
Effect of genetic background on the stability of sunflower fatty acid composition in 

different high oleic mutations 

 

Running title: Genetic background effect on sunflower high oleic oil composition 

 

Constanza Alberioab, Luis A. N. Aguirrezábalab, Natalia G. Izquierdoab, Roberto Reidd, 

Sebastián Zuilc, Andrés Zambellie* 

a Comisión Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.  

b Laboratorio de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional 

de Mar del Plata (FCA-UNMdP), Ruta 226 Km 73.5, 7620 Balcarce, Argentina. 

c Instituto Nacional de Tecnología Agropecuaria, INTA, Ruta 11 Km 773, 3560 

Reconquista, Argentina. 

d Centro de Investigación en Biotecnología, Advanta Semillas, Ruta 226 Km 60.5, 

Balcarce, Argentina. 

e Departamento de Ciencias Básicas, Facultad de Ciencias Agrarias, Universidad Nacional 

de Mar del Plata (FCA-UNMdP), Ruta 226 Km 73.5, 7620 Balcarce, Argentina. 

*Correspondence to: A. Zambelli, Departamento de Ciencias Básicas, Facultad de 

Ciencias Agrarias, Universidad Nacional de Mar del Plata (FCA-UNMdP). E-mail: 

andres.zambelli@mdp.edu.ar Phone: +54 2266 439100  

 

ABSTRACT 

BACKGROUND: The effect of genetic background on the stability of fatty acid 

composition in sunflower near isogenic lines (NILs) carrying high oleic Pervenets (P) or 

high oleic NM1 mutations was studied. The materials were field-tested in different 

locations and sowing dates to evaluate a wide range of environmental conditions.  
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Relationships between the fatty acids and the minimum night temperature (MNT) were 

established and the response was characterized.  

RESULTS: Genetic background effect for the fatty acid composition was found in both 

groups of NILs. NM1-NILs showed an oleic level higher than 910 g kg-1 and they were 

more stable across environments with a null or low dependence from the genetic 

background; contrarily, high oleic materials bearing the P mutation showed lower levels of 

oleic acid, with a higher variation in fatty acid composition and a highly significant 

dependence with the genetic background. 

CONCLUSION: NM1 mutation is the best option to develop ultra-high oleic sunflower oil 

stable across environments and genetic backgrounds, making its agronomical production 

more efficient and predictable. 

 

Key Words: Helianthus annuus; genetic background; high oleic oilseed; near isogenic 

lines; environment 

 

INTRODUCTION 

Sunflower (Helianthus annuus L.) is one of the most important oilseed crops in the world 

due to the high quality of its oil. For several food applications, oils with a high content of 

monounsaturated fatty acid and a low polyunsaturated fatty acid content are required. 

Thus, high oleic sunflower is one of the most used and valued oils by the market due to its 

characteristics: extended fry- and shelf-life, better operative efficiency and health benefits 

for consumers.1,2 Therefore, some of the current goals in sunflower breeding is to develop 

superior high oleic materials (oilseed with at least 800 g kg-1 of oleic acid) and ultra-high 

oleic materials (oleic acid higher than 910 g kg-1 and linoleic acid lower than 20 g kg-1).3,4 

The inheritance of quantitative traits has been described as a “moving target” since it is 

affected not only by the actions of multiple individual genes, but also by the interactions 
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between genes (epistasis) and between genes and environmental factors. When 

quantitative trait loci (QTL) are characterized in one genetic background or environment, 

they may behave differently as these factors are altered.5 Genetic background comprises 

the pool of genes determining the characteristics of each genotype, which in turn can 

interact with the high oleic Pervenets (P) mutation.6 Not every sunflower genotype carrying 

the P mutation may express the high oleic phenotype in any genetic background. Thus, 

genetic background may be an important factor in developing mutants not only for oleic 

acid, but also for other fatty acids, such as stearic.6 

In molecular breeding it is important to work with a specific population that more efficiently 

allows to identify the genes associated with the QTL or trait of interest. The development 

and use of near isogenic lines (NILs) differing only in the trait of interest7,8 provide a useful 

tool for studying the effects of a particular QTL on the plant behavior. NILs vary only in the 

alleles responsible for the characteristic of interest and are identical for the remaining 

alleles.9 Therefore, the use of NILs is proper to assess the interaction of a particular 

genetic background with different allelic variants of the trait of interest and the 

environment. 

Mutations induced in different genes conferring some traits of agronomic and commercial 

interest (such as oilseed composition and herbicide resistance) have been developed in 

sunflower; specifically, mutations on microsomal oleate desaturase, fad2-1 gene, gave rise 

to sunflower high oleic mutants Pervenets and 29066, among others.10 

Several environmental factors were described as responsible for fatty acid composition 

changes. However, temperature was reported as its main environmental modulator.11-22 

Therefore, when assessing changes in sunflower fatty acid composition, environmental 

variations is caused mostly by temperature. In this sense, previous work reported that a 

sunflower NIL carrying the new high oleic mutation 29066 (named NM1) showed higher 

fatty acid stability and ultra-high oleic quality across environments, compared to the 
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respective sunflower P-NIL.23 Although a possible effect of genetic background on the 

oleic acid content after changes of minimum night temperature (MNT) was documented in 

traditional sunflower hybrids24 and in high oleic sunflower hybrids carrying the P 

mutation,22 this effect was not empirically proved in NILs carrying the P or the NM1 

mutation. Likewise, genetic background effect on NILs carrying these mutations was 

neither been tested. This knowledge can be considered of agronomic and economic 

importance. Indeed, if a genetic background effect is evidenced, the best genetic 

background could potentially be selected to produce oils with an improved quality. If not, 

the range of genotype selection possibilities would be much larger, allowing developing 

high oleic oils with no restriction to particular genotypes, focusing on the type of mutation. 

This would also allow breeders to choose the best genotypes adapted to specific 

environments in order to obtain the highest oleic acid potential. So, breeders could work 

on a specific character of interest with a stable genetic basis. 

The aim of this work was to test in the field the effect of the genetic background on the 

stability of the fatty acid composition across environments in NILs carrying the NM1 or the 

P high oleic mutations under a wide range of temperatures conditions. 

 

MATERIALS AND METHODS 

Plant material and description  

Four pairs of NILs carrying the high oleic P and NM1 (29066) mutations were tested in the 

field. Each pair of NILs represented four elite genetic backgrounds, called GB1, GB2, GB3 

and GB4 (Table 1). Plant materials were provided by Advanta Semillas S.A.I.C. 

Table 1. The NILs included in this study were 
coded with a letter indicating the carrying high 
oleic mutation (P: Pervenets; NM1: 29066) 
and a number indicating the respective 
genetic background (GB1-GB4).  

NIL Genetic High oleic 
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background mutation 

P-1 GB1 P 

NM1-1 GB1 NM1 

P-2 GB2 P 

NM1-2 GB2 NM1 

P-3 GB3 P 

NM1-3 GB3 NM1 

P-4 GB4 P 

NM1-4 GB4 NM1 

 
The high oleic NILs were developed by backcrossing different traditional elite genotypes 

with a line carrying the P or the NM1 mutation. After three generations of backcrossing the 

resulting genotypes were inbred by at least six successive self-pollinated generations. In 

order to evaluate the relationship among the different P and NM1 NILs, a pairwise 

comparison was done by genotyping using a set of 276 SNP markers equally distributed 

across the sunflower genome (p< 0.0001). Pairwise genetic distance matrix was 

constructed based on similarity coefficients calculated from SNP allele sharing. This 

analysis showed, as expected, a close genetic relationship among NIL pairs carrying the 

two different high oleic mutations with similarities ranging from 0.93 to 0.99. When different 

genetic backgrounds were compared similarities ranged from 0.52 to 0.78 (Table 2). 

 

Table 2. Pairwise genetic distance matrix based on similarity coefficients between P 
and NM1 NILs.  
GENOTYPE P-1 P-2 P-3 P-4 NM1-1 NM1-2 NM1-3 NM1-4

P-1 1 0.62 0.66 0.58 0.93 0.62 0.66 0.58 
P-2   1 0.77 0.59 0.64 0.99 0.77 0.6 
P-3     1 0.52 0.69 0.78 0.98 0.52 
P-4       1 0.61 0.59 0.54 0.96 

NM1-1         1 0.64 0.7 0.61 
NM1-2           1 0.78 0.59 
NM1-3             1 0.524 
NM1-4               1 
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Field experiments 

NILs were tested in five field experiments conducted in three different environments of 

Argentina: Balcarce (B1, B2, and B3), Venado Tuerto (VT) and Reconquista (R) (Table 3). 

B1, B2, and B3 were sown in different sowing dates. Sowing was done manually using a 

complete randomized blocks design with two replicates. Each plot consisted of five rows, 4 

m in length and spaced 0.7 m between rows. The plant density was 6.5 plants per m2. 

Flowering time of a plot was registered when 95% of the plants were at R5.1 stage.25 

Before flowering each capitula was bagged to ensure self-pollination. Ten plants per plot 

were harvested at physiological maturity, determined by the brown color of bracts in the 

capitula.26 

Air temperature in Balcarce (B1, B2 and B3) was measured with copper-constantan 

thermocouples (Termoquar, Buenos Aires, Argentina) located 1.2 m above the soil and 

registered with data loggers (Cavadevices, Buenos Aires, Argentina). Air temperature from 

VT and R were obtained from meteorological stations, placed near the field experiments (≤ 

200 m). Air temperature was used to calculate the minimum night temperature (MNT) 

during the 100 to 300 ddaf (degree-days after flowering) period, identified as the best 

predictor of the oleic acid percentage.17 

In all experiments water availability was supplemented by irrigation. Pest and disease 

control were applied as needed. Nutrient availability was measured by collecting soil 

samples from two depths, 0-20 cm and 20-40 cm. Organic matter was measured through 

oxidation using the chromic acid method.27 Nitrate was determined according to 

Echeverría et al.28 and available phosphorous (P-Bray) was determined according to Bray 

and Kurtz.29 Concentration of N and P concentration were adequate for normal 

development of sunflower plants in all locations and growing seasons.30 Field data 

corresponding to the NILs from GB1 were taken from Alberio et al.23 and compared with 

the additional genetic backgrounds included in this paper. 
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Sample and data analysis 

Oil extraction and methylation were performed according to Ruiz-López et al..31 Oilseed 

fatty acid composition from each genotype was determined by gas–liquid chromatography 

with an Agilent 6890 gas chromatograph with FID detector (Agilent Technologies Inc., Palo 

Alto, CA, USA). Methylated fatty acid were separated by using a Supelco SP-2380 fused 

silica capillary column (30 m length, 0.25 mm i.d., 0.20 mm film thickness: Bellefonte, PA, 

USA). The carrier was gas hydrogen at 28 cm s–1. The detector and injector temperature 

was 200 °C, and the oven temperature was kept at 170 °C.  

Fatty acid composition data were analyzed by using multifactorial and variance procedures 

included in Infostat Statistical Software.32 Residuals of fatty acids contents were 

homogeneously distributed around zero (0) so data were not transformed. When statistical 

differences were detected among genotypes or locations the highest p value was 

presented. Treatment means were compared by Tukey test (p< 0.05). The different fatty 

acids concentrations were related to temperature using linear regression. Minimum night 

temperature (MNT) during the 100 to 300 ddaf was used as independent variable to 

analyze the variations in oleic acid concentration in the sunflower genotypes, using a base 

temperature of 6 °C.33 

 
Table 3. Location, identification of the experiments (ID), latitude (°S), genotypes, sowing dates, 
flowering dates (R5.1 stage), mean of minimum night temperatures (MNT) during the 100-300 ddaf 
period (base temperature: 6 °C) and soil characteristics (from samples collected at 20 cm depth) at 
field experimental sites. 
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No differences in the MNT were observed between replicates in each location and sowing dates (p< 

0.05). 

 

 

LOCATION ID LATITUDE   
°S

SOWING 
DATE GENOTYPE* FLOWERING 

DATE (R5.1)

MNT            
100-300 DDAF     

(°C)

TYPE OF 
SOIL

P-1 11/22/13 19.4
P-2 11/29/13 19.9
P-3 12/02/13 19.8
P-4 11/26/13 20.4 Aquic

NM1-1 11/26/13 20.4 Argiudol
NM1-2 11/29/13 19.9
NM1-3 11/29/13 19.9
NM1-4 12/02/13 19.8

P-1 12/23/13 20.2
P-2 12/27/13 18.8
P-3 12/26/13 19.1
P-4 12/25/13 19.6 Typic

NM1-1 12/23/13 20.2 Argiudol
NM1-2 12/27/13 18.8
NM1-3 12/26/13 19.1
NM1-4 12/29/13 17.3

P-1 01/08/14 15.9
P-2 01/12/14 16.1
P-3 01/11/14 16.1
P-4 01/14/13 16.1 Typic

NM1-1 01/10/14 16.2 Argiudol
NM1-2 01/11/14 16.1
NM1-3 01/10/14 15.7
NM1-4 01/15/14 16.0

P-1 01/20/14 16.7
P-2 01/14/14 16.1
P-3 01/16/14 15.9
P-4 01/23/14 16.2 Typic

NM1-1 01/20/14 16.8 Argiudol
NM1-2 01/16/14 15.9
NM1-3 01/16/14 15.9
NM1-4 01/23/14 16.3

P-1 02/11/14 12.5
P-2 02/10/14 13.6
P-3 02/11/14 13.4
P-4 02/11/14 13.4 Typic

NM1-1 02/13/14 12.4 Argiudol
NM1-2 02/11/14 13.6
NM1-3 02/11/14 13.4
NM1-4 02/11/14 13.4

* Data from P-1 and NM1-1 were taken from Alberio et al.23 and were reanalized to be compared with the other 
genetic backgrounds.

Balcarce B3 37

Balcarce

Balcarce B2 37

B1 37

33

R2 29Reconquista 

Venado Tuerto VT2

12/09/13

11/05/13

10/15/13

10/14/13

09/05/13
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RESULTS 

Genotype by environment interactions  

A triple interaction between mutation - genetic background - environment for the oleic and linoleic fatty 

acids was observed, while saturated fatty acids were influenced by the interaction between genetic 

background and the high oleic mutation or the genetic background and the environment (Table 4).  

Data analysis grouping all genetic backgrounds for each high oleic mutation highlighted that the highest 

variability for unsaturated fatty acids was associated to the type of mutation, while for saturated fatty 

acids variability was associated with both the mutation and the environment. Genetic background effect 

was evidenced in the fatty acid composition by analyzing data as single set, and analyzing them 

separately grouped as P or NM1-NILs. Thus, the highest variability was detected in the group of P-

NILs; for the stearic and the oleic acid it was associated with the genetic background, while for palmitic 

and linoleic acids it was mainly associated with the environment (Table 4). In the group of NM1-NILs, 

the highest variability for linoleic acid and stearic acid was associated with the genetic background, 

while for palmitic acid it was associated with the environment. In this group, oleic acid did not show a 

remarkable variation when compared with the other fatty acids, with the genetic background and the 

environment contributing equally to the variability (Table 4). 

 

Table 4. ANOVA (mean square) of the main fatty acids divided in whole data set, P-NILs and NM1-NILs. 

Source of 
variation DF Palmitic Stearic Oleic Linoleic Arachidic 
Whole data set             
M 1 0.24ns 168.64*** 638.85*** 1235.34*** 42.67*** 
GB 3 38.97*** 149.97*** 85.12*** 44.16*** 66.08*** 
E 4 184.92*** 10.55*** 57.19*** 333.94*** 14.46*** 
GB-M 3 3.22* 19.75*** 25.29*** 33.09*** 2.4ns 
GB-E 12 6.88*** 11.43*** 7.85*** 6.55*** 9.80*** 
M-E 4 1.54ns 1.27ns 30.71*** 131.70*** 0.82ns 
M-GB-E 12 1.22ns 0.52ns 2.30* 4.70*** 0.75ns 
Error 20           
P-NILs             
GB 3 22.01*** 125.31*** 71.00*** 15.43*** 35.44*** 
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E 4 70.28*** 6.01** 52.69*** 268.30*** 3.80* 
GB-E 12 5.04** 5.71*** 2.51* 4.49** 3.86** 
Error 20           
NM1-NILs             
GB 3 19.89*** 38.44*** 22.43*** 147.28*** 31.92*** 
E 4 123.57*** 5.80** 25.83*** 66.58*** 10.11*** 
GB-E 12 2.73* 6.28** 9.49*** 10.94*** 9.61*** 
Error 20           
Note: M= mutation; GB= genetic background; E= environment; *, ** and ***= significant at the  
p< 0.05; 0.01; 0.001 levels, respectively. ns= non-significant.      

Analyzing each genetic background individually, the mean value of oleic acid content across 

environments was significantly higher in NM1 group compared with P group (Figure 1). The average of 

oleic content across environment was highest for GB3 and lowest for GB2 across environments in both 

groups of NILs (Figure 1). When all genetic backgrounds and environments were analyzed the 

minimum oleic acid content in P-NIL group was 871 g kg-1, while for NM1-NILs was 907 g kg-1. P-NILs 

presented the highest variability in the response of oleic acid compared to NM1-NILs across 

environments (CVENVIRONMENT= 1.5% and CVENVIRONMENT= 1.0%, respectively) and across genetic 

backgrounds (CVGB= 2.3% and CVGB= 0.9%, respectively). 

Linoleic acid content of NM1-NILs differ significantly between genetic backgrounds (p< 0.0001), unlike 

P-NILs in which any significant differences were registered (p= 0.695) (Figure 1). Moreover, most 

environments differed significantly between P- and NM1-NILs considering the same genetic 

background. The lowest linoleic acid content was found in NM1-NILs (less than 26 g kg-1) (Figure 1). 

Variability in the response of saturated fatty acids to genetic background, environment and mutation 

was also registered (Table 4). GB2 reached the highest saturated fatty acids values, while GB3 showed 

the lowest ones in both, P and NM1-NILs (Figure 1). Significant differences in the mean of each 

saturated fatty acid (palmitic, stearic and arachidic acids) between P- and NM1-NILs from each genetic 

background were found (p< 0.01; data nor shown). Although a genetic background effect in the 

response of saturated fatty acids was found, the variation across environments and genetic 

backgrounds was lower when compared to unsaturated fatty acids. For saturated fatty acids, variation 
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across environments was higher in NM1-NILs compared to P-NILs (CVENVIRONMENT= 14.5% and 

CVENVIRONMENT= 11.9%, respectively). 

 

Figure 1. Oleic (A-H: GB1, GB2, GB3 and GB4), linoleic (I-P: GB1, GB2, GB3 and GB4) and saturated fatty acids (SFA) 
contents (Q-X: GB1, GB2, GB3 and GB4) of sunflower genotypes from four different genetic backgrounds. Each column 
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represents the corresponding fatty acid content in P (filled columns) and NM1 NILs (empty columns) in each genetic 
background and location (R: Reconquista; VT: Venado Tuerto; B1: Balcarce early sowing; B2: Balcarce intermediate 
sowing; B3: Balcarce late sowing). Solid and dashed lines represent the mean of oleic, linoleic or SFA contents across 
environments in P and NM1 NILs, respectively. Letters (a-c) represent significant differences among environments 
(ANOVA, p< 0.0001). Asterisks represent significant differences between P and NM1 NILs in each genetic background 
(p< 0.0001). Data are the result of 8-10 plants per block (two replicates) and bars represent the standard error of the 
mean. 

Relationship between fatty acids composition and the MNT 

Genetic background effect in the response of fatty acid composition to MNT in P and NM1-NILs was 

identified (p< 0.0001). Analyzing the response of fatty acids across genetic backgrounds in NILs 

carrying P or NM1 mutation separately allowed to identify a clear positive response to the MNT of the 

palmitic acid (Figure 2 A, Table A1) and a negative response of the linoleic acid (Figure 2 D, Table A1) 

in both groups of NILs. A negative trend in the response of the oleic acid to the MNT in NM1-NILs was 

also observed (Figure 2 C, Table A1). No relationship was found in the response of stearic acid to MNT 

in both groups of NILs.  

Oleic acid content remained stable in GB2 and GB3 from P-NILs (Figure 2 K and O, Table A1) while for 

within the rest of genetic backgrounds, it increased with the temperature (Figure 2 G and S, Table A1). 

NM1-NILs showed no response in most genetic backgrounds, except for GB2, in which a negative oleic 

acid response was observed. Despite this decrease, the oleic acid content was higher than 907 g kg-1. 

The slope of the relationships between the oleic acid and the temperature differed significantly between 

NILs carrying different mutations on the same genetic background (p< 0.05), except for the GB3 and 

GB4 (p> 0.05). 

Linoleic acid content decreased as temperature increased in all genetic backgrounds from both groups 

of NILs (p< 0.05) (Figure 2 H, L, P and T, Table A1). The only exception was observed in NM1-1 

genotype, in which a null response was observed.  

Palmitic acid increased with temperature in all genetic backgrounds of all NILs (p< 0.05), except in 

GB1, in which it remained stable in both groups. Stearic acid increased only in GB2 (p< 0.05), 

remaining stable in the other genotypes (Figure 2, Table A1). Arachidic acid content did not respond to 

the temperature in any genetic background carrying the P mutation, while a genetic background effect 

in NM1-NILs was observed, obtaining variable responses (data not shown). 
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Figure 2. Relationships between palmitic, stearic, oleic and linoleic acid contents and the MNT during 100-300 ddaf in P and NM1-NILs grouping 
data from the four genetic backgrounds NILs (A-D) and the individual genetic backgrounds (GB1: E-H; GB2: I-L, GB3; M-P and GB4: Q-T). Filled 
circles and solid lines correspond to the P-NILs. Empty circles and dashed lines correspond to the NM1-NILs.  
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Relationship between fatty acids 

Significant negative linoleic:oleic ratio was observed when P-NILs were analyzed 

altogether, while no relationship between these fatty acids was registered in NM1-NIL 

group. Genetic background effect was registered in the linoleic:oleic ratio in both groups of 

NILs. Different response patterns were observed when NIL pairs were compared with 

each other (Table 5). 

Genetic background effect was also registered in the relationships between saturated and 

oleic acid contents (Table 5). P-NILs did not show significant relationship between 

palmitic:oleic, unlike in most NM1-NILs in which an inverse relationship between them 

was registered (Table 5). Stearic:oleic were inversely related in all NM1-NILs as well as in 

the GB4 genetic background of P-NILs. 

Genetic background also affected the palmitic:linoleic and the stearic:linoleic relationships. 

Palmitic acid was inversely related to linoleic acid content in P-3, NM1-2 and NM1-4 NILs 

(Table 5). Stearic acid was inversely related to linoleic acid content in P-4 and NM1-2 

NILs, and directly related in NM1-4 NIL (Table 5). 

 

Table 5. Regression coefficient (r2), slope (g kg-1 FAa / g kg-1 FAb) and p-value of the 
adjusted functions of the relationships between L:O, P:O, S:O, P:L and S:L for the 
whole data set and each genetic background separately of the P and NM1-NIL 
pairwise.  

 LINOLEIC:OLEIC 

NILs Whole 
data P-1 P-2 P-3 P-4 Whole 

data 
NM1-

1 NM1-2 NM1-
3 

NM1-
4 

r2 0.46 0.89 0.45 - 0.73 - - 0.44 - 0.46 
Slope  -0.85 -0.88 -0.48 - -1.01 - - 4.88 - -0.89
p-
value 

p<0.000
1 

<0.000
1 

0.03
3 

0.05
5 0.002 p= 0.21 0.575 0.037 0.96 0.03 

 PALMITIC:OLEIC 

NILs Whole 
data P-1 P-2 P-3 P-4 Whole 

data 
NM1-

1 NM1-2 NM1-
3 

NM1-
4 

r2 - - - - - 0.30 0.47 0.91 0.40 - 
Slope  - - - - - -0.81 -1.39 -1.79 -0.83 - 
p-
value 0.75 0.067 0.67 0.88 0.69 p=0.003 0.01 <0.000

1 0.031 0.956
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 STEARIC:OLEIC 

NILs Whole 
data P-1 P-2 P-3 P-4 Whole 

data 
NM1-

1 NM1-2 NM1-
3 

NM1-
4 

r2 0.55 - - - 0.84 0.50 0.36 0.93 0.40 0.48 
Slope  -1.25 - - - -2.80 -1.02 -0.92 -1.73 -1.15 -1.50
p-
value 

p<0.000
1 0.392 0.98

5 0.11 <0.000
1 

p<0.000
1 0.038 <0.000

1 0.03 0.006

 PALMITIC:LINOLEIC 

NILs Whole 
data P-1 P-2 P-3 P-4 Whole 

data 
NM1-

1 NM1-2 NM1-
3 

NM1-
4 

r2 0.30 - - 0.40 - 0.12 - 0.45 - 0.40 
Slope  -1.25 - - -1.06 - -0.29 - -0.20 - -0.62
p-
value p<0.001 0.632 0.05

5 
0.03

6 0.062 p=0.03 0.897 0.02 0.195 0.028

 STEARIC:LINOLEIC 

NILs Whole 
data P-1 P-2 P-3 P-4 Whole 

data 
NM1-

1 NM1-2 NM1-
3 

NM1-
4 

r2 - - - - 0.49 - - 0.47 - 0.70 
Slope  - - - - -3.89 - - -0.19 - 1.23 
p-
value 0.5 0.714 0.82

3 
0.82

3 0.014 0.21 0.27 0.017 0.03 0.002

L: linoleic; O: oleic; P: palmitic; S: stearic. 
 

DISCUSSION  

The present work expanded the analysis of high oleic trait and fatty acid composition in 

high oleic sunflower materials including NILs, bearing the NM1 mutation and NILs bearing 

its counterpart, the well-known Pervenets mutation (P). Genotype characterization of the 

four elite genetic backgrounds evaluated was diverse enough in order to consider them as 

unrelated, covering a representative genetic diversity. Moreover, each pair of NILs 

carrying one or another allelic variant of the high oleic character, were close enough 

constituting true NILs. In this sense, working with inbred NILs provided the experimental 

advantage to characterize a particular phenotype compensating genetic interactions, like 

epistasis or pleiotropy. Thus the differences in the fatty acid composition can be attributed 

not only to the mutation x environment interaction, but also to the genetic background.21,34 

With the proposed experimental approach, genetic background effect on the stability of 
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oilseed fatty acid composition from NILs carrying two different high oleic mutations (P or 

NM1) and its interaction with the environment was evaluated. 

Genetic background effect was registered in the fatty acid composition when comparing P 

or NM1-NILs. According to results, the genetic variability in the oleic acid content reported 

by several authors in high oleic sunflower lines carrying the P mutation35-38 and 

hybrids22,24,39 may also be attributed to genetic background diversity. In the present work, 

the NM1-NIL group reached the highest oleic acid content when compared with P-NIL 

group with a minimum of 907 g kg-1. Thereby, NM1 mutation ensured the ultra-high oleic 

phenotype for all genetic backgrounds assayed. Besides, NM1-NILs exhibited the lowest 

CV indicating that these materials were less influenced by the genetic background than 

the P-NILs. 

Genetic studies on different high oleic materials carrying the P mutation have led to 

controversial results on the inheritance pattern of the high oleic trait due to variable 

expression of the mutation associated with different genetic factors affecting the oleic 

level. It was proposed, first, that the genetic background effect is related to a major gene 

with incomplete penetrance determined by genotypic epistatic factors of reversion;40 

second, to a genetic control of the high oleic character determined by three loci: the fad2-

1 gene, one suppressor or supole, and modifier genes.41,42 Thus, the suppressor of the 

mutation may mask the high oleic phenotype leading the presence of the P mutation as 

insufficient to induce the high oleic phenotype.41,42 The epistatic factors may be attributed 

by other genes that depend on the genetic background which would interact with the 

mutation.43 Therefore, to maintain or increase the stability of oleic acid in high oleic P 

materials, factors related to the environment and/or the genetic background (that may 

modulate the suppression of the P mutation) should be taken into account.  

As the high oleic phenotype in NM1-NILs is due to the effect of constitutive NM1 mutation 

on FAD2-1 protein10,44 suppressors would not be relevant in modulating the expression of 
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the high oleic phenotype. That would explain why NM1-NILs consistently showed both, 

higher oleic acid content and higher fatty acid stability across genetic backgrounds and 

environments, compared to the respective P-NIL counterpart. 

The mutation – genetic background interaction explained more of the oleic acid variation 

in P-NILs than in NM1-NILs. Particularly, the GB3 from both groups of NILs had shown 

the highest oleic acid content and the lowest saturated fatty acids, suggesting that this 

genetic background was the most favorable for the high oleic trait, independently of the 

type of mutation carried. 

A genetic background effect was registered in the response of the fatty acids to the MNT. 

When the P-NIL group was analyzed as a single data set a non-significant relationship 

was observed between oleic acid and the MNT. Meanwhile, NM1-NIL group showed a 

mild although significant inverse relationship between both variables. Analyzing the group 

of P-NILs, P-1 showed an increase in oleic acid content as the MNT increased, being 

consistent with published data.14-17,19,21,22,24,34,45-49 The genotypes P-2, P-3 and P-4 showed 

a non-significant linear relationship between the oleic acid and the MNT, although a 

positive trend was observed.  

In this sense, Martinez-Rivas et al.50 proposed that genes associated with the genetic 

background can interact with the high oleic character affecting the expression of the high 

oleic trait in sunflower materials bearing the P mutation. These results are consistent with 

those reported by Ferfuia et al.49 indicating that oleic content was modified by temperature 

in different high oleic inbred lines carrying the P mutation. Moreover, the variability 

reported previously in the response of oleic acid to the MNT22,24 would also depend on the 

genetic background. 

In NM1-NILs, a null response was registered in most genetic backgrounds, except in 

NM1-2. Interestingly, an inverse relationship between the oleic acid and the MNT in the 

latter was observed. This unexpected trend could be explained by the increase in stearic 
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acid, consistent with the relationship between the stearic and the oleic acid contents 

reported by Fernández-Moya et al..51 However, the nature of this response pattern is still 

unknown. 

As a general response pattern across genetic backgrounds for all NIL pairs evaluated, an 

increase in palmitic acid and a decrease in linoleic acid contents as temperature 

increased were observed. Moreover, this trend showed differences in the magnitude 

according to the genetic background or the high oleic mutation. This is in agreement with 

the general trend described by several authors working with different high oleic sunflower 

genotypes carrying Pervenets mutation.24,34,46,47,52,53 

The positive response of palmitic acid to the MNT could be associated to the effect of the 

temperature over genes related to the genetic background that indirectly affected the 

KASII enzyme, increasing its activity42 and therefore contributing to the accumulation of 

palmitic acid. 

The relationship between linoleic:oleic acids was compared taking the whole data set from 

P- and NM1-NILs across environments. Thus, P-NILs showed a negative relationship 

between them, unlike the NM1-NILs that presented a non-significant relationship. 

However, genetic background effect was registered in the linoleic:oleic ratio. In this sense, 

Joksimovic et al.54 proposed that this relationship is genetically controlled and it is also 

heavily influenced by the environment, mainly by the temperature. Additive gene action is 

more important for the oleic acid than non-additive gene action. Conversely, non-additive 

gene action, like epistasis, is more important for the inheritance of linoleic acid.54 Although 

this factor was not measured, the genetic background effect registered in the studied 

NILs, would highlight the genetic control over this relationship.  

Furthermore, when P or NM1 mutations are present, the residual desaturation of oleic to 

linoleic acid could be due to the expression of the minor genes related to the genetic 

background, responsible for the basal temperature-independent enzyme activity, or other 
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genes associated to the genetic background. The number of genes involved in the high 

oleic character expression and the genetic background from which they come, might 

regulate the genotype-environment interaction.55 In addition to the fad2-1 gene, two more 

isoform genes are present in sunflower: fad2-2 and fad2-3. While fad2-1 is seed specific 

and strongly expressed in developing seeds, fad2-2 and -3 are weakly expressed in 

developing seeds.50 However, the low content of oleic acid desaturated to linoleic acid, 

might depend in some extent to these minor genes than to the inhibited FAD2-1 

enzyme.50,56 

The relationship between saturated fatty acids and the oleic or linoleic acid differed not 

only between P and NM1-NILs, but also between genetic backgrounds. The differences 

registered in these relationships exhibited in some P- or NM1-NILs could be explained, on 

one hand, by the positive effect of temperature over some of the enzymes of the FAS II 

complex or some of the SAD isoenzyme. Pérez-Vich et al.57 reported that genes codifying 

for the palmitic and the oleic acid traits are independently inherited. As in the present 

work, they described an inverse relationship between the palmitic and the oleic or linoleic 

acid in high oleic and high palmitic/ high oleic sunflower genotypes. In this sense, this 

particular relationships could be attributed to factors different to mutations on fad2-1 

themselves, associated to the genetic background that can be affected by the 

temperature,35,42,58 modifying also the response at level of fatty acid profile when different 

genetic backgrounds are compared. 

 

CONCLUSIONS 

This work presented new evidence about the effect of genetic background on fatty acid 

composition. Specifically it unveiled the behavior of the high oleic trait in a set of NILs 

carrying two different high oleic mutations, Pervenets and NM1. A genetic background 

effect was found in both NIL groups. However, in NM1 materials (compared to P 
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materials) the level and stability of oleic acid content increased across environments, 

independently of the genetic background. When selecting stable and ultra-high oleic 

genotypes, genetic background determined a null or low dependence in NILs carrying the 

NM1 mutation. Thus, this mutation is the best choice to develop ultra-high oleic 

sunflowers, which are stable across environments and genetic backgrounds, making the 

agronomical production of high oleic quality oils more efficient and predictable due to the 

stability of the trait. 

ACKNOWLEDGEMENTS 

Dr. Constanza Alberio holds a scholarship from CONICET, Argentina. This research was 

supported by INTA (PNCYO1127042), CONICET (PIP0541) and Universidad Nacional de 

Mar del Plata (AGR522/17). Authors wish to thank Luis Méndez for his technical 

assistance. 

 

REFERENCES 

1. Vanozzi GP, The perspectives of use of high oleic sunflower for oleochemistry and 

energy raws. Helia 29: 1-24 (2006).  

2. Garcés R, Martínez-Force E, Salas JJ and Venegas-Calerón M, Current advances in 

sunflower oil and its applications. Lipid Technology 21: 79-82 (2009). 

3. Di Marco A, Pan L and Añón MC, Ultra-high oleic sunflower oil. Physicochemical 

characterization. World Congress of Oil and Fats and 31st International Society for 

Fats Research Lectureship Series, 31 Oct-4 Nov 2015, Rosario, Argentina (2015). 

4. Pan L, Ultra-high oleic sunflower oil. 2nd High Oleic Congress, 2-4 Sep 2015, Paris 

(2015). 

5. Lukens LN and Doebley J, Epistatic and environmental interactions for quantitative trait 

loci involved in maize evolution. Genet Res 74: 291–302 (1999). 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



6. Fernández-Martínez JM, Mancha M, Osorio J and Garcés R, Sunflower mutant 

containing high levels of palmitic acid in high oleic background. Euphytica 97: 113-

116 (1997). 

7. Tanksley DS and Nelson CJ, Advanced backcross QTL analysis: A method for the 

simultaneous discovery and transfer of valuable QTL from unadapted germplasm 

into elite breeding lines. Theor Appl Genet 92: 191–203 (1996). 

8. Guo P, Bai G, Carver B, Li R, Bernardo A and Baum M, Transcriptional analysis 

between two wheat near isogenic lines contrasting in aluminum tolerance under 

aluminum stress. Mol Genet Genomics 277: 1–12 (2007). 

9. Keurentjes JJB, Bentsink L, Alonso-Blanco C, Hanhart CJ, Blankestijn-De Vries H, 

Effgen S, Vreugdenhil D and Koornneef M, Development of a near-isogenic line 

population of Arabidopsis thaliana and comparison of mapping power with a 

recombinant inbred line population. Genetics 175: 891-905 (2007). 

10. Zambelli A, León A and Garcés R, Mutagenesis in sunflower, in Sunflower Oilseed 

Chemistry, Production, Processing and Utilization, ed. by Martínez-Force E, 

Dunford NT, Salas JJ. AOCS Monograph Series on Oilseeds, Volume 7 AOCS 

Press, Urbana, IL, pp. 27-52 (2015). 

11. Canvin DT, The effect of temperature on the oil content and fatty acid composition of 

the oils from several oil seed crops. Can J Botany 43: 63-69 (1965). 

12. Rochester CP and Silver JG, Unsaturated fatty acid synthesis in sunflower (Helianthus 

annuus L) seeds in response to night temperature. Plant Cell Rep 2(5): 229-231 

(1983). 

13. Lajara JR, Diaz U and Quidiello RD, Definite influence of location and climatic 

conditions on the fatty acid composition of sunflower seed oil. J Am Oil Chem Soc 

67: 618-623 (1990). 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



14. Martínez-Force E, Álvarez-Ortega R, Cantisán S and Garcés R, Fatty acid 

composition in developing high saturated sunflower (Helianthus annuus) seeds: 

maturation changes and temperature effect. J Agr Food Chem 46: 3577-3582 

(1998). 

15. Izquierdo N, Aguirrezábal L, Andrade F and Pereyra V, Night temperature affects fatty 

acid composition in sunflower oil depending on the hybrid and the phonological 

stage. Field Crop Res 77: 115–126 (2002). 

16. Rondanini D, Savin R and Hall AJ, Dynamics of fruit growth and oil quality of 

sunflower (Helianthus annuus L) exposed to brief intervals of high temperature 

during grain filling. Field Crop Res 83: 79-90 (2003). 

17. Izquierdo N, Aguirrezábal LAN, Andrade FH and Cantarero MG, Modeling the 

response of fatty acid composition to temperature in a traditional sunflower hybrid. 

Agron J 98: 451–461 (2006). 

18. Rondanini D, Mantese A, Savin R and Hall AJ, Responses of sunflower yield and 

grain quality to alternating day/night high temperature regimes during grain filling: 

Effects of timing, duration and intensity of exposure to stress. Field Crop Res 96: 

48-62 (2006).  

19. Grunvald AK, de Carvalho CGP, Leite RS, Mandarino JMG, de Bastos-Andrade CA, 

Amabile RF and Godinho VDPC, Influence of temperature on the fatty acid 

composition of the oil from sunflower genotypes grown in tropical regions. J Am Oil 

Chem Soc 90: 545-553 (2013). 

20. Izquierdo NG, Aguirrezábal, LAN, Martínez-Force E, Garcés R, Paccapelo V, Andrade 

F and Zambelli A, Effect of growth temperature on the high stearic and high 

stearic-high oleic sunflower traits. Crop Pasture Sci 64: 18-25 (2013). 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



21. Van Der Merwe R, Labuschagne MT, Herselman L and Hugo A, Stability of seed oil 

quality traits in high and mid-oleic acid sunflower hybrids. Euphytica 193: 157-168 

(2013). 

22. Angeloni P, Echarte MM, Irujo GP, Izquierdo NG and Aguirrezábal L, Fatty acid 

composition of high oleic sunflower hybrids in a changing environment. Field Crop 

Res 202: 146-157 (2017). 

23. Alberio C, Izquierdo NG, Galella T, Zuil S, Reid R, Zambelli A and Aguirrezábal LAN. 

A new sunflower high oleic mutation confers stable oil grain fatty acid composition 

across environments. Eur J Agron 73: 25-33 (2016). 

24. Izquierdo N and Aguirrezábal LAN, Genetic variability in the response of fatty acid 

composition to night temperature during grain filling in sunflower. Field Crop Res 

106: 116–125 (2008). 

25. Schneiter AA and Miller JF, Description of Sunflower Growth Stages. Crop Sci 21: 

901–903 (1981). 

26. Farizo CL, Pereyra VR, Cardinali F and Orioli G, Determination of physiological and 

harvest maturity in sunflower, in Proc. Tenth International Sunflower Conf., 10th, 

Surfers Paradise, QLD, Australia, 14–18 Mar 1982. Sunflower Assoc., Paris, pp. 

42–44 (1982). 

27. Walkley A and Black IA, An Examination of Degtjareff method for determining soil 

organic matter and a proposed modification of the chromic acid titration method. 

Soil Sci 37:29-37 (1934). 

28. Echeverría HE, San Martín NF and Bergonzi R, Métodos rápidos de estimación de 

nitrógeno potencialmente mineralizable en suelos. Ciencia del Suelo 18: 9-16 

(2000). 

29. Bray RR and Kurtz L, Determination of total organic and available forms of 

phosphorus in soils. Soil Sci 59: 39-45 (1945).  

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



30. Díaz-Zorita M, Girasol, in Fertilidad de suelos y fertilización de cultivos, ed. by 

Echeverría H and García FO. INTA ediciones, 2da. Edición, Buenos Aires. pp. 

509-524 (2014). 

31. Ruiz-López N, Martínez-Force E and Garcés R, Sequential one-step extraction and 

analysis of triacylglycerols and fatty acids in plant tissues. Anal Biochem 317: 247–

254 (2003). 

32. InfoStat, Manual de usuario, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, 

Argentina, (2008). 

33. Kiniry JR, Blanchet R, Williams JR, Texier V, Jones CA and Cabelguenne M, 

Sunflower simulation using the EPIC and ALMANAC models. Field Crop Res 30: 

403–423 (1992). 

34. Salera E and Baldini M, Performance of high and low oleic acid hybrids of sunflower 

under different environmental conditions, note 2 Helia 21:55–67 (1998). 

35. Fernández-Martínez J, Muñoz J and Gómez-Arnau J, Performance of near-isogenic 

high and low oleic acid hybrids of sunflower. Crop Sci 33: 1158-1163 (1993). 

36. Lacombe S, Léger S, Kaan F and Bervillé A, Inheritance of oleic acid content in F2 

and a population of recombinant inbred lines segregating for the high oleic trait in 

sunflower. Helia 25: 85-94 (2002). 

37. Varès D, Lacombe S, Griveau Y, Bervillé A and Kaan F, Inheritance of oleic acid 

content of f1 seed in a complete diallel cross between seven sunflower lines. Helia 

25: 105-112 (2002). 

38. Demurin Y, Up-to-date results on biochemical genetics of sunflower in VNIIMK. Helia 

26: 137-142 (2003). 

39. Škorić D, Jocić S, Lečić N and Sakač Z, Development of sunflower hybrids with 

different oil quality. Helia 30: 205-212 (2007). 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



40. Demurin Y and Borisenko O, Genetic collection of oleic acid content in sunflower seed 

oil. Helia 34: 69-74 (2011).  

41. Lacombe S, Kaan F, Léger S and Bervillé A, An oleate desaturase and a suppressor 

loci direct high oleic acid content of sunflower (Helianthus annuus L) oil in the 

Pervenets mutant. Life Sci 324: 839-845 (2001). 

42. Lacombe S, Kaan F, Griveau Y and Bervillé A, The Pervenets high oleic mutation: 

methodological studies. Helia 27: 41-54 (2004). 

43. Demurin Y and Skorić D. Unstable expression of Ol gene for high oleic acid content in 

sunflower seeds, in Proceedings of the 14th International Sunflower Conference I, 

Beiging/Shenyang, China pp. 12-20 (1996). 

44. León AJ, Zambelli AD, Reid RJ, Morata MM and Kaspar M, Nucleotide sequences 

mutated by insertion that encode a truncated oleate desaturase protein, proteins, 

methods and uses. WIPO Patent WO 2013/004281 A1, January 10, (2013). 

45. Lagravere T, Lacombe S, Surel O, Kleiber D, Berville A and Dayde J, Oil composition 

and accumulation of fatty acids in new oleic sunflower (Helianthus annuus L) 

hybrids, in Proceedings of the 15th International Sunflower Conference, Jun 12-15 

2000, A25, Toulouse (2000). 

46. Lagravere T , Champoveliver L, Lacombe S, Kleiber D, Berville A and Dayde J, 

Effects of temperature variations on fatty acid composition in oleic acid sunflower 

oil (Helianthus annuus L) hybrids, in Proceedings of the 15th International 

Sunflower Conference, Jun 12-15 2000, A68, Toulouse (2000).  

47. Triboï-Blondel A, Bonnemoy B, Falcimagne R, Martignac M, Messaoud J, Philippon J 

and Vear F, The effect of temperature from flowering to maturity on seed 

composition of high oleic sunflower inbreeds and mid oleic hybrids, in Proceedings 

of the 15th International Sunflower Conference, Jun 12-15 2000, A67, Toulouse 

(2000). 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



48. Pleite R, Rondanini D, Garcés R and Martínez-Force E, Day–night variation in fatty 

acids and lipids biosynthesis in sunflower seeds. Crop Sci 48(5): 1952-1957 

(2008). 

49. Ferfuia C, Turi M and Vannozzi GP, Variability of Seed Fatty Acid Composition to 

Growing Degree-Days in High Oleic Acid Sunflower Genotypes. Helia 38: 61-78 

(2015). 

50. Martínez-Rivas JM, Sperling P, Wilfried L and Heinz E, Spatial and temporal 

regulation of three different microsomal oleate desaturase genes (FAD2) from 

normal-type and high-oleic varieties of sunflower (Helianthus annuus L). Mol 

Breeding 8: 159-168 (2001). 

51. Fernández-Moya V, Martínez-Force E and Garcés, R, Temperature-related non-

homogeneous fatty acid desaturation in sunflower (Helianthus annuus L.) seeds. 

Planta 216: 834-840 (2003). 

52. Champolivier, L and Merrien, A, Evolution de la teneur en huile et de sa composition 

en acides gras chez deux variétés de tournesol (oléique ou non) sous l’effet de 

températures différentes pendant la maturation des graines. OCL 3: 140-144 

(1996). 

53. Izquierdo NG, Martínez‐Force E, Garcés R, Aguirrezábal LA, Zambelli A and Reid R, 

Temperature effect on triacylglycerol species in seed oil from high stearic 

sunflower lines with different genetic backgrounds. J Sci Food Agric 96: 4367-4376 

(2016). 

54. Joksimović, J, Atlagić, J, Marinković, R and Jovanović, D, Genetic control of oleic and 

linoleic acid contents in sunflower Helia 29: 33-40 (2006). 

55. Fernández-Martínez JM, Velasco L and Pérez-Vich B, Progress in the genetic 

modification of sunflower oil quality, in Proceedings of the 16th International 

Sunflower Conference, 29 Ago-2 Sep 2004, Fargo, ND, pp. 1-15 (2004). 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



56. Garcés R, Sarmiento C and Mancha M, Temperature regulation of oleate desaturase 

in sunflower (Heliantus annuus L.) seeds. Planta 186: 461-465 (1992). 

57. Pérez‐Vich B, Garces R and Fernández‐Martínez JM, Inheritance of high palmitic acid 

content in the sunflower mutant CAS‐12 and its relationship with high oleic content. 

Plant Breeding 121: 49-56 (2002). 

58. Velasco L, Peréz-Vich B and Fernández-Martinez JM, Inheritance of oleic acid content 

under controlled environment, in Proceedings of the 15th International Sunflower 

Conference, Jun 12-15 2000, A31, Toulouse (2000). 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e




