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The percolation problem of irreversibly deposited dimers on honeycomb and triangular lattices is studied. A
dimer is composed of two segments, and occupies two adjacent adsorption sites. Each segment can be either a
conductive segment (segment type A) or a nonconductive segment (segment type B). Three types of dimers are
considered: AA, BB, and AB. The connectivity analysis is carried out by accounting only for the conductive
segments (segments type A), whereas the B segments occupy a site in the lattice but are not taken into account in
the percolation study. Different cases were investigated, according to the types of dimers involved in the process.
By means of numerical simulations and finite-size scaling techniques, the complete phase diagram separating
the percolating from the nonpercolating regions was determined for each considered lattice. The present results
are compared with the previous study of deposition of defective dimers on square lattices.
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I. INTRODUCTION

The study of percolation in systems of hard elongated
particles is one of the central problems in statistical mechanics
and has been attracting a great deal of interest since long ago
[1-15]. In this framework, the dimer is the simplest case of an
extended object and, consequently, the percolation problem of
irreversibly deposited dimers on a lattice has been extensively
studied in the literature [16-19].

From an experimental point of view, numerous studies
on molecular adsorption on some kinds of metal surfaces
show that the deposition is the initial step and is followed by
dissociation. Among them, the oxidation of carbon monoxide
[20]; the dissociative chemisorption of N, on Fe(111) [21], O,
on Pt(111) [22], O, on Ir(111) [23], etc. In all cases, when the
diatomic molecule (O,, N,) dissociates, it is broken into two
monomers, each of which occupies a site. The distributions of
such dissociated monomers and the structure of the clusters
composed by them are important factors in the catalytic
processes. Because the dimers are randomly placed on the
lattice and randomly dissociate, the dissociative adsorption is
a spatial random process and can clearly be modeled by dimer
percolation models. In this sense, Gao et al. [24] investigated
the process of dissociative adsorption of dimers and studied
the percolation properties of the dissociated monomers. In the
model, an O, molecule adsorbs onto a pair of neighboring
sites and then dissociates. A complete phase diagram separat-
ing a percolating from a nonpercolating region was obtained
in terms of the concentration of dimers and the dissociation
probability.

A model involving the formation of dimers on the sur-
face was also used to describe the nonlinear dependence
of transport properties on composition in mixed-alkali ionic
conductors [25]. Along the same line, Holloway [26] studied
the problem of site percolation on a diamond lattice occupied
by a mixture of monatomic and diatomic species. The results
allowed us to understand some of the features of the alloys of
Ge with group III-V semiconductors.

Two previous articles [27,28], referred to as papers I and
I, respectively, were devoted to the study of percolation of
heteronuclear dimers irreversibly deposited on square lattices.
In paper I, a site percolation model of defective (or heteronu-
clear) dimers was investigated. The presence of defects was
introduced as two kinds of segments composing the dimers:
segment type A (conductive segment) and segment type B
(nonconductive segment). Each segment occupies one lattice
site. Three types of dimers were considered: AA, BB, and
AB. The connectivity analysis was carried out by accounting
only for the conductive segments (segments type A). The
model offers a simplified representation of the problem of
percolation of defective (nonideal) particles, where the pres-
ence of defects in the system is simulated by introducing a
mixture of conductive and nonconductive segments. Different
cases were studied, according to the sequence of deposition of
the particles, the types of dimers involved in the process, and
the degree of alignment of the deposited objects. By means
of numerical simulations and finite-size scaling analysis, the
complete phase diagram separating a percolating from a non-
percolating region was determined for each case.

In paper II, a generalization of the site-bond percolation
problem was studied, in which pairs of neighboring sites (site
dimers) and bonds were occupied irreversibly, randomly, and

"To whom all correspondence should be addressed: independently on homogeneous square surfaces. As in paper I,
antorami @unsl.edu.ar the dimers were modeled as objects composed by conductive
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(type A) and nonconductive (type B) segments. Two different
criteria were used for the connectivity analysis: the union
or the intersection between the conductive segments and the
bonds. The corresponding percolation phase diagrams were
determined. The aim of this paper is to study percolation of
defective dimers on triangular and honeycomb lattices using
the same techniques developed in papers I and II.

