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Abstract. Reading requires the integration of several central cognitive subsystems from attention and

oculomotor control to word identification and language comprehension. When reading, the eyes alter-

nate between long movements and relative stillness, that are called saccadic movements and fixations,

respectively. The average fixation lasts for 150 to 250 ms and it is composed by three movements called

microsaccades (or microsaccadic movements), tremor and drift. Drift and tremor are slow movements

with small amplitude; microsaccades represent a ballistic component of fixational eye movements. Then,

microsaccades are characterized as roughly linear movement epochs with durations up to 30ms and a

frequency of one to two per second in fixations not related with reading. There are just a few works

analyzing microsaccades while subjects are processing complex information and fewer when doing pre-

dictions about upcoming events. In all of them there is evidence that microsaccades are sensitive to

changes of perceptual inputs as well as modulations of cognitive states. Changes in perceptual inputs are

related to the type of sentences (low/high predictability, proverbs) and the characteristics of the words

in the sentence (frequency, predictability, length, etc.). Let us recall the definition of maxjump: it is the

word with the largest difference between the cloze predictability of two consecutive words. Then, in this

work we present a first analysis of the energy of the wavelet coefficients of microsaccades during reading

proverbs and low predictability sentences on words before maxjump, during maxjump and words after

maxjump. The idea of this approach is to try to characterize its behavior along each one of those set of

words in order to have another tool for evaluating microsaccades during reading sentences with different

contextual predictability since this might provide information about specific effect of cue attention on

complex task.
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1 INTRODUCTION

Reading is an ordinary daily activity that integrates a number of central cognitive subsystems

that go from attention and oculomotor control to word identification and language comprehen-

sion. During reading process, the eye movements alternate between long movements called

saccades or saccadic movements and movements of relatively stillness called fixations. The

average period of fixations lasts 150−250 ms and each fixation is really composed by three

movements called microsaccades (or microsaccadic movements), tremor and drift. Tremor and

drift are slow movements with small amplitude while microsaccades represent the ballistic com-

ponent of fixational eye movements. That is, microsaccades are roughly characterized as linear

movement epochs with duration up to 30ms and a frequency of one to two per second in fixa-

tions not related with reading (Martínez-Conde et al., 2009).

In the 1950s, studies reported that stationary objects faded perceptually in the absence of the

fixational movements (Ditchburn and Ginsborg, 1952; Riggs and Ratliff, 1952; Yarbus, 1957)

and in the following decades the role played by some of the fixational movements was identified

(see, for example, (Ditchburn, 1980)), except for microsaccades that were supposed to “serve no

useful purpose” (Kowler and Steinman, 1980). Over the last ten years, progress has been made

in the study of the role of microsaccades for vision (Hafed and Clark, 2002; Martínez-Conde,

2006; Rolfs et al., 2006; Gowen et al., 2007; Otero-Millán et al., 2008; Rolfs et al., 2008; Hafed

et al., 2009; Martínez-Conde et al., 2009; Chen et al., 2010; Martínez-Conde and Macknik,

2011; Otero-Millán et al., 2011a,b, 2012; McCamy et al., 2012). In (Martínez-Conde et al.,

2013) the authors present a very interesting unified theory of microsaccades with emphasis

on their functions. Recent works (see for example (Engbert and Kliegl, 2003; van Dam and

van Ee, 2005; Shi et al., 2012; Di Stasi et al., 2013)) show diverse functions of microsaccadic

movements while (Kapoula et al., 2014) shows that microsaccades corresponding to people with

mild cognitive impairment have distinctive features.

In all those previous works, the main experiment performed to extract the microsaccades

consist on presenting a visual stimulus on a PC to the participants and record the eye movements

using an eyetracker. In order to perform the corresponding analysis, the microsaccades were

identified following the article (Bettenbühl et al., 2010). However, to the best of our knowledge,

the identification of microsaccades during sentence reading has not been done before.

Nevertheless, there are few works that analyze microsaccades while subjects are processing

complex information and fewer when doing predictions about upcoming events. In all of them

there is evidence that microsaccades are sensitive to changes of perceptual inputs as well as

modulations of cognitive states (Piras et al., 2015). Changes in perceptual inputs are related to

the type of sentences (low/high predictability, proverbs) and the characteristics of the words in

the sentence (frequency, predictability, length, etc.). Analysis of sentences with different pre-

dictability could provide an excellent tool for understanding microsaccadic behavior in complex

top-down processes. When reading proverbs, there is a typical word at which not only the next

word but the entire sentence becomes available. To capture this sharp transition in predictability

occurring when a subject matches the entire sentence he is actually reading to one held in his

memory, it has been used the word with the maximum change in cloze predictability relative

to the previous word in a given sentence. This word is called maxjump word (Fernández et al.,

2014c) in the context of reading.

We think that it could be possible to use the energy of the wavelet coefficients related to

microsaccades in the evaluation of cognitive traces during sentence reading. This would give us

another tool for evaluating microsaccadic movements during reading sentences with different

J.M. ARRIOLA, M.P. ALVAREZ, L.R. CASTRO, O.E. AGAMENNONI, G. FERNANDEZ2510

Copyright © 2017 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



contextual predictability that might provide information about specific effect of cue attention

on complex task.

In that direction, the aim of this first work is to characterize the energy of the microsaccades

along three set of words during reading low predictability sentences and proverbs: the words

before the maxjump word, on the maxjump word and on the words after the maxjump word.

2 EXPERIMENT SETUP

In this section we describe the study we conducted to obtain the data used in this work.

2.1 Participants

We considered two different groups of healthy people with similar education: one group of

young adults and other group of elderly people. The first group consisted of 40 adults with

mean age 28 (SD=4.2 years) and mean education 18.2 (in years). The second one involved 40

adults with mean age 71 (SD=6.1 years), mean education 15.1 (in years). We only took into

account data of 22 subjects from the first group and 24 from the second one.

2.2 Sentence corpus

To perform the experiment, we used a Spanish sentence corpus composed of 76 regular

sentences that represent a large variety of grammatical structures, also called Low Predictability

Sentences, and 64 Proverbs that are common in our Argentinian culture. The sentences ranged

from 5 to 14 words in length; mean length being 7.3 (SD=1.9) words. The words ranged from

1 to 14 letters in length; the mean word length was 4.0 (SD=2) letters.

This sentence corpus has been used in previous works (see, for example, (Fernández et al.,

2014a,b,c, 2015)).

Word Predictability. Word predictability was determined by performing an independent ex-

periment with 18 researchers of the Departamento de Ingeniería Eléctrica y de Computadoras,

Universidad Nacional del Sur. We used an incremental Cloze Task (Taylor, 1953) procedure

in which participants had to guess the next word given only the prior words of the sentence.

Participants guessed the first word of the unknown sentence and entered it via the keyboard. In

return, the computer presented the first word of the original sentence on the screen. Responding

to it, participants entered their guess for the second word and so on, until a period indicated the

end of the sentence. Correct words stayed on the screen. The predictability of the words ranged

from 0 to 1 with a mean of 0.38 (SD=0.36). Participants were between 31 and 62 years of

age and did not participate in the reading experiment. The academic background of the group

involved in the reading experiment and the Cloze Task group was similar. The average pre-

dictability measured from the incremental Cloze Task was transformed using the logit function

defined by:

logit(pred) = 0.5 ln

(
pred

1− pred

)
, (1)

being pred the determined word predictability. The term in parentheses is called the odds. In

order to be well defined, pred = 0 and pred = 1 in the Cloze Task procedure were replaced

by logit
(

1

2Np

)
= −1.77 and logit

(
1− 1

2Np

)
= 1.77, respectively, being Np = 18 the number

of subjects that completed the reading. The mean of logit predictability was −0.9 (SD=0.9) for

regular sentences and 0.8 (SD=1.23) for proverbs.

Maxjump word. It is the word with the largest difference between the cloze predictability
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of two consecutive words and can be determined according to the following equation:

maxjumpword = max [logit (predN+1)− logit (predN)] , (2)

being predk the predictability of word k.

Then, maxjumpword separates the sentence in three regions: before, during and after

maxjump word. With this maxjump variable it is possible to test the contextual word pre-

dictability effect due to memory retrieval (Kliegl et al., 2006; Fernández et al., 2014c).

2.3 Register of eye movements

Each sentence was displayed in the centerline of a 20-inch LCD Monitor (1024× 768 pixels

resolution; font: regular New Courier, 18 point, vertical size of one character: 0.2 in height).

The participants were seated in front of the monitor at a distance of 60 cm. Head movements

were minimized using a chin rest. The participants eye movements were recorded with an

EyeLink 1000 Desktop Mount (SR Research) eyetracker, with a sampling rate of 1000 Hz and

an eye position resolution of 20-s arc. All recordings and calibration were binocular. The

participants gaze was calibrated with a standard 13-point grid for both eyes. After validating

the calibration, a fixation point appeared at the position where the first letter of the sentence was

to be presented. As soon as both eyes were detected within a 1◦C radius relative to the fixation

point, the sentence was presented. After reading it, participants had to move their eyes to a dot

in the lower right corner of the screen to end the trial.

3 CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform (CWT) (see for example (Mallat, 1998)) is an efficient

method for displaying and analyzing characteristics of nonstationary signals that are dependent

on time and scale and then on frequency. Taking this into account, it is possible to say that

it provides a very useful tool for detecting and identifying particular spectral features of the

analyzed signal, transient information content and the nonstationary properties, among others.

In the context of eye movements, it has been used to characterize and extract microsaccades

(Bettenbühl et al., 2010).

The CWT is defined respect to a single function, called mother wavelet (or analyzing wavelet),

that has particular properties which not any function fulfills. The must important property of a

function for being a mother wavelet is the so called admissibility condition that it is required for

the existence of the inverse of the CWT. The invertibility of the transform is necessary to assure

that no information of the analyzed signal is lost in the CWT. In fact, the signal information

can be restructured or rearranged but must be present in the CWT for the original signal to be

reconstructed accurately. The admissibility condition implies that the Fourier Transform (FT)

of the mother wavelet is zero at the zero frequency. That is, the mother wavelet has no DC bias

and therefore must oscillate to cause it to act as a bandpass filter.

Starting with a mother wavelet ψ, it is possible to define the family {ψa,b(t)}a,b∈R simply by

scaling and translating the mother wavelet ψ:

ψa,b =
1√
|a|
ψ

(
t− b

a

)
, a, b ∈ R, a 6= 0. (3)

The parameters a and b are called the scaling and translating parameters, respectively. Then,

the parameter a gives information about its position in frequency while the parameter b gives

the position of the wavelet in time. In fact, if ψ̂(ω) denotes the FT of the function ψ and µω is
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the media of the probability density function ψ̂2(ω)|/||ψ̂||2, then scale and frequency are related

by

ω(a) =
µω
a
. (4)

Supposing that a function ψ(t), t ∈ R satisfies the admissibility condition, that is ψ̂(0) = 0,

it is possible to define the CWT of a function f ∈ L2(R) in the following way

Wf,ψ(a, b) =

∫
+∞

−∞

f(t)
1√
|a|
ψ

(
t− b

a

)
dt, a, b ∈ R. (5)

Taking into account that ψ satisfies the admissibility condition, it is possible to reconstruct

the signal f(t) from its CWT by the following inversion formula

f(t) =
2

Cψ

∫
+∞

0

[∫
+∞

−∞

Wf,ψ(a, b)ψa,b(t)db

]
da

a2
, (6)

that shows that no information is lost if we restrict the computation of the transform only to

positive values of the scaling parameter a which is a usual requirement in practice. Also, the

integration can be limited over to a selected range of scales, performing a band-pass filtering

of the original signal. The constant Cψ is called the admissibility constant and it is given by

Daubechies (1992)

0 < Cψ =

∫
+∞

−∞

|ψ̂(ω)|2
|ω| dω < ∞. (7)

In this work we have used the real Morlet wavelet that is a cosine function multiplied by a

Gaussian window because it is closely related to human vision and hearing and has some inter-

esting properties. One of them is that the conversion from scales to frequencies is simple, has

optimal joint time-frequency concentration and represents the best compromise between time

and frequency concentration (the reader is referred to (Aguiar-Conraria and Soares, 2011) for

a detailed review of these properties). Its mathematical expression (Teolis, 1998; Daubechies,

1992) is given by

ψ(t) =
1√
πfb

cos(2πfct)e
−t2/fb , (8)

where fb controls the wavelet bandwidth and fc is the wavelet center frequency. In this paper

we have set fc = 5 and fb = 2.

Finally, the (local) wavelet power spectrum or scalogram is defined as

(WPS)f,ψ(a, b) = |Wf,ψ(a, b)|2; (9)

that is, it provides information about the energy of the wavelet coefficients.

4 LOCALIZATION OF MICROSACCADES

For each group of subjects, we considered all sentences, all fixations produced during each

sentence reading and both eyes. Fixations on the first and the last word were removed and

only fixations that lasts between 51 and 750 ms were considered. Two different methods for

extracting microsaccades are (Engbert and Kliegl, 2003; Bettenbühl et al., 2010) but in both

of them the set up of the experiment is different from ours. Nevertheless, we followed the

ideas presented in (Bettenbühl et al., 2010) and considered the microsaccades detected using

the maximum modulus lines obtained using the CWT.
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Microsaccades can be modeled as smoothed singularities within a time series. These local

singularities can be identified using, for example, the CWT (Arneodo et al., 1988; Mallat and

Hwang, 1992) and the results are not sensitive to the choice of the mother wavelet.

In time-frequency representation, a singularity at time t0 appears as a cone-like structure in

the modulus of the wavelet transform. At lower frequencies, the wavelet is broader and the

width of the cone scales with the width of the wavelet function at each voice or scale a. The

wavelet focuses the whole variance at time points of singularities into the cone and its maximum

at each voice corresponds to the position of the singularity in the time series. Therefore, the

singularities can be detected using the modulus of the wavelet transform (Holschneider, 1988).

The method of maximum modulus lines (see, for example, (Marr and Hildreth, 1980; Witkin,

1983)) is a numerical method for detecting singularities in time series using the CWT. A max-

imum modulus line is a line on the time-scale plane on which the modulus of the wavelet

transform has a local maximum with respect to small variation of the parameter b0, that is

|Wf,ψ(a, b0)| > |Wf,ψ(a, b0 ± ǫ)|, (10)

and connecting such points will give the maximum modulus lines. It can be shown that if a

signal has a singularity at a given point, then there is a maximum modulus line that converges

towards the location of the singularity at small scales (Mallat and Hwang, 1992). In smoothed

singularities the maximum modulus line may end at a scale which is approximately the smooth-

ing scale of the singularity. For this reason, the maximum modulus lines, which go from a fixed

highest frequency/smallest scale to a smallest frequency/largest scale were considered and the

estimated position of the singularity is simply the small-scale end of the corresponding maxi-

mum modulus line.

In Figure 1 there are the graphics of the horizontal position of the left and right eyes during

a single fixation, together with their corresponding scalograms 9 and the maximum modulus

lines. The maximum modulus line around 20 ms corresponds to a binocular microsaccadic

movement.

5 DATA ANALYSIS

For analyzing the data, we considered the following signals defined for each eye

h̃eye(t) = (h(t)− h̄)/σh,
ṽeye(t) = (v(t)− v̄)/σv,

(11)

where h(t) is the horizontal position of one eye at the instant t, v(t) is the vertical position of the

same eye at the same instant, and ·̄ and σ· are the mean and standard deviation of the horizontal

and vertical positions, respectively.

We performed the CWT using the Morlet wavelet given by (8) to both signals defined by (11).

In order to identify the maximum modulus lines, we summed the square of the coefficients at

every time point t over all the scales and obtained what we called the instantaneous energy of

the signal (see Figure 1). The value of twhere the local maximum of the instantaneous energy is

simultaneously located for both eyes, corresponds to the time where lies the maximum modulus

line associated with a binocular microssacade (see Figure 1). Finally, we kept all the values of

the instantaneous energy corresponding to the binocular microsaccades and separated them in

three groups depending if, at an instant t, the microssacade was located during a fixation on a

word before de maxjump word (BMJ), during the maxjump word (DMJ), or during a word after

the maxjump word (AMJ).
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Figure 1: Above: Horizontal position of the left and right eyes during a fixation. Middle: The scalograms

for each signal. Down: Instantaneous energy of each signal.

6 DISCUSSION AND RESULTS

Figure 2: Distribution of coefficients in the groups BMJ, DMJ and AMJ. Full lines: mean of the coeffi-

cients. Dashed lines: mean plus(up)/minus(down) the standard deviation. Blue lines: low predictability

sentences (BPred); red lines: proverbs (Prob). The graph on the left corresponds to young adults and the

right one to older adults.

In order to check if the groups of coefficients were significantly different, we performed a

one-way ANOVA analysis between the coefficients in the sets BMJ and DMJ, and another one-

way ANOVA analysis between the coefficients in the sets DMJ and AMJ. In both cases the test

showed significative differences.

In Figure 2 we simultaneously display the mean of the coefficients for the three sets BMJ,

DMJ and DMJ corresponding to young and older adults (left and right figures, respectively) and
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both low predictability sentences (BPred, blue filled line) and proverbs (Prob, red filled line).

In Figure 2 can be observed that the mean of the energy of the coefficients of microsaccades

corresponding to young adults is similar for the three groups AMJ, DMJ, AMJ and for both

groups of sentences while for older adults the value of the mean is maximum in the DMJ for

proverbs while is almost constant for the low predictability sentences. Also, the media is slightly

greater for older adults than for young ones. These results confirm that the microsaccadic

movements change according to the characteristics of the input information during reading, and

according to the age of the subjects.

7 CONCLUSIONS AND FUTURE WORK

In this work we have characterized the microsaccadic movements during reading using the

energy of the wavelet coefficients. We have found that the coefficients lying on the maximum

modulus lines showed differences between the groups of subjects (young and adults), the kind of

sentences (proverbs and low-predictability), and the position of the word respect to the maxjump

word.

We will refine the methodology for characterizing the energy of microsaccadic movements

during reading with the idea of associate the change of energy with cognitive processes. An-

other line of work is to perform the analysis using the refined methodology to subjects with

neurodegenerative diseases and compare the characteristics of the microsaccades with control

subjects.
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