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A B S T R A C T

This paper exposes relevant characteristics of the stability boundary associated to subsynchronous control in-
teractions when multiple DFIG-based wind farms are radially connected to a series compensated transmission
line. It is shown that the stability boundary is a convex hypersurface in the parameter space defined by the
compensation level and the number of wind turbines in service at each wind farm (WF). A comprehensive multi-
parameter analysis is carried out, revealing the effect of key parameters such as the location of the WFs and the
transmission infrastructure, the gains of the WF controllers, the internal collector impedances and the wind
speed on the stability boundary. These results also show that the convexity is a robust property of the boundary.
The methodology is applied on a generic power system with two wind farms and on a case study based on a
practical scenario, reproducing and explaining behaviors reported previously in practical systems.

1. Introduction

Subsynchronous oscillation (SSO) problems involving series com-
pensated transmission lines and DFIG-based wind farms (WFs) received
a great attention in recent years. Important advances have been pro-
duced in both analysis (see, for example [1–4]) and mitigation tech-
niques (see, for example [5–8]). The first reported incident occurred in
Texas in 2009 [9], and was followed by events in Minnesota [10],
Oklahoma [11] and in the north of China [12–14]. The phenomenon
has an electromagnetic nature, without involving the mechanical part
of the turbine-generator. It is associated to a damping reduction of the
subsynchronous electrical mode when, for example, the compensation
level of the transmission line increases or when the wind speed di-
minishes. The subsynchronous mode and the related dynamical beha-
vior are also affected by the number of DFIG wind turbines in operation,
the impedance of the internal WF grid (collectors and transmission
lines), and the tuning of the controllers, among others parameters. The
problem has reminiscences to the induction generator effect (IGE)
arising in conventional synchronous generators. Nevertheless, since it
not only involves the DFIG but also its power converters, it has been
classified as a subsynchronous control interaction (SSCI) [9,1]. A pe-
culiar feature of the SSCI is that the frequency of the resulting SSO is
not fixed, and depends on the grid and WF parameters (including the
tuning of the DFIG controllers). In addition, since the mechanical part

of the turbine-generator is not engaged, the oscillations emerge and
grow relatively fast.

In regions with extensive areas with high-quality wind resources
and relatively low consumptions, such as the south of Argentina
(Patagonia) [15–17] and the north of China [12], several WFs are
connected through dedicated transmission lines to a common point on
the main corridors, exporting the wind generated power to distant load
centers. The main corridors often have series capacitive compensation
and thus, these scenarios are prone to undergo SSCI problems, such as
the ones observed in several WFs located in the Hebei Province in the
north of China [12–14]. In this regard, Wu et al. [13] evaluated the
impact of two and five practical WFs connected to a common point in
the power grid, concluding that SSCI events can arise, due to a con-
tingency or a reduction in the wind speed, even when the compensation
level is relatively low. They also pointed out that the frequency varies
during the incident due to the number of machines in service, and that
the rotor side converter (RSC) of the DFIG plays an important role since
it modifies the equivalent impedance of the machine. Xie et al. [14]
corroborated the theoretical results by analyzing field data corre-
sponding to 58 incidents occurred in the Guyuan power system located
in Hebei, China.

In practical systems the number of wind turbines in service plays an
important role in the oscillatory behavior associated to SSCI [14]. This
problem can be further interpreted by examining the structure of the
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critical conditions associated to the SSCI phenomenon, i.e. exposing the
stability boundary in the parameter space defined by the compensation
level and the number of wind turbines in operation (available power) at
each WF. In this paper, generic properties of the stability boundary are
derived using tools from bifurcation theory. Since the mechanism
leading to the SSCI phenomenon is a Hopf bifurcation [18], the math-
ematical properties of this bifurcation are used to characterize the
stability boundary in the considered parameter space. The main con-
tribution consists in revealing that the stability boundary is a convex
hypersurface.1 This property implies that the minimum or critical
compensation level is unique, and for compensation levels higher than
this critical value, the stability boundary is a closed convex region re-
stricting the admissible WFs powers to values outside this region. In
other words, the stability depends not only on the cumulative number
of wind turbines in operation but also on its geographical distribution.
In addition, changes in the number of in-service wind turbines in the
WFs, can drive the system from a stable operating condition to another
stable condition, but depending on the sequence followed when con-
necting or reconnecting the turbines, the system can exhibit SSCI
phenomena during the transition. This reveals that the combined
characteristics of the WFs are decisive in the stability of the system.
This feature is generic since the Hopf bifurcation is also generic. Fur-
thermore, the characteristics of this boundary are disclosed numeri-
cally, including the effects of the location of the WFs and the trans-
mission infrastructure connecting them to the bulk power system, the
gains of the WF controllers, the internal collector impedances and the
wind speed. The results are illustrated with time domain simulations,
considering two generic WFs and a case study based on a practical
scenario. The convexity of the stability boundary paves the way to
implement minimum search algorithms to distinguish the worst case
scenario that can be used to detect the minimum compensation level
admissible for a given system. The paper is organized as follows. In
Section 2, a network model suitable for SSCI studies is introduced.
Preliminary concepts regarding the SSCI phenomenon and the metho-
dology used in this paper are described in Section 3. The main features
of the SSCI considering one WF is presented in Section 4. Section 5
analyzes the scenario with two WFs, and the results are extended to a
case study involving several WFs in Section 6. Finally, the conclusions
are given in Section 7.