A site percolation model of linear k-mers with defects
(k-mers containing a fraction of nonconducting defects) on
an ideal square lattice was studied by Tarasevich et al. [29].
k-mer sizes ranging from 2 to 256 were considered. For each
size k, a critical concentration of defects was found. Above
this concentration, percolation is impossible. In the case of
k = 2 (dimers), the results in Ref. [29] were found to be
consistent with those from Ref. [27].

In contrast to the statistic for the simple particles, the
degeneracy of arrangements of dimers is strongly influenced
by the structure of the lattice space [30]. Because the structure
of lattice space plays such a fundamental role in determining
the statistics of dimers, it is of interest and of value to inquire
how a specific lattice structure influences the main percolation
properties of heteronuclear dimers. In this sense, the aim of
this work is to study the effect of the lattice structure on
the percolation transition occurring in a system of defective
dimers. For this purpose, extensive numerical simulations
have been performed to study the percolation of dimers
composed of segments A and B deposited on triangular and
honeycomb lattices. The results obtained are discussed and
compared with data from square lattices [27,28].

This paper is organized as follows. The model and simu-
lation scheme used to study the percolation phase transition
are described in Sec. II. Results are presented and discussed
in Sec. III. Finally, some conclusions are drawn in Sec. IV.

II. MODEL AND CALCULATION METHOD

We consider the percolation of heteronuclear dimers on
triangular and honeycomb lattices. A dimer consists of two
segments, and occupies two adjacent sites on the lattice. Thus,
a lattice site is occupied by one segment, or is empty. Each
segment can be either a conductive segment (segment type A)
or a nonconductive segment (segment type B). Three types of
dimers have been considered: AA, BB, and AB (see Fig. 1);
and the percolation analysis is carried out by taking into
account only the conductive segments (segments type A).

In order to represent the honeycomb and triangular lattices,
a one to one mapping from each kind of lattice to a square
lattice, with the appropriate connectivity is performed. This
correspondence is illustrated in Fig. 1. In the case of hon-
eycomb lattices (connectivity z = 3), this structure is not a
Bravais lattice and two types of sites [/ and , see Fig. 1(a)] can
be distinguished. / and r are not equivalent sites. Thus, each /
site is connected to three r sites and each r site is connected to
three [ sites. On the other hand, for the triangular lattice, each
site has six neighboring ones (z = 6). The two-dimensional
square lattice consists on M = L x L sites for the triangular
case and M = %(L x L) sites for the honeycomb case, with
periodic boundary conditions.

In the filling process, two different cases have been consid-
ered, according to the types of dimers deposited on the lattice:

FIG. 1. Heteronuclear dimers deposited on (a) a honeycomb
lattice with L = 10, and (b) a triangular lattice with L = 6. Black
circles, gray circles, and open circles represent A-dimer units, B-
dimer units, and empty sites, respectively. The definitions of r and /
are given in the text.

Model I: Starting from an initially empty lattice, AB and
AA dimers are deposited up to a total coverage 6y = O,p +
044 1s reached. 645 (B44) represents the fraction of the lattice
covered by A B (AA) dimers. Due to the blocking of the lattice
by the already randomly deposited objects, the limiting or
jamming coverage 0; is less than that corresponding to the
close packing (¢; < 1). Consequently, the total site coverage
Or ranges from O to 6;. In the case of triangular (honey-
comb) lattices, the value of the jamming coverage for the
conventional dimer filling problem is 6; = 0.9142(12) [31]
[0; = 0.864(7) [32]]. In this study, we initially fix the value
of 04p. In a second stage, a fraction 044 of AA dimers is
deposited on the lattice.'

