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A B S T R A C T

This paper presents a reduced-order model of the modular multilevel converter (MMC) for electromechanical
transient simulations and small-signal analysis. The MMC model is firstly developed in detail; then, simplifi-
cations are introduced to reduce it to eleventh- and fourth-order models. The dynamic behaviors of the tradi-
tional voltage-source converter and the MMC are also compared. A thorough description of the MMC control
system is presented including the inner current control loops, the outer voltage control loops, and the strategy to
balance the floating capacitor voltages. Control systems in continuous- and discrete-time domains are given to
enable their use in power system simulations and in practical implementations, respectively. Several tests are
performed to compare the steady-state and transient response of the detailed and the reduced models. The
results show that the fourth-order reduced model can properly capture the input-output dynamics of a complete
MMC and significantly reduce the computational cost of large-scale power system simulations with multiple ac/
dc converter stations.

1. Introduction

The first ac/dc converter stations based on voltage-source con-
verters (VSCs) could not reach the high-power and high-voltage levels
of the conventional line-commutated converters. VSC stations able to
manage thousands of megawatts and to transmit at the highest voltage
levels have recently become possible with the development of the
modular multilevel converter (MMC) [1]. Many applications, such as
multi-terminal dc systems, integration of offshore wind farms, and in-
terconnection of asynchronous ac systems, are driven by these power
converter developments [2–4]. To assess the impact of these installa-
tions on the system by means of small-signal and transient stability
analyses, the converter stations are often represented by the traditional
two- or three-level VSC [5–8], although multilevel converters such as
the MMC are more appropriate for these power and voltage ranges. The
characteristics of converter stations based on the MMC are not accu-
rately described by the traditional VSC model. Both converter models
have a similar representation on the ac side but a different one on the dc
side, where the traditional VSC behaves like a voltage source and the
MMC behaves like a current source [9].

Detailed models of the MMC with explicit representation of all
submodule capacitors are not suitable for the stability analysis of large-

scale power systems due to their high computational cost and the re-
quired small simulation time steps [2]. On the other hand, another issue
should be considered in detailed models. Unlike to what happens in the
traditional VSC, the alternating arm currents of the MMC cause ripples
in the submodule capacitor voltages during normal steady-state op-
eration [10]. The modeling of these ripples can be a drawback in power
system stability analyses that require a constant equilibrium point to
compute eigenvalues and small-signal properties [11]. To simplify the
MMC representation, averaged or continuous models have been pro-
posed in [12–15] but, as the arm capacitor voltage ripple is still mod-
eled, these models do not have a constant equilibrium point; therefore,
they cannot be used to perform small-signal (modal) analysis. To solve
this issue, in [16–19], different rotating reference frames are defined
and, after neglecting some terms, the oscillating variables are trans-
formed to constant values. As in the averaged models, these approaches
represent the individual arm voltages that require the inclusion of the
circulating current control and the inter-arm voltage balancing algo-
rithm in their control systems.

On the other hand, reduced models are usually considered in large-
scale power systems where electromechanical transients are studied
and the MMC is analyzed from an input-output point of view [20].
These models reduce the amount of state variables by assuming that the
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balancing of the submodule capacitor voltages is internally performed
by the converter control system. In [21–26], reduced models have been
proposed, but they do not model the MMC inductive behavior on the dc
side, which was solved in [27–31] by adding a dc-side inductance.
However, in these papers, the MMC representation is derived from a
power balance equation, resulting in an RLC circuit that does not show
the effect of the zero-sequence modulation index on the dc side. As
shown in [32], the dc-side dynamics depends on the zero-sequence
modulation index, and this has an impact on the accuracy of the tran-
sient response. This distinctive characteristic of the MMC also allows to
independently control the total converter energy and the dc-bus vol-
tage.