2. Power system model for SSCI analysis

To analyze the SSCI phenomenon in a multiple WFs scenario, a
power system with the structure depicted schematically in Fig. 1 is
considered. It consists in a set of WFs transferring the generated power
through dedicated lines, generally, with different lengths, parameters,
voltage levels, etc. The power is collected at the point of interconnec-
tion (POI) and transmitted to the bulk system through a series com-
pensated line. This radial scenario retains the main features involved in
the SSCI and, simultaneously, preserves the features of individual WFs
(or a group of nearby WFs), such as the installed power, location and
line impedances, controller gains, among others, that are essential for
the analysis. Similar representations were used in [12,13,19] to de-
scribe SSO incidents in WFs integrated to the power grid in the north of
China.

2.1. Wind farm representation

In general, the turbines of a large scale WF are arranged in several
strings or collectors, connecting a relatively small number of turbines to
the WF substation. A practical method for deriving a simplified model
consists in representing each collector by a single wind turbine with an

equivalent power SC, an equivalent pad-mounted transformer XTC, and
an equivalent internal network impedance ZC (see for example [20]).
For simplicity, in this paper, it is assumed that the nC collectors are
identical and that all the wind turbines operate at the same point.
Therefore, the WF aggregated model results in a wind turbine with
power Swf = nCSC, a transformer with reactance XTwf = XTC/
nC = XTCSC/Swf and an internal network impedance Zwf = ZC/
nC = ZCSC/Swf, as depicted schematically in Fig. 2 (inside the dashed
line rectangle).

2.2. Power grid representation

The equivalent WF is connected to the POI through a substation
(with reactance XTS) and a dedicated line (with impedance Zl). In the
considered case, the voltage levels are: 0.69 kV for the DFIG wind
turbine output, 33 kV for the WF internal network and 132 kV for the
WF dedicated line. A 132/500 kV transformer (with reactance XTL)
steps-up the voltage to the bulk transmission level. The main corridor is
represented by the impedance ZL = RL + jXL and is compensated with a
fixed series capacitor bank with reactance XC. The compensation level
μ, with 0 < μ < 1, is defined as

=μ X
X

,C

L (1)

i.e. only the reactance of the main corridor is compensated. The bulk
power system is modeled as an equivalent 500 kV/50 Hz power source
with a short circuit power SSC and impedance ZSC.

2.3. Power system model

The system is modeled by a set of ordinary differential equations,
including the equivalent wind turbine dynamics with the corresponding
control loops in local d-q coordinates, and the transmission lines and
the bulk system in the synchronous d-q reference frame. The details of
the implemented models and the values of the parameters are described
in Appendix A. The resulting power system model can be generically
expressed as

=x f x α˙ ( , ), (2)

where × →f : ℝ ℝ ℝn m n is a smooth vector field, depending on the state
variables ∈x ℝn and on the subset of parameters under consideration

∈α ℝm.

3. Preliminaries: SSCI phenomenon and the Hopf bifurcation
mechanism

The SSCI phenomenon in DFIG-based WFs is associated to the
damping reduction of the subsynchronous electrical mode introduced
by the capacitive series compensation of the transmission line. Some
key parameters are the compensation level (μ), the wind speed (vw), the
number of wind turbines in operation in the WF (represented by their
rated powers Swf) and the tuning of the controllers. The behavior of the
relevant eigenvalues when these parameters vary is described in detail
in [18] for a radial system with one WF. In particular, an increase of the
compensation level or a decrease of the wind speed has a negative effect
on the damping of the subsynchronous mode. Thus, poorly damped SSO
can arise, resulting in excessive currents that affect the series capacitors
and WFs equipment. Ultimately, when the subsynchronous mode
crosses the imaginary axis, the operating point becomes unstable due to
a Hopf bifurcation and a sustained SSO takes place. Therefore, the
underlying mechanism behind the SSCI phenomenon is a Hopf bi-
furcation. The locus of this bifurcation in the parameter space defines
the stability boundary, i.e. the parameter values for which a sustained
SSO appears. In addition, the proximity to the curve alerts for a poorly
damped subsynchronous mode. Since the Hopf bifurcation plays a key
role in determining the stability of the system related to the SSCI

1 A (m − 1)–dimensional manifold in the considered m–dimensional para-
meter space.
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phenomenon, the main concepts regarding the defining conditions and
the method used for the continuation of bifurcation points are in-
troduced next.

3.1. Detection and continuation of Hopf bifurcations

Consider the power system (2) and, without loss of generality,
suppose that the dynamics is analyzed in terms of one parameter of the
system, i.e. ∈α ℝ1 (the subset of parameters that can vary has dimen-
sion m = 1). The operating points of (2) when α is varied are obtained
by solving the equilibrium equation f(x, α) = 0, which defines a curve
in ×ℝ ℝn 1. This curve is a one-dimensional manifold M that can be
computed by the elementary approach consisting in fixing successive
values of α and solving the equilibrium equation with standard nu-
merical methods for nonlinear equations. Alternatively, the curve can
be computed using the so called continuation method. In this context the
manifold M is defined by the set of equations F(y) = 0, with

= ∈ ×y x α( , ) ℝ ℝn 1 and × →F: ℝ ℝ ℝn n1 . The method computes a
sequence of points {y1, y2, … } that approximates M with the desired
tolerance by means of an iterative prediction-correction approach. The
successive points are predicted using the vector tangent to the curve,
and the resulting values (expectedly close to M) are corrected by
Newton iterations. The step size used to update the parameter value is
adapted when convergence is not achieved.

An equilibrium point x= x* of (2) undergoes a Hopf bifurcation if
for some α = α* such that f(x*, α*) = 0, the Jacobian matrix Dxf(x*, α*)
has a pair of eigenvalues on the imaginary axis, namely λ1,2(α)
=± iω0 with ω0 > 0, and the following conditions are satisfied:

i) The pair of eigenvalues λ1,2(α) crosses the imaginary axis transver-
sally, i.e. ≠=d λ α dαRe ( )/ | 0α α1,2 * .

ii) The first Lyapunov coefficient is l1(α*) ≠ 0 (non-degeneracy).2

The first Lyapunov coefficient, defines the stability of the emerging
limit cycle. Thus, if the equilibrium point is unstable for α > α* and
l1(α*) < 0, a stable limit cycle with frequency ω0 and amplitude

−α α* arises for α > α*.
During the equilibrium point continuation, the Hopf bifurcation can

be detected by computing the scalar test function
= ∏ +>y λ y λ yΨ ( ) ( ( ) ( ))H i j i j , which is zero when the eigenvalues are on

the imaginary axis. A procedure for computing this scalar function that
avoids the explicit calculation of the eigenvalues can be consulted in
[21,Sec. 10.2.2]. The Hopf bifurcation is a codimension one phenom-
enon since it requires the tuning of a single parameter of the system.
Once a Hopf bifurcation point is detected, it can be continued in the
parameter space by considering variations of a second parameter, hence

∈α ℝ2. In this case the same tools used in the equilibrium continuation
can be applied to solve simultaneously the equilibrium equation F(y)
= 0, with = ∈ +y x α( , ) ℝn 2 and × →F: ℝ ℝ ℝn n2 , and the test function
ΨH(y) = 0, i.e. by solving the system

⎧
⎨⎩

=
=

F y
y

( ) 0,
Ψ ( ) 0,H (3)

numerically, with an iterative prediction-correction algorithm that ex-
ploits the information given by the tangent vector. Since the Hopf bi-
furcation is a codimension one phenomenon, the difference between the
dimension of the parameter space and the one of the bifurcation
boundary is one (for the m–dimensional parameter space, the bifurca-
tion boundary is a (m− 1)–dimensional manifold).

Usually, the Hopf bifurcation (as well as other bifurcations) are
detected and continued in the parameter space using standard numer-
ical continuation packages. This is particularly useful when variation of

Fig. 1. Schematic portrait of the radial topology considered in this paper.

Fig. 2. Radial corridor with n WFs represented by the corresponding aggregated model (box).

2 A procedure for computing l1 can be consulted in [21,Sec. 5.4.1].
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several parameters are considered. In this paper, the package MatCont
[22] is used.

4. Analysis of SSCI and stability boundary in a single WF

In order to review the main features related to SSCI, and to begin
the analysis of the stability boundary, a system consisting in a single WF
radially connected to the bulk power grid (Fig. 2 with n = 1) is con-
sidered. The parameter values, obtained from a portion of the Argen-
tinean power system, are included in Table 1 (the base power is
100 MVA). In this section, the length of the 132 kV dedicated line is
l = 10 km and the wind speed is fixed at =v 5.5w m/s (close to the
lowest value and thus a worst case scenario). The stability boundary
associated to the SSCI (Hopf bifurcation curve) is investigated in terms
of the rated power of the wind turbines in operation (Swf) and the
compensation level (μ). The parameter Swf is varied continuously in-
stead of using discrete values nCSC. To show the effect of the line im-
pedance, a different number (nl) of parallel 132 kV lines is considered.
Each line has a maximum rated power of Sl = 1.4 p.u., limiting the
admissible WF power to Swf < 1.4 × nl p.u. The results for nl = 2, 3
and 4, are depicted in Fig. 3. In each case, the corresponding curve,
delimits the stable region (below) and the unstable one (above). The
shape of the curve is the same for all the scenarios, but the stability
boundary is shifted-down, reducing the stable region, as the number of
lines is increased (the equivalent line impedance diminishes).

The convexity of the stability boundary curve has an important ef-
fect on the behavior related to SSCI that is exposed when the number of
turbines in operation changes. For example, consider a stressed scenario
with Swf = 5 p.u. and nl = 4, i.e. close to the maximum rating
(1.4 × 4 =5.6 p.u.), for a compensation level μ = 0.65. According to
Fig. 3, the operating condition (blue triangle) is stable since it is located
below the blue curve. The tripping of wind turbines moves the

operating condition to the left, reducing the stability margin (dimin-
ishing the damping of the subsynchronous mode). When the apparent
power of the WF is reduced in at least 80 MVA due to wind turbine
disconnections, the stability boundary curve is crossed (at
Swf ≃ 4.2 p.u.) and a sustained SSO occurs for 1.5 < Swf < 4.2 (c.f. the
blue triangle at Swf = 2.5 p.u.). The stable operation is recovered when
the number of tripped turbines increases and Swf < 1.5 p.u. (c.f. blue
triangle at Swf = 0.5 p.u.).

The related dynamical behavior is illustrated by a numerical simu-
lation performing a small voltage sag at the equivalent grid bus. The
resulting active power at the POI is shown in Fig. 4a (the corresponding
values of Swf are denoted by the blue triangles in Fig. 3). The simulation
starts with a WF in-service power Swf = 5 p.u., i.e. a stable operating
point according to Fig. 3. The perturbation is introduced at t = 0.1 s,
and the system responds with a poorly damped oscillation (reduced
stability margin). At t= 1.5 s the tripping of wind turbines reduces the
WF power to Swf = 2.5 p.u., crossing the stability boundary curve and
triggering a sustained oscillation. The stability is recovered when a
second pack of wind turbines (2 p.u.) is disconnected at t = 3 s, redu-
cing the power to Swf = 0.5 p.u. and placing the operating point at the
left of the stability boundary (see Fig. 3). A similar behavior on a
practical WF, triggered by a variation of the wind speed, was described
in [12] using eigenvalue analysis. To complete the description of the
dynamics, Fig. 4b shows the simulation results obtained for μ = 0.4 (c.f.
blue dots in Fig. 3), where the improvement on the stability margin due
to the reduction of the compensation level is evident. In both cases the
frequency of the oscillation is approximately 10 Hz.

The stability boundary can also be analyzed in terms of the grid
stiffness. Towards this end, the boundary is computed varying the short
circuit power SSC for a fixed number of transmission lines (nl = 4) and a
fixed WF operating power (Swf = 2.5 p.u.). The result is depicted in
Fig. 5, where the operating conditions for μ= 0.65 (triangle marker)
and μ= 0.4 (circle marker) are denoted (c.f. Fig. 3). It is worth noticing
that the problem aggravates as the short circuit power at the equivalent
grid increases. This is explained by the reduction of the short circuit
impedance and the consequent reduction of the resistance.

These results reveal that the Hopf bifurcation plays a decisive role in
the SSCI phenomenon and that the complete stability boundary should
be analyzed to avoid SSCI problems. As will be demonstrated in the
following, this conclusion can be extended to the multiple WFs sce-
nario.

5. Analysis of SSCI and stability boundary in a two WFs scenario

To begin the analysis of the stability boundary in the multiple WF
scenario, the radial system in Fig. 2 with two WFs, namely WF1 and
WF2, is considered. The power on each WF is limited to Swf < 5.6 p.u.
(four parallel 132 kV lines are implemented).

The first analysis is performed with identical WFs, operating at the
same conditions ( =v 5.5w m/s), and transmission lines of the same
lengths (l1 = l2 = 10 km). The stability boundary in terms of Swf1 and
Swf2, associated to the number of wind turbines in service at each WF,
and the compensation level μ is depicted in Fig. 6a (the color indicates
the value of μ). The surface is developed by performing and assembling
two-dimensional continuations of the SSCI condition (Hopf bifurca-
tion), on a sufficient large number of slices of the 3-D parameter space
defined by planes of constant power ratios KSW = Swf2/Swf1. The locus
of the Hopf bifurcation on each slice is a curve similar to the ones de-
picted in Fig. 3. Since the transmission lines have the same length and
both WFs are identical and operate at the same condition, WF1 and WF2
are indistinguishable and the surface is symmetric with respect to the
slice KSW = 1, i.e. Swf1 = Swf2 (denoted by the black dashed line on the
surface in Fig. 6a). The stable operating region is located below the
surface and the damping of the subsynchronous mode is reduced when
the operating point approaches this boundary.

The combined effect of Swf1, Swf2 and μ is better interpreted focusing

Table 1
Electric network parameters in p.u. for a base of 100 MVA and the corre-
sponding nominal transmission line voltage (500/132/33 kV).

HVAC transmission system (500 kV)
Short-circuit power SSC 180 p.u.
Short-circuit impedance ZSC (0.553 + j5.53) × 10−3 p.u.
Line impedance (354 km) ZL (1.375 + j16.920) × 10−3 p.u.
Transformer 132/500 kV XTL j0.027592 p.u.

WF transmission system (132 kV)
Single line rated power Sl 1.4 p.u.
Line impedance (10 km) Zl (8.07 + j22.77) × 10−3 p.u.
Transformer 33/132 kV XTS j0.0954 p.u.

WF collectors (33 kV)
Equiv. machine power SC 0.5 p.u.
Equiv. collector impedance ZC (5.20 + j5.61) × 10−3 p.u.
Equiv. transf. 0.69/33 kV XTC j0.1739 p.u.

Fig. 3. Stability boundary (Hopf bifurcation curve) associated to SSCI con-
sidering a different number of 132 KV transmission lines, each one with a
maximum capacity of 1.4 p.u. (140 MVA). (For interpretation of the references
to color in the text, the reader is referred to the web version of this article.)
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the attention on the top view of the surface shown in Fig. 6b. Given a
compensation level μ > μmin = 0.473, the stability boundary, i.e.
where the Hopf bifurcation occurs and the SSCI arises, is given by a
closed curve or contour that restricts the operating region. For example,
for μ= 0.5, the feasible region is limited to power combinations near
the axes, and if the power in one of the WFs does not exceed approxi-
mately 0.75 p.u., the second WF can adopt any value provided that the
maximum power of the line is not exceeded. Notice that there exist
other stable points outside this contour, for example
Swf1 = Swf2 = 3 p.u., but the operation in this region is hazardous since
a reduction in the number of connected wind turbines on the WFs, can
drive the system to an unstable condition (inside the level curve). When
the compensation level decreases, the boundary curve shrinks until it

collapses at μ= μmin (near the point Swf1 = Swf2 ≃ 1.65 p.u.), and for
μ < μmin, a SSCI cannot occur for any combination of Swf1 and Swf2. On
the other hand, when the compensation level increases, the contour
grows, restricting the stable operating region, i.e. restricting the ad-
missible power combinations. For example, for μ= 0.6, the feasible
operating conditions are limited to small WF powers (lower left corner).
Operating points with one or both WFs near the maximum value
(5 p.u.), are also stable, but applies the same remark given previously
for μ = 0.5 (when Swf1 = Swf2 = 3 p.u.).

Notice that the boundary surface is convex, the contours arise at
KSW = 1 for μ = μmin, and are symmetric with respect to this power
ratio. In other words, for μ > μmin, the scenario is prone to exhibit a
SSCI when the powers at the WFs are similar, and a potential SSCI
problem can be overlooked when the imbalance between the in-service
power inWF1 andWF2 increases. Therefore, when the WFs are identical
and the lines have the same lengths, the power ratio KSW = 1 is a worst
case scenario and can be used to determine the risk of a SSCI. Thus,
given a compensation level, if the system is stable for all the power
combinations satisfying Swf1 = Swf2, the system cannot undergo a SSCI
for any other power ratio.

Although the particular scenario of identical WFs and lines could be
studied by means of an equivalent WF (aggregated model), the results
would coincide with the ones corresponding to KSW = 1, but hiding the
scenarios of WFs with different powers. As will be shown in the fol-
lowing, this kind of analysis is very useful to understand the behavior
related to SSCI when the WFs or their transmission lines are different.

Fig. 4. Simulation results with a single WF connected to the main corridor by means of four 132 kV lines (nl = 4). A small voltage sag is applied at the equivalent grid
bus at t= 0.1 s. Wind turbines are disconnected at t = 1.5 s and t = 3 s. (a) μ= 0.65; (b) μ= 0.4.

Fig. 5. Stability boundary (Hopf bifurcation curve) associated to SSCI as the
grid stiffness is varied (Swf = 2.5 p.u. and nl = 4).

Fig. 6. Stability boundary for two WFs with lines of equal lengths (l1 = l2 = 10 km). (a) 3-D boundary; (b) Level curves for μ fixed.
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5.1. Effect of the WFs wind speed

It is well known that the SSCI is prone to arise in low wind speed
conditions. Thus, an increment in the wind speed should improve the
stability boundary. This is revealed in Fig. 7, where the wind speed in
WF2 is increased to 8 m/s (the wind speed in WF1 remains at

=v 5.5w m/s and l1 = l2 = 10 km). By comparing this scenario with the
one in Fig. 6, the overall situation improves, resulting in μmin = 0.565.
Since the improvement in the wind condition was introduced in WF2,
the worst case power ratio is skewed towards WF1 as shown in Fig. 7b.
Now, the contours arise at Swf1 ≃ 2.25 p.u. and Swf2 ≃ 0.95 p.u., i.e. for
Ksw = Swf2/Swf1 = 0.42. Moreover, the convexity of the stability
boundary is preserved.

5.2. Effect of the WFs transmission lines

When both lines are shortened (maintaining the same lengths), the
stability boundary surface is displaced towards lower compensation
levels, preserving the symmetry with respect to KSW = 1. The minimum
compensation level μmin decreases and the contours grow. On the con-
trary, when longer lines are considered, the surface is displaced towards
higher compensation levels and the boundary contours shrink.

When the WFs transmission lines have different lengths, the sym-
metry with respect to KSW = 1 is destroyed, as displayed in Fig. 8a for

l1 = 5 km and l2 = 15 km. Comparing this surface with Fig. 6a (ob-
tained for l1 = l2 = 10 km), shows that the reduction of l1 pulls-down
the edge Swf2 = 0, deteriorating the scenarios in which the power is
concentrated atWF1. On the other hand, the increment in l2 pulls-up the
border Swf1 = 0, improving the cases with a power concentration in
WF2. This is noticed in Fig. 8b, where the level curves are skewed to-
wards the horizontal axis (Swf2 = 0). In this case, μmin = 0.453 and the
level curves are enlarged with respect to the base case l1 = l2 = 10 km.
For example, for μ = 0.5, the level curve reduces the admissible powers
in WF1 to small values, and if Swf1 < 1 no restrictions apply to the
admissible power inWF2. Greater values of Swf1 could be admitted if the
power in WF2 is restricted severely. Notice that for Swf2 > 2.75 p.u.
approximately, no restriction apply to Swf1, but a contingency origi-
nating the trip of wind turbines in WF2 with Swf1 > 1, will drive the
system to the unstable operating region, i.e. inside the corresponding
stability boundary (Fig. 8b). To illustrate this situation, suppose a stable
scenario with Swf1 = 2 p.u., Swf2 = 3 p.u. and μ = 0.5. The trip of wind
turbines in WF1 does not jeopardize the stability, but the trip of a
quarter of the turbines in WF2, reduces the power to Swf2 = 2.25 p.u.,
resulting an operating point inside the contour and triggering a SSCI.

It is worth mentioning that the convexity of the stability boundary
surface is preserved and μmin = 0.453 is achieved at Swf1 ≃ 2.44 p.u.
and Swf2 ≃ 1 p.u., i.e. a slice with KSW ≃ 0.41. Therefore, in this case, the
power ratio KSW ≃ 0.41 can be selected as the worst case scenario and

Fig. 7. Effect of the wind speed on the stability boundary ( =v 5w m/s at WF1 and =v 8w m/s at WF2) for l1 = l2 = 10 km. (a) 3-D boundary; (b) Level curves for μ
fixed.

Fig. 8. Stability boundary for two WFs with lines of different lengths (l1 = 5 km and l2 = 15 km). (a) 3-D boundary; (b) Level curves for fixed μ.
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can be used to determine the risk of SSCI. In general, a reduction of the
line impedance of one of the WFs or the increment in the other, tilts the
worst case power ratio to the WF where the impedance is lowered, or
opposite to the one where the impedance is increased.

5.3. Effect of the WFs collector impedances

A variation in the internal configuration of the WF can be re-
presented as a variation of the equivalent collector impedance Zwf. The
effect on the stability boundary is similar to the one illustrated in Fig. 8
with variations in the impedance of the line, i.e. increasing (decreasing)
collector impedance of one WF improves (deteriorates) the stability
region in all the cases.

5.4. Effect of the WFs controller gains (RSC inner loop)

The effect of the WFs controllers on the SSCI is carried out assuming
WFs transmission lines of equal lengths (l1 = l2 = 10 km) and varying
the gain Kr2 of the internal PI loop of the RSC in WF2 (the controller is
implemented as PI(s) = Kr2[1 + (Tir2s)−1]). The results for

=K K0.6 *r r2 2 and =K K1.4 *r r2 2 ( =K * 0.025r2 is the nominal value used in
the base scenario of Fig. 6) are presented in Fig. 9a and b, respectively.
For brevity, the 3D stability boundaries are omitted, and only the 2D
top views are shown.

Since the modifications are introduced only in WF2, the edge of the
boundary stability surface corresponding to Swf2 = 0 does not change,
but the one corresponding to Swf1 = 0, is pulled-up when Kr is dimin-
ished and pulled-down when it is increased. Roughly speaking, the net
effect on the stability boundary is similar to a variation of the length of
the WF2 transmission line. Therefore, the stability margin is improved
when the gain is decreased, as is indicated by Fig. 9a (c.f. Fig. 6b). The
minimum compensation value is μmin = 0.545 for Swf1 ≃ 2.11 p.u. and
Swf2 ≃ 1.20 p.u. Thus, the level curve for μ= 0.5 does not appear, and
the one for μ= 0.6 is notably reduced. Since the improvement is in-
troduced in WF2, the level curves and the worst case scenarios are tilted
towards the Swf1 axis (KSW ≃ 0.57), as expected. On the other hand,
when the gain is increased, the stability margin is degraded with re-
spect to the nominal case, as is clearly seen by comparing Fig. 9b with
Fig. 6b. In this case μmin = 0.403, and the operating region is restricted
severely for μ > 0.5. In addition, the worst case scenario arises at
Swf1 ≃ 2 p.u. and Swf2 ≃ 1.24 p.u., i.e. KSW ≃ 1.62.

These results, agree with the ones considering a single WF (see, for
example, [18]) in the sense that a reduction (increment) of the band-
width improves (degrades) the stability margin. Furthermore, the
modification of the gain introduced in one WF affects the stability

boundary of the entire system.

6. Case study

In order to describe the relevant features of the stability boundary
on a practical power system, a case study derived from a future scenario
analyzed by the Argentinean TSO is considered. The system is shown in
Fig. 10 and consists in three large scale DFIG-based WFs connected to
the POI (node 10) by means of transmission lines of different lengths
and voltage levels. The WFs PM (Puerto Madryn), LB (Loma Blanca)
and LD (La Deseada) are represented by the corresponding aggregated
model, with different mechanical and electrical parameters (extracted
from [23,5,18], respectively, and included in Table A.3).

The wind power is exported to the bulk system using a 500 kV radial
corridor (354 km from node 10 to 1008). The impedance of this cor-
ridor (ZL) and the equivalent short-circuit impedance (ZSC) and power
(SSC) at node 1008 are listed in Table 1. The parameters of the trans-
mission lines and transformers connecting the WFs to the POI (node 10)
as well as the WFs modules, obtained from the TSO guide, are included
in Table 2. The impedance of the line (Zl) connecting the WF PM (node
245) to the POI comprises three 132 kV parallel lines (each one with the
parameters of Table 2) and the 132/500 kV transformer. Analogously,
the WF LB (node 275) includes two 132 kV lines and the corresponding
transformer, and LD is connected directly to the 500 kV system, by
means of a radial corridor joining the buses 53, 12 and 10. Although LD
is 567.3 km away from the POI, the electrical distance is similar to the
line of PM (three parallel 132 kV lines of 15 km). On the other hand, LB
is 42.6 km away from the POI, but the electrical distance is much longer
than the ones of PM and LD.

The stability boundary associated to the SSCI phenomenon as a
function of the WFs powers and the compensation level is four di-
mensional. Slices of this hypersurface in the plane SwfLD and SwfPM, and
the compensation level μ, for three different values of SwfLB are shown in
Fig. 11. The convexity of the stability boundary becomes evident when
comparing these diagrams. For SwfLB = 0 (Fig. 11a), the risk of a SSCI
arises when μ > 0.482, restricting the stable operating region as de-
picted by the level curves for μ= 0.5, …, 0.8. Increasing SwfLB, the level
curves grow and the SSCI can arise for lower values of μ. The largest size
of the level curves and the minimum value of the compensation level
μ = μmin = 0.457 is obtained for SwfLB ≃ 0.5 p.u. (Fig. 11b). For
SwfLB > 0.5 p.u., the level curves shrink and the SSCI is triggered for
larger values of μ, as shown in Fig. 11c for SwfLB = 1.5 p.u.

The convexity of the stability boundary ensures that for μ < μmin,
the system is stable, i.e. a SSCI cannot arise, for any combination of WFs
powers. In addition, for μ = μmin the critical operating point occurs for

Fig. 9. Effect of the gain Kr2 (WF2) on the stability boundary for l1 = l2 = 10 km. (a) =K K0.6 *r r2 2; (b) =K K1.4 *r r2 2.
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SwfLD = 2 p.u., SwfPM = 2.3 p.u. and SwfLB = 0.5 p.u. Therefore, de-
fining the power ratios KSW1 = SwfPM/SwfLD and KSW2 = SwfLB/SwfLD, the
worst case scenario results in the direction defined by KSW1 = 1.15 and
KSW2 = 0.25. In other words, the system is prone to develop a SSCI
when the power combinations between WFs are closer to these ratios.
Thus, it can be used to evaluate the risk of undergoing a SSCI, i.e. if the
system is stable for this worst case scenario it is stable for any other
power combinations.

6.1. Numerical simulations

The dynamical behavior associated to the slices SwfLB = 0, 0.5 and
1.5 p.u. of the stability boundary depicted in Fig. 11, is illustrated by
means of numerical simulations, performing a small perturbation in the
voltage at node 1008 (bulk system bus) for μ = 0.5. Three operating
conditions with SwfPM = 1 p.u. and SwfLD = 0, 2.5 and 5 p.u., denoted
by square markers in the diagrams of Fig. 11, are considered.

The results for the slice SwfLB = 0 are shown in Fig. 12a, where the
active power injected at node 10 (PMY), for the three operating con-
ditions, is depicted. The operating points are stable, as predicted by the
stability boundary diagram (Fig. 11a), and the one corresponding to
SwfLD = 2.5 p.u. presents a poor damping since it is close to the level
curve (see the red marker in Fig. 11a and the red signal in Fig. 12a). The
results for SwfLB = 0.5 are depicted in Fig. 12b. The stability margin is
degraded in the three cases, and the system is unstable for
SwfLD = 2.5 p.u. (condition inside the level curve for μ= 0.5 in
Fig. 11b). Finally, increasing SwfLB to 1.5 p.u., improves the stability
margin and the system is stable for the three operating points (Fig. 11c).

The effect of wind turbines tripping at different WFs is illustrated by
performing an additional test for μ= 0.5. The test is initialized at a
stable operating point with: SwfLD = 4 p.u. (and a wind speed =v 8w m/
s), SwfPM = 2 p.u. ( =v 5.5w m/s) and SwfLB = 0.5 p.u. ( =v 5.5w m/s). As
shown in Fig. 13a, a reduction of the wind speed at LD from 8.8 m/s to
5.5 m/s (at t = 1 s) drives the system to an unstable condition (denoted
by the black triangle inside the level curve for μ= 0.5 in Fig. 11b). The
SSCI triggers an oscillation of increasing amplitude that grows until

Fig. 10. Schematic diagram of a portion of the Argentinean power system with multiple WFs used to study the SSCI on a practical scenario.

Table 2
Network parameters of the Argentinean case study (Fig. 10).

Transmission lines from each WFs to the POI (node 10)

WF Line R L B XT

PM 10-245 0.00835 0.03220 0.0076 0.05183
LB 10-275 0.02291 0.09327 0.0235 0.07174
LD 10-12 0.00401 0.05098 6.6527 –

12-53 0.00014 0.00146 0.1754 –

WF internal network

Module Node R L XTwf XTS

PM 245 0.00520 0.00560 0.1739 0.2
LB 275 0.00861 0.01949 0.1739 0.2
LD 53 0.01063 0.01124 0.0722 0.084

Fig. 11. Level curves in terms of μ on slices of the four-dimensional stability boundary in the plane SwfLD-SwfPM for three different values of SwfLB. (For interpretation
of the references to color in the text, the reader is referred to the web version of this article.)
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t = 60 s, where the turbines in service at LB (50 MVA) are dis-
connected. The new condition, with SwfLB = 0, is stable (gray triangle in
Fig. 11a), and the oscillation is damped. Nevertheless, at t= 70 s, a
disconnection of wind turbines (100 MVA) at LD reengages the SSCI
since the operating point with SwfLD = 3 p.u. is unstable (red triangle in
Fig. 11a).

The same test is repeated in Fig. 13b, but modifying the wind tur-
bines that are disconnected at t = 70 s. In this case, the tripping of wind
turbines (100 MVA) occurs at the WF PM instead of LD. The resulting
operating condition (with SwfPM = 1 p.u.) is stable (blue triangle in
Fig. 11a) and the SSCI is not reengaged. This test reveals that the sta-
bility depends not only on the operating condition and the involved
WFs, but also on the tripping sequence of wind turbines.

It is worth to mention that comparing the power ratio
KSW1 = SwfPM/SwfLD for the three operating conditions with SwfLB = 0
(denoted by the triangles in the stability boundary slice of Fig. 11a), the
one corresponding to the red triangle gives KSW1 = 0.67 which is closer
to the worst ratio KSW1 = 1.15 than the ones corresponding to the gray
triangle (KSW1 = 0.50) and the blue triangle (KSW1 = 0.25). This agrees
with the simulation results, where the worst behavior (unstable) ob-
tained for SwfLB = 0 corresponds to the condition given by the red tri-
angle (red portion of the simulation shown in Fig. 13a).

7. Conclusions

The analysis of a scenario with two generic WFs, revealed the main
features of the stability boundary associated to the SSCI phenomenon
and how it is affected by the series compensation level and the number
of wind turbines in operation. An important result of this study is that

the stability boundary hypersurface is convex, which is confirmed by
means of numerical analysis and simulation tests performed on a case
study with multiple WFs derived from a practical power system. The
distribution of the power between WFs plays a decisive role, since the
distance to the boundary varies, i.e. varying the stability margin and the
damping of the subsynchronous mode. The convexity is a generic
property of the stability boundary that is preserved when other key
parameters such as the transmission line and collector impedances, the
grid stiffness, the controllers gains or the wind speed are varied. In
particular, the stability boundary surface is pulled down at (or the level
curve for a given μ is displaced towards) the axis corresponding to the
WF where the conditions are degraded (the electric distance to the POI
is decreased, rotor control loop bandwidth is increased, or wind speed is
decreased). These features can be used as a guideline to understand the
behavior in systems with multiple WFs, and helps in understanding the
mechanisms behind SSCI incidents reported in practical systems. In
addition, the convexity of the stability boundary hypersurface, can be
used to reduce the dimension of the problem by defining a worst case
scenario (combinations of WFs powers) to evaluate the risk of a SSCI in
a given system. Moreover, the mathematical properties of the stability
boundary hypersurface (Hopf bifurcation condition) can be used to
develop an algorithm to find the minimum compensation level that can
trigger a SSCI incident.
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Fig. 12. Simulation of a small voltage sag at node 1008 for μ= 0.5, SwfPM = 1 p.u. and: (a) SwfLD = 0, (b) SwfLD = 2.5 p.u., (c) SwfLD = 5 p.u. PPMY represents the
active power at the POI (node 10). (For interpretation of the references to color in the text, the reader is referred to the web version of this article.)

Fig. 13. Simulation of an unstable case triggered by a reduction of the wind speed in LD, and a successive disconnection of collectors in: (a) LB and LD, (b) LB and PM.
(For interpretation of the references to color in the text, the reader is referred to the web version of this article.)

G. Revel, D.M. Alonso Electric Power Systems Research 165 (2018) 179–190

187



Appendix A. Description of the implemented models

In the following, the differential equations used for describing the dynamics of the WFs and transmission lines are included.

A.1 Wind farm aggregated model

The equivalent DFIG is represented in local d-q coordinates by the standard fourth-order model given by
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where = −σ L L L1 /( )m s r
2 , and the subindexes r and s correspond to rotor and stator quantities, respectively. The flux-current relationships are given

by

= +λ L i L i ,s msd sd rd (A.5)

= +λ L i L i ,s msq sq rq (A.6)

= +λ L i L i ,r mrd rd sd (A.7)

= +λ L i L i .r mrq rq sq (A.8)

The drive train of the equivalent turbine-generator is modeled by a two-mass system, with the following equations

= −
dγ

ω ω ω
dt

( ),B t r (A.9)

= − − −H dω T K γ D ω ω2
dt

( ),t
t

m t rtr tr (A.10)
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( ),r
r
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where subindexes t and r correspond to turbine and generator quantities, respectively, Tm is the mechanical torque computed according to [24], and

Fig. A.14. Vector control of the DFIG. PI controllers are implemented with the structure PI(s) = K[1 + (Tis)−1]. (a) Rotor Side Converter (RSC). (b) Grid Side
Converter (GSC).
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Te = λsdisq − λsqisd is the electrical torque.
The rotor voltages vrd and vrq are computed as denoted in the block diagram of the rotor side converter (RSC) control strategy in Fig. A.14a.
The parameters of the WFs aggregated models used in this paper are given in Table A.3.

A.2 Wind turbine control scheme

The RSC control has two internal proportional-integral (PI) loops for the rotor currents, and two external PI loops for the active and reactive
power injected to the grid, respectively (see Fig. A.14a). The maximum power point tracking (MPPT) algorithm indicated is obtained from [24],
where vw is the wind speed. In addition, vt is the magnitude of the DFIG terminal voltage.

The grid side converter (GSC) control implements two internal PI loops to set the currents, and a external PI loops to regulate the dc-link voltage
(vdc). The dynamics of the dc-link is represented by the first-order equation resulting from the power balance on the capacitor.

The nominal values of the controller parameters are given in Table A.4.

A.3 Transmission line models

The transmission lines are represented by π models. A generic series compensated line connecting nodes i and k is shown in Fig. A.15. The
corresponding ordinary differential equations, expressed in the d–q synchronous frame with variables and parameters in p.u., are given by
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where Rik and Lik are the line resistance and inductance, respectively, and Cik is the series capacitive compensation. For non-compensated lines, the
equations reduce to
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Table A.3
System parameter values.

DFIG (machine data) LB PM LD

Rated power SN 2 MVA 2 MVA 2 MVA
Stator voltage vs 690 V 690 V 690 V
Number of poles Np 4 6 4
Stator resistance Rs 0.00488 pu 0.00706 pu 0.0108 pu
Stator inductance Ls 3.8451 pu 3.6710 pu 3.4640 pu
Rotor resistance Rr 0.00549 pu 0.00500 pu 0.0121 pu
Rotor inductance Lr 3.85234 pu 3.65600 pu 3.4720 pu
Mutual inductance Lm 3.7528 pu 3.5000 pu 3.362 pu
Tubine inertia Ht 4.29 s 4.00 s 4.29 s
Rotor inertia Hr 0.9 s 0.5 s 0.9 s
Damping turbine-rotor Dtr 1.5 pu 1.5 pu 1.5 pu
Stiffness turbine-rotor Ktr 0.15 pu/rad 0.15 pu/rad 0.15 pu/rad

Table A.4
Vector control parameters.

DFIG RSC Control (see Fig. Fig. A.14A.14a)
Voltage droop constant kv 0.05
Terminal voltage PI Kvt / Tivt 13.5 / 3.6
External loops PI Ke / Tie 0.5 / 0.075
Internal loops PI Kr / Tir 0.025 / 0.0675

DFIG GSC Control (see Fig. Fig. A.14A.14b)
GSC inductance Lg 0.33 pu
dc-link capacitor Cdc 10 mF
dc-link nominal voltage vdc 1200 V
dc-link PI controller Kvdc / Tivdc 0.35/0.2
GSC PI controllers Kg / Tig 1/0.01
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The voltage of node i is given by
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where Bi is the charging susceptance, and iBi is the algebraic sum of the currents at node i.
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