Model II: Starting from an initially empty lattice, BB and
AA dimers are deposited up to a total coverage 6r = Opp +
044 is reached. As in model I, 67 varies between 0 and 6;.
In this case, we initially fix the value of 65 and, in a second
stage, a fraction 644 of AA dimers is deposited on the lattice.

For what follows, it is useful to define 8; (6,) as the fraction
of dimers deposited in a first (second) stage. Thus, 6 = O4p
and 6, = 044 for model I; and 6; = 6zp and 6, = 6,4 for
model II. In both models, the dimers are deposited randomly,
sequentially, and irreversibly on the lattice. The procedure is
the following:

'Equivalent configurations can be obtained by initially depositing
all dimers on the lattice up to desirable total concentration 6y =
Oap + 044, and then randomly differentiating these dimers on AB
and AA types according to their concentration [27,28].
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(1) One lattice site i is chosen at random.

(2) If the site i is empty, then one of the z nearest neigh-
bors of i is randomly chosen. z = 3 (z = 6) for honeycomb
(triangular) lattices.

(3) If both sites are unoccupied, a dimer is deposited on
those two sites. Otherwise, the attempt is rejected.

(4) Steps 1-3 are repeated until the desired concentrations
(61, 6») are reached or until jamming conditions.

A cluster is a group of occupied sites in such a way that
each one of them has at least one occupied nearest neighbor
site. The central idea of the percolation theory is based on
finding the minimum coverage degree for which at least a
cluster extends from one side to the opposite one of the
system. This particular value of the coverage degree is named
percolation threshold. In the present model, given 6, we look
for the value of 6, = 6, . for which percolation occurs, and
that value will be our percolation threshold.

The larger the system size to study, the more accurate the
values of the threshold obtained [33]. Thus, the finite-size
scaling theory gives us the basis to achieve the percolation
threshold and the critical exponents of a system. For this
purpose, the probability R = R} (9, 6,) that a lattice of lin-
ear size L percolates at concentrations 6; and 6, can be
defined [34]:

(i) RX(61,6,): the probability of finding a rightward per-
colating cluster, along the x direction (see Fig. 1).

(i1) RE (61, 6»): the probability of finding a downward
percolating cluster, along the y direction (see Fig. 1).

(iii) Rg (61, 62): the probability of finding a cluster which
percolates on any direction.

@iv) R£ (61, 6»): the probability of finding a cluster which
percolates in both (mutually perpendicular) directions.

(V) R} (61, 6:) = L[RY (61.62) + RL(61. 6:)].

In the simulations, each run consists of the following steps:
(a) the construction of the lattice for the desired fractions
(61, 82), according to the scheme mentioned before, and (b)
the cluster analysis by using the Hoshen and Kopelman algo-
rithm [35]. In the latter step, the size of largest cluster Sy is
determined, as well as the existence of a percolating island.

n runs of such two steps are carried out for obtaining the
number mX (X =1, U, A) of them for which a percolating
cluster is found. Then, R} (0),6,) = m*/n is defined, and
the procedure is repeated for a fixed value of 6, and dif-
ferent values of 6,. For each lattice, each model and each
pair (61, 6»), a set of n = 100000 independent samples is
numerically prepared.

The percolation threshold can be estimated from the curves
of Rf (6>) for the different values of L [36-38]. Additionally,
in order to determine the universality class which this problem
belongs to, the critical exponents v, 8, and y have been
calculated. For this purpose, the percolation order parameter
P and its corresponding susceptibility x have been obtained
[39,40]. Thus,

p=-x (1)

and

X="—"7"— 2)

where S;, represents the size of the largest cluster and (...)
means an average over simulation runs.

III. RESULTS AND DISCUSSION

A. Percolation and phase diagrams

The curves of probability RY, R}, and R;' are reported in
Fig. 2 for two typical cases: (a) model I, honeycomb lattice
and 6; = 0.20; and (b) model II, triangular lattice and 6, =
0.32. In both cases, the simulations were performed for lattice
sizes of L = 128, 192, 256, 320, and 384. For clarity, two
sizes are shown in Fig. 2: L = 128 (squares) and L = 384
(triangles).

The following observations can be done from the data
presented in Fig. 2: (a) the behavior of the probability curves
tends to be more abrupt for increasing values of L; it agrees
with the percolation theory [36], i.e., these curves are expected
to approach a step function in the thermodynamic limit (L —
00) at 6, = 6, .; (b) curves cross each other in a point RX",

1.0 5

0.8 +

R, ; 1
. Honeycomb lattice
+ Model L, 6, = 0.20
: estimated
. % : 0, ~ 0.606
0.0 47 T T T '/ T T T T
0.5983 0.6060  0.6137 0.6214
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1.0 =
1(b)
0.8
0.6
X
RL .
0.4 - !
i Triangular lattice
0.2 L1 Model L, 6, =0.32
4 .“‘M‘&/“K‘ E ezc::timatcd ~0.491
0.0 —was T T |'/ T T T
0.478 0.491 0.504 0.517
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FIG. 2. Probability of percolation Ri‘ (X=1, U, and A, as
defined in Sec. II) as a function of 6, for two lattice sizes: L = 128
(squares) and L = 384 (triangles). Two cases are shown: (a) model
I, honeycomb lattice, 8, = 0.20; and (b) model II, triangular lattice,
0, = 0.32. The vertical dashed line denotes the percolation threshold
in the thermodynamic limit.
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which depends on the criterion X used; and (c) those points
are located at very well defined interval in the 6 axis, which
allow us to have an early estimation of the critical percolation
threshold [41]. In the case of Fig. 2, Ozeféima‘ed ~ (0.606 in
part (a) and 65%™*d ~ 0.491 in part (b). These values are
different from those of the percolation threshold for homoge-
neous dimers on honeycomb lattices 6, = 0.6905(6) [42] and
triangular lattices 6, = 0.4876(5) [31].

The finite-size scaling theory can be used to obtain more
accurate values of the percolation thresholds [33,36]. To do
this, first it is convenient to fit the curves of probability with
some function through the least-squares method so that they
can be expressed as a continuous function of 6,. The fitting
curve used is the error function because d Rf (01, 6,)/d0O, is
expected to behave like the Gaussian distribution near the
peak. This assumption is good enough to obtain the param-
eters that are needed to apply finite-size scaling theory [4,36]:

2
arf@o) 1 |1 6, — 05.(L) 5
do, V2 AY 2 A¥ '

where 6, (L) is the concentration at which the slope of
Ri‘ (61, 0,) is the largest and Af is the standard deviation from
0,..(L). For large systems L — o0, these thresholds converge
to a unique value according to the scaling behavior [36]

05 (L) = 05 .(00) + AX L', 4)

where A% is a nonuniversal constant and v is the critical
exponent of the correlation length which has been taken
as ‘3‘ for this study since, as it will be shown below, our
model belongs to the same universality class as random
percolation [36].

Figure 3 shows the plots towards the thermodynamic limit
of 92',’:4 Y(L) according to Eq. (4) for the data corresponding
to Fig. 2. From extrapolations it is possible to obtain Qz’fc(oo)
for each criteria I, A, and U. The final value is given by 6, . +
82,c, where 8, = max(| 6Y, — 03, 1,161 . — 65" ). InFig. 3,
6.c(00) = 0.6069(2) for case (a) and 6, .(o0) = 0.4915(3)
for case (b). Note that the values obtained in Fig. 3 match,
within the statistical errors, with those calculated in Fig. 2. For
the rest of the paper, we will denote the percolation threshold
by 6, [for simplicity we will drop the symbol “(c0)”].

The procedure shown in Figs. 2 and 3 was repeated for
both models (I and II) and different values of 6;. The results
for honeycomb and triangular lattices are shown in Figs. 4(a)
and 4(b), respectively. Each figure represents the complete
percolation phase diagram corresponding to the deposition of
heteronuclear dimers. As mentioned in the previous section,
01 = 0, (vertical axis) and 6, = 644 (horizontal axis) for
model I, and 6; = Ogp (vertical axis) and 8, = 644 (horizontal
axis) for model II.

We consider in the first place the phase diagram corre-
sponding to heteronuclear dimers deposited on honeycomb
lattices [see Fig. 4(a)]. The solid straight curve accounts for
the jamming restriction. This means that the total coverage is
always less or equal to §; = 0.864(7) for both models. Then,
the region above this curve corresponds to a forbidden area
for any combination of dimers. On the other hand, the region

0.6100

a

[@ .
0.6075+
0.6050~ y
X
0.6069(2)
Hz,c(L) ]

0.6025

Honeycomb lattice
0.60004 Model 1 6=0.20 N

0.000 0.606 O.OIIZ O.OIIS 0.0I24 0.030
L—l/v
0.5004 (b) Triangular lattice 7
Model I 6=0.32
0.496 -
0.492 4 - a ° oA
X \\\\\
02, C(L) \ \\\\\
0.488 4 0.4915(3) \a\&\
N
=%

0.484 evU

T T T T T T T T T

0.000 0.006 0.012 0.018 0.024 0.030
-1v

L

FIG. 3. Extrapolation of Qz’f(_(L) towards the thermodynamic
limit according to the theoretical prediction given by Eq. (4). Tri-
angles, circles, and squares denote the values of Gz’fC(L) obtained by
using the criteria I, A, and U (as defined in Sec. II), respectively.
Two cases have been considered: (a) model I, honeycomb lattice,
0; = 0.20; and (b) model II, triangular lattice, 6; = 0.32.

below this curve represents the space of all the allowed values
of the total coverage. The curve of solid circles separates the
nonpercolating region (on the left) from the percolating region
(on the right) for model 1. The curve of solid stars separates
the nonpercolating region (on the left) from the percolating
region (on the right) for model II. Both curves begin at
6, = 0.6905(6). This value represents percolation threshold
for homogeneous dimers on honeycomb lattices [42]. To sum
up, four regions can be distinguished in the percolation phase
diagram. Region 1: forbidden region for models I and II;
region 2: nonpercolating region for both models I and II;
region 3: percolating region for model I and nonpercolating
region for model II [see inset in Fig. 4(a)]; and region 4:
percolating region for models I and II.

From Fig. 4(b), it can be seen that the phase diagram for
triangular lattices has a similar pattern to the phase diagram
for honeycomb lattices. The solid straight curve indicates the
jamming condition, i.e., the total coverage is always less or
equal to ; = 0.9142(12) for both models. The curve of solid
triangles separates the nonpercolating region (on the left) from
the percolating region (on the right) for model I. On the other
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FIG. 4. (a) Percolation phase diagram corresponding to het-
eronuclear dimers on honeycomb lattices. Four regions can be dis-
tinguished. Region 1: forbidden region for models I and II; region 2:
nonpercolating region for both models I and II; region 3: percolating
region for model I and nonpercolating region for model II; and region
4: percolating region for models I and II. (b) Same as in part (a) for
triangular lattices. As explained in the text, 8; = 045 and 6, = 044
for model I, and 6; = 635 and 6, = 64,4 for model 1I.

hand, the curve of open stars separates the nonpercolating
region (on the left) from the percolating region (on the right)
for model II. The values of 6, = 644 remain approximately
constant, and they do not depend on 6; = 6pp (note that in
the case of honeycomb lattices the values of 6, = 844 depend
slightly on 6; = 65p.). Both curves begin at 6, = 0.4876(5),
which is in concordance with the value of the percolation
threshold for homogeneous dimers on triangular lattices [31].
Then, the percolation phase diagram splits into four regions,
which have been labeled as 1, 2, 3, and 4. Region 1: forbidden
region for models I and II; region 2: nonpercolating region
for both models I and II; region 3: percolating region for
model I and nonpercolating region for model II; and region
4: percolating region for models I and II.

Clearly, the obtained phase diagrams allow to determine
how the different fractions of dimers AA, AB, and BB affect
the connectivity in both lattices and models. The present
results can be compared with previous data for square lattices
[27]. Even though the phase diagrams look similar for the
three geometries (honeycomb z = 3, square z = 4, and trian-
gular z = 6), some differences deserve to be highlighted: (a)
the forbidden area for models I and II (region 1) decreases as
the connectivity z increases; (b) the percolating area for mod-
els I and II (region 4) increases as the connectivity increases;
and (c) the nonpercolating area for models I and II (region 2)
decreases as the connectivity increases. In summary, percola-
tion is favored as the local connectivity is increased.

B. Critical exponents and universality

In order to study the universality of the system, the critical
exponents v, B, and y have been calculated. Knowing this set
of exponents allows us a better understanding and characteri-
zation of the related problem.

The standard finite-size scaling theory [33] provides sev-
eral ways to estimate the critical exponent v from simulation
data. One of this methods is from the maximum of the

function de/dGz:

dR¥

L) oL, (5)
do,

In Fig. 5(a), log [(de/d@z)max] has been plotted as a
function of log[L] for model I in honeycomb lattice and for
model II in triangular lattice. According to Eq. (5), the slope
of each line corresponds to 1/v. As it can be observed, the
slopes of the curves remain constant, being v = 1.341(8) for
model I in honeycomb lattice and v = 1.335(4) for model II
in triangular lattice.

Another alternative way for evaluating v is from the di-
vergence of the root mean square deviation of the percolation
threshold observed from their average values Af:

A oc L7V, (6)

As an example of validity of Eq. (6), the inset in Fig. 5(a)
shows A% as a function of L (note that both axes are in log-
log scale) for the same cases of the main figure. According
to Eq. (6), the slope of the line corresponds to —1/v. In this
case, v = 1.338(9) for model I in a honeycomb lattice and
v = 1.333(6) for model II in a triangular lattice. These results
match, within numerical errors, with the exact value of the
critical exponent of ordinary percolation v = %.

Once v is known, the exponent y can be determined by
scaling the maximum value of the susceptibility in Eq. (2)
[36]. According to scaling assumptions, x can be written as
x = LYY (u), where u = (6, — 6, .)L'/" and ¥ is the corre-
sponding scaling function. At the point where x is maximal,
u = const and ¥max o< LY/Y. Our simulation data for ymay are
Fig. 5(b). The obtained values are y = 2.41(3) for model I
in a honeycomb lattice and y = 2.40(2) for model II in a
triangular lattice. Simulation data are consistent with the exact
value of the critical exponent of ordinary percolation y = %.

On the other hand, the exponent 8 can be determined from
the scaling behavior at criticality of the order parameter P =
L=PVPu'), where u’ = |0, — 6, .|L"/” and P is the scaling
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FIG. 5. (a) Maximum of the derivative of the A percolation
probability (d R} /d6), .. as a function of L (in a log-log scale) for
two different cases: model I in honeycomb lattice (solid squares) and
model II in triangular lattice (solid circles). Inset: standard deviation
in Eq. (3) Af as a function of L (in a log-log scale) for the same
cases shown in part (a). According to Eq. (6), the slope of each line
corresponds to —1/v = —%. (b) Maximum of the susceptibility xmax
as a function of L (in a log-log scale) for the cases in part (a). The
error bar in each measurement is smaller than the size of the symbols.
The slope of each line corresponds to y /v = %. (c) Maximum of
the derivative of the percolation order parameter (d P/d6,),,,. as a
function of L (in a log-log scale) for the same cases reported in
part (a). According to Eq. (7), the slope of each line corresponds
to(1—pB)/v=2L.
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(6, — 6,,.)L'". Upper left inset: data collapsing of the percolation
order parameter PLP/" vs |6, — 6, .|L"". Bottom right inset: data
collapsing of the susceptibility x L™""" vs (8, — 6,..)L'". Two cases
have been considered: (a) model I, honeycomb lattice, #; = 0.20; and
(b) model II, triangular lattice, 6; = 0.32.

function. At the point where d P/d6, is maximal, u’ = const
and

<d_P> — L(—ﬂ/V-H/U)ﬁ(u/) o L(l—ﬁ)/v‘ (7
do, max

The scaling of (d P/d0;)max is shown in the inset in Fig. 5(c)
for same cases. From the slopes of the curves, the following
values of B were obtained: 8 = 0.141(5) for model I in
a honeycomb lattice and B = 0.134(6) for model II in a
triangular lattice. These results agree with the exact value of
B for ordinary percolation 8 = 35—6.

The study of Fig. 5 was repeated for different values of the
parameters of the system. In all cases, the values obtained for
v [Fig. 5(a)], y [Fig. 5(b)], and B [Fig. 5(c)] clearly indicate
that this problem belongs to the same universality class that
the two-dimensional (2D) random percolation regardless the
model (I or IT) and the values of 644, 045, and O considered.

The scaling behavior has been tested by plotting P LA/
versus |6, — 92,C|L1/", XL’V/” versus (6, — Gz,c)Ll/", RZ‘ ver-
sus (0 — 6, .)L'", and U versus (6, — 6, .)L'"" and looking
for data collapsing. Using the values of 6, . obtained and
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the exact values of the critical exponents corresponding to
ordinary percolation V= %‘, y = %, and .,B = %, the curves
have an excellent scaling collapse [see Figs. 6(a) and 6(b)].
This leads to independent controls and consistency checks of

the values of all the critical exponents.

IV. CONCLUSIONS

Irreversible deposition of defective dimers on honeycomb
and triangular lattices was studied. The presence of defects in
the dimers was analyzed. This was introduced as two kinds
of segments composing the dimers: type A (percolating) and
type B (nonpercolating). Thus, three types of dimers were
considered: AA, BB, and AB.

In the filling process, two different models were analyzed,
according to the types of dimers deposited on the lattice. In
model T (I), AB (BB) and AA dimers were deposited up
to a total coverage Oy = 045 (Opp) + 044 Was reached. We
initially fixed the value of 645 (model I) or 655 (model II) and,
in a second stage, a fraction 644 of AA dimers was deposited
on the lattice. The connectivity analysis was carried out by
accounting only for the conductive segments.

The percolation threshold was calculated for each geom-
etry (triangular and honeycomb) and deposition mechanism
(models I and II). Accordingly, the complete phase diagram
separating the percolating from the nonpercolating regions
was determined for each considered lattice and deposition
model. Several conclusions can be drawn from this study and
previous work for square lattices [27]:

(1) Four regions can be distinguished in each percolation
phase diagram. Region 1: forbidden region for models I and
II; region 2: nonpercolating region for both models I and II;
region 3: percolating region for model I and nonpercolating

region for model II; and region 4: percolating region for
models I and II.

(2) The jamming coverage plays an important role in the
system considered here. In fact, the curve 67 = 6; determines
the space of all the allowed values of 8, and 6, (regions
2, 3, and 4). 6; = 0.90681(5) [43], 0.9142(12) [31], and
0.864(7) [32], for square, triangular, and honeycomb lattices,
respectively.

(3) The curves separating regions 2-3-4 vary between the
abscissa axis (6, axis) and the curve 87 = 6;. The intersection
point with the 6, axis determines the percolation thresh-
old corresponding to homogeneous dimers: 0.564(2) [42],
0.4876(5) [31], and 0.6905(6) [42], for square, triangular, and
honeycomb lattices, respectively.

Finally, the accurate determination of the critical exponents
v, B, and y revealed that, regardless the geometry (triangular
or honeycomb), the model (I or II) and the values of 644,
Oap, and Opp considered, the problem belongs to the same
universality class as 2D random percolation model. An iden-
tical result was obtained in Ref. [27] for heteronuclear dimers
on square lattices.
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