The contributions of this work can be summarized as follows: (1) the
modeling and control of the MMC are described in detail –a step-by-step
derivation is provided; (2) a reduced-order model of the MMC suitable
for transient and small-signal stability studies is developed –this model
allows to design the outer control loops in networks with multiple
MMCs, as well as to speed up large-scale power system simulations; and
(3) a comparison between the traditional VSC and the MMC is also
performed to show their distinctive dc-side dynamics.

The paper is organized as follows. In Sections 2 and 3, a compre-
hensive model of the current and voltage dynamics is obtained directly
from the MMC electrical circuit. The current control loops and the ca-
pacitor voltage balancing are described in Sections 4 and 5, respec-
tively. The reduced MMC model is introduced in Section 6, where a
comparison with the traditional VSC is also discussed. The inner and
outer control loops of the reduced model are presented in Section 7.
Section 8 evaluates the performance of the proposed control systems
and compares the detailed and reduced models using the 401-level
MMC of the France-Spain electrical interconnection (INELFE) project
[33]. Finally, conclusions are drawn in Section 9.

2. MMC currents

2.1. Basic equations of the MMC electrical circuit

Applying the Kirchhoff's voltage law to the loops connecting the
points M–p–z–M and M–n–z–M of the circuit shown in Fig. 1(b), the
following equations are obtained, respectively

− + + =v v R i L i v
2

˙p
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where M is the fictitious dc-side midpoint, p and n are the positive and

negative nodes, and the point z = {a, b, c} is the midpoint of a generic
converter phase-leg. The rest of the variables and parameters are de-
fined in Fig. 1(b). Adding and subtracting (1) and (2) result in
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Applying the Kirchhoff's voltage law to the loop N–z–N yields
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where N is the ac-side neutral point. On the other hand, applying the
Kirchhoff's current law to the positive and negative nodes of the MMC
gives

∑= + + =
=

i i i i ip
a

p
b

p
c

w a b c
p
w

dc
, , (6)

∑= + + =
=

i i i i in
a

n
b

n
c

w a b c
n
w

dc
, , (7)

whereas applying the Kirchhoff's current law to the midpoint of a
phase-leg gives

= −i i i .g
z

p
z

n
z

(8)

Unlike the traditional VSC, due to unequal voltages among the legs,
the MMC has a current that can circulate within the three phases, in the
following referred to as circulating current. This circulating current is
independent of the ac and dc currents, and it is not seen in the output
terminals of the converter. The arm currents can be written as a func-
tion of the above three currents as follows [34]
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3 2n
z g

z
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where it has been assumed that the dc current is equally divided among
the three legs of the converter and that the ac current is equally divided
between the two arms of a leg. This assumption is reasonable because,
under normal operating conditions, the impedance of each arm is si-
milar [35]. In (9) and (10), the circulating current is the same for both
arms of a leg because, by definition, this current flows inside the con-
verter, and it also verifies

+ + =i i i 0.a b c
cir cir cir (11)

Fig. 1. Topology of the MMC. (a) Detail of the converter arm. (b) Equivalent electrical circuit.
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2.2. DC current dynamics

To calculate the dynamics of the dc current, the following procedure
is performed. First, the equation below is obtained by adding (6) and
(7)
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dc
, , (12)

Differentiating with respect to time (12) and using (1) and (2) give
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Then, distributing the summation of (13) and after some mathematical
arrangements, the dynamic equation of the dc current results in
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2.3. AC current dynamics

The voltage between the points M and N can be written as follows

= −v v v .MN zN zM (15)

Using (15), the voltage vzN is eliminated from (5),
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Additionally, replacing (8) in (3) results in
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Then, substituting the voltage vzM from (16) into (17), the dynamics of
the ac currents is obtained as follows
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On the other hand, the voltage vMN can be written as a function of
the ac-side voltages and the arm voltages as described below. First,
applying the Kirchhoff's voltage law to the loop N–z–p–M–N gives
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Then, adding (19) for the three phases z = {a, b, c} and rearranging, we
obtain
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where (6) has been used. Because the star-delta transformer blocks the
zero-sequence current [36], it has also been considered ∑ == i 0w a b c g

w
, , .

Finally, substituting (14) into (20), after some mathematical manip-
ulations, yields
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The last expression will be used in following subsections.

2.4. Circulating current dynamics

The addition of (9) and (10) gives
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Then, from (4) and considering (22), we obtain
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The term i̇dc can be eliminated from (23) by using (14); therefore, the
dynamics of the circulating currents results in
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2.5. Vector form of the current dynamics

Vector notation and oαβ coordinates are considered in the following
paragraphs to simplify the model representation. Expanding the sum-
mation term of (14), the dc current dynamics can be written as
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Expanding the summation terms of (26), the ac current dynamics can be
written in vector form as follows
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Proceeding as in (27), the circulating current dynamics (24) can also be
written in vector form as follows
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Then, the complete MMC current dynamics is obtained by combining
(25), (27), and (29)

= − − +L i R i v p v2
3

˙ 2
3

2s s
T

dc dc dc sum
abc

(30)

= − + −L Ri̇ i Q v v( )t g t g g
abc abc abc

dif
abc

(31)

= − +L Ri̇ i Qvs scir
abc

cir
abc

sum
abc (32)

where

= +v v v1
2

( )n psum
abc abc abc

(33)

= −v v v1
2

( ).n pdif
abc abc abc

(34)

The positive and negative arm voltages can be recovered from the
above auxiliary sum and difference voltages as follows
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The system (30)–(32) in the abc stationary reference frame can be
transformed to the oαβ stationary reference frame by using the Clarke
transformation (xoαβ = Fxabc)
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Applying the transformation (37) (i.e., = −v F voαβ
sum
abc 1

sum) to (30) results
in
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In the same way, the transformation (37) can be applied to the ac
current dynamics and the circulating current dynamics (31) and (32)
obtaining
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3. Submodule capacitor voltages

The voltage dynamics of the submodule capacitors [see Fig. 1(a)] is
given by
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where sj stands for the state (ON or OFF) of the jth submodule (i.e.,
sj = 1 or sj = 0, respectively), the subscript j = {1, …, N} represents
the submodule index, and N is the number of submodules in each arm of
the MMC. In this work, we assume equal parameters in each sub-
module, but individual resistances and capacitances can be considered
by defining different values of RSMj and CSMj in (43) and (44). The
equations (43) and (44) can be written in vector form as follows
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where
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and the arm currents ip
z and in

z have been replaced by their expressions
(9) and (10), respectively.

The output voltage of each submodule is given by
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where Ron is the conduction (or on-state) resistance of the submodule
switches. From (51) and (52), the total arm voltages are calculated as

follows
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On the other hand, the sum of all submodule capacitor voltages in
each arm is denoted by
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where the superbar stands for an average value. If it is considered that
the intra-arm voltage balancing achieves an even distribution of the
submodule capacitor voltages in each arm, these voltages can be ap-
proximated by their average value, that is, ≅v v z

Cp
SMjz

Cp
SM and

≅v v z
Cn
SMjz

Cn
SM . Therefore, the arm voltages (53) and (54) can be written

as a function of the sum of all submodule capacitor voltages in each arm
as follows
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where mn
z and mp

z are the modulation (or insertion) indices defined as
the ratio between the number of inserted submodules and the total
number of submodules in the arm [13]
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4. MMC current control

Considering the decoupled current model (39)–(41), the currents idc,
ig, and icir can be independently controlled by using the voltages vo

sum,
vdif, and vsum, respectively, which greatly facilitates the converter
control. In the following, balanced ac grid conditions are considered,
but the extension to unbalanced conditions can be found in [37,38].
This assumption is justified because we are studying an MMC model for
eigenvalue analysis and electromechanical transient simulations (i.e., a
positive-sequence model).

4.1. AC current control

The ac current dynamics (40) is analogous to the one of the tradi-
tional VSC. Therefore, conventional control strategies based on vