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Energy aware simplicial processor for
embedded morphological visual processing
in intelligent internet of things
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This Letter presents the architecture implementation and testing of
an SIMD processor for energy aware embedded morphological
visual processing using the simplicial piece-wise linear approximation.
The architecture comprises a linear array of 48 × 48 processing
elements, each connected to an eight-neighbour clique operating on
binary input and state data. The architecture is synthesised from a
custom designed ultra low-voltage CMOS library and fabricated in a
55 nm CMOS technology. The chip is capable of dynamic voltage/
frequency scaling with power supplies between 0.5 and 1.2 V. The
fabricated chip achieves an overall performance of 293 TOPS/W
with dynamic energy dissipation efficiency of 3.4 fJ per output
operation at 0.6 V.
Introduction: Energy aware embedded visual processing is necessary
for systems where endowing cameras with local processing capability
is crucial for operational autonomy, such as in autonomous or semi-
autonomous vehicle navigation [1], processing data from wide area
motion imagery [2], and feature-driven learning/intelligent processing
in intelligent Internet of things [3] (I2oT). IoT devices are often
thought as the ‘edge’ of a large sophisticated cloud processing infra-
structure. Processing image data at the edge reduces system latency by
removing the delays in the aggregation tiers of the IoT infrastructure.
In addition to minimising latency, edge processing increases system
security and mitigates privacy concerns when processing data in the
cloud. Autonomous operation and decision making coupled with real-
time ability to do local-processing before transmitting the data/
information necessitate feature-driven ‘intelligent’ sensing nodes that
have extreme energy efficiency. This study presents an energy efficient
SIMD digital accelerator for morphological binary data processing. The
primary application target is low-level large-scale parallel data proces-
sing/acceleration in embedded applications.

Theoretical foundations: Morphological image processing [4] is a
large discipline in computer vision that has its foundation the rich
theory of mathematical morphology [5]. Morphological operations
process input images based on shape of object features in the image
(morphi-morfh is the Greek word for shape). Dilation and erosion
are the most common morphological operations. Other binary set-
theoretic operations such as complement (NOT), intersection (AND)
and union (OR) can be included to form more complex morphological
processing functions. While most applications of mathematical mor-
phology are in the field of digital image processing, the theory can be
applied to process and transform spatial structures, for example graphs
with applications in large-scale graph analytics.

The morphological processor core described in this Letter consists of
a 2D-array of 48× 48 processing elements (PEs). Every PE operates on
nine 1-bit inputs: the input corresponding to the PE itself and the eight
inputs corresponding to the neighbours. In particular, the PE implements
a simplicial piecewise linear (PWL) function approximation of a sym-
metric non-linear function of nine inputs [6], i.e.

y = f (x1, . . . , x9) (1)

A symmetric function does not change under a permutation of its
arguments [7]

y = f xi1 , . . . , xi9
( ) = f x j1 , . . . , x j9

( )
(2)

for any two sets of indices i1, . . . , i9{ }, j1, . . . , j9
{ }

, such
that ik , jk [ 1, . . . , 9{ }, ik = il , jk = jl if k = l. For example, the func-
tions y = |x1 − x2|, y = max (x1, x2) = 0.5(x1 + x2 + |x1 − x2|),
y = min (x1, x2) = 0.5(x1 + x2 − |x1 − x2|), y = 1−max (x1, x2) =
1− 0.5(x1 + x2 + |x1 − x2|) depicted in Figs. 1a–d are symmetric.
Notice that if the inputs are restricted to digital values, i.e. {0,1}, then
the functions previously introduced are actually: XOR(x1, x2),
OR(x1, x2), AND(x1, x2), and NAND(x1, x2). Conversely, the function
y = x1 + 2x2 is an example of a non-symmetric function.
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Fig. 1 Symmetrical functions on simplicial domain

a y = |x1 − x2|
b y = max (x1, x2) = 0.5(x1 + x2 + |x1 − x2|)
c y = min (x1, x2) = 0.5(x1 + x2 − |x1 − x2|)
d y = 1−max (x1, x2) = 1− 0.5(x1 + x2 + |x1 − x2|)

By definition, a symmetric function is independent of the order of
the inputs, thus it can be implemented using the simplicial algorithm
[6] with only one simplex; for example, the one defined as S =
x [ R9:0 ≤ x1 ≤ x2 · · · ≤ x9 ≤ 1
{ }

. A symmetric function (2) can
only represent a subset of all possible nine-input functions; however,
any generic function can be implemented by composing different
symmetric functions and masking inputs adequately. On the other
hand, a symmetric PWL function of N inputs has an efficient
representation, since only needs N + 1 parameters. In fact, the func-
tion in (2) implemented by each PE is specified uniquely by the
10 (1-bit) parameters {f0, f1, . . . , f9}, defined as the values of f
at points v0 = (0, 0, . . . , 0), v1 = (0, 0, . . . , 1), . . . , v8 = (0, 1, . . . , 1),
v9 = (1, 1, . . . , 1). These values, which can be thought of as the
operation codes for a particular programme instruction, are stored in a
register file outside the array. During normal operation, the bits in the
register file are broadcasted serially to every PE; the internal circuits
detect the value the PE needs and stores it in an internal register for
computation. This implementation strategy avoids the storage of the
10 bits in every PE, therefore trading PE size for computation time:
one programme instruction requires 10 clock cycles.

Simplicial morphological processor architecture: Every PE has three
1-bit registers that can be used as inputs, namely X, U and T in
Fig. 2. The output of the selected register is collected with the corre-
sponding signals from the eight neighbour PEs. These nine signals are
bitwise operated using an AND with nine global mask signals
bi [ {0, 1}, i = 1, . . . , 9 and the resulting bits are added producing a
4-bit value that is the PE function argument:

arg (f ) = b1x1 + b2x2 + · · · + b9x9 (3)
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Fig. 2 Architecture of single simplicial morphological processor cell

Notice that 0 ≤ arg (f ) ≤ 9. The PE function argument signal is com-
pared with the broadcasted global function argument signal. When they
coincide, the function value fi of the function broadcast signal is stored
in register Y. This output together with the three input registers enter the
Doc: H:/IET/EL/Pagination/EL20174738/EL20174738.3d
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ALU and are operated with a selectable operation. The output of the
ALU can be fed back to the input registers. The ALU can implement
16 functions, namely OR, NOR, NAND, XOR of each of the three
input registers with output y, and also can route directly the signals X,
U, T and y. Fig. 3a shows the layout of the morphological processor;
Fig. 3b shows the micro-photograph of the chip. The core area is
800mm× 700mm.

a b

Fig. 3 Integrated circuit

a Layout
b Micro-photograph

Experimental results: The processor core was fabricated in a 55 nm tech-
nology and tested using a custom designed board with a Spartan 3 FPGA.
The specifications of the fabricated test chip are listed in Table 1.

Table 1: Simplicial morphological processor specifications
Technology
 Size (mm2)
 Transistors
 PE
55 nm
 0.85× 0.65
 1.43 M
 48× 48
Table 2: Simplicial morphological processor performance
Supply
 Clock
 Power
 GOPS
 E/OP
 TOPS/W
 FPS
0.6 V
 75 MHz
 3 mW
 881
 3.40 fJ
 293
 7.5 M
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Fig. 4

a Original image frame
b Image with added noise
c–f Output frames corresponding to programmes 26, 50, 68 and 107, respectively

The processor operates at 75 MHz at a 0.6 V power supply and
consumes 3 mW. Considering that it takes 10 clock cycles to execute
one instruction over the entire array-frame- (regardless the array size),
the chip can process 7.5 M frames/s. In terms of performance, every
PE computation is equivalent to 50 (2-input) logic gates and a 1-bit
accumulate every 10 cycles. If we define an elementary 1-bit output
operation (OP) as that of a 2-input logic gate, the array performs
51× 48× 48× 75× 106 4 10 = 881 GOPS, reaching 293 TOPS/W.
Table 2 summarises the performance. Figs. 4c–f show an example of
a sequence of 107 erosion and dilation instructions to extract cars
from an intentionally corrupted image (Fig. 4b) of traffic (Fig. 4a);
Table 3 lists the instructions used and the value of operation codes. In
the latter example, it takes 1070 cycles to complete the processing for
an entire frame, hence the processing to extract blobs (objects) from a
complex video sequence can be done at a rate of 70,000 frames/s with
an energy efficiency of 18.52 pJ 4 5457OPS = 3.4 fJ/OP.

Table 3: Sequence of programmes for example in Fig. 4
Programme
instruction
Op. code
{f0, . . . , f9}
Cycles
 OP
 E (pJ)
 Operation
1–3
 0 0 0 1 1 1 1 1 1 1
 30
 153
 0.52
 erosion
4–18
 0 0 1 1 1 1 1 1 1 1
 150
 765
 2.60
 dilation
19–23
 0 0 0 0 1 1 1 1 1 1
 50
 255
 0.86
 erosion
24–33
 0 0 1 1 1 1 1 1 1 1
 100
 510
 1.73
 dilation
34–45
 0 0 0 0 1 1 1 1 1 1
 120
 612
 2.08
 erosion
46–53
 0 0 1 1 1 1 1 1 1 1
 80
 408
 1.38
 dilation
54–68
 0 0 0 0 1 1 1 1 1 1
 150
 765
 2.60
 erosion
69–82
 0 0 1 1 1 1 1 1 1 1
 140
 714
 2.42
 dilation
83–89
 0 1 1 1 1 1 1 1 1 1
 70
 357
 1.21
 dilation
90–107
 0 0 0 0 0 0 0 0 0 1
 180
 918
 3.12
 erosion
Total
 —
 1070
 5457
 18.52
 —
Discussion and conclusions: We have designed, fabricated and tested
a 1-bit morphological processor core in 55 nm technology. While the
processor was designed with the general class of morphological proces-
sing tasks in mind, the architecture can also be employed for other algor-
ithms operating with binary data as well as to processing using local
binary patterns [8]. This Letter extends and complements our previous
work [9, 10] where we also discuss how such a processor core can be
programmed at the high level using basic morphological primitives.
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