick, 1992; Lugo and Cabello, 2002).

4.4. Total density, richness and diversity of AMF

The late seral, highly preferred and high litter quality plant species
P. ligularis, exhibited a consistent trend for a greater AMF density than
the other two grass species across the sampling dates (Fig. 3). Values
were only significantly different at the first sampling date (August), and
at least 12.2% or 32.6% greater in P. ligularis than in the other two
species in the September and October samplings, respectively. Because
preferred perennial grasses facilitate AMF spore production, and then
their propagation through a higher litter quality and a more rapid
aboveground litter decomposition (Moretto and Distel, 2003; Cai et al.,
2014), this could have important consequences on the communities of
soil microorganisms.

Plant size can be an important factor in structuring AMF commu-
nities (Piippo et al., 2011), and results herein provide support that
mean basal area for P. ligularis was more than 3-fold greater than that in
N. tenuis. This might also contribute to the greater AMF density in P.
ligularis than in N. tenuis (Fig. 3). The greater basal area and tiller
density in P. ligularis than in N. tenuis (Saint Pierre et al., 2004b) gave a
greater photosynthetic leaf length in the first than in the second species
(Ithurrart, 2016). This might contribute to an increased photosynthetic
carbon input in P. ligularis, which might facilitate partitioning of a
greater amount of carbon resources to roots, thus increasing its capacity
for associating with AMF (Piippo et al., 2011). This might be because
AMF spore density was either greater or similar, but not lower, in P.
ligularis than in the other two species.Ta
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Fig. 3. Density (total spore number/100 g dry soil, mean ± 1 S.E., n= 12) of
AMF in soil under the canopies of Poa ligularis (Pl), Nassella tenuis (Nt) and
Amelichloa ambigua (Aa) and on unvegetated sites (Us). Each histogram is the
mean ± 1 S.E. of n=12. Different letters indicate significant differences
among species and unvegetated sites in August, and among species in
September and October. Fisher LSD test was used to detect differences among
means to a significance level of 5%.
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5. Implications

Defoliation did not significantly affect AMF spore diversity, richness
nor density in soil sampled under perennial grass canopies with con-
trasting plant characteristics. Rather, the particular characteristics of
the grass species such as plant size, litter quality and plant develop-
mental morphology stage were influential in altering AMF commu-
nities. Rangeland management strategies in northeast Patagonia should
focus on increasing the abundance of the highly preferred P. ligularis
relative to the less preferred species N. tenuis (Distel and Bóo, 1996). We
suggest that further studies should address the (1) comparison of sites
with different grazing histories, and (2) effects of various defoliation
characteristics (e.g., frequency, intensity, timing) on AMF spore viabi-
lity under perennial grasses.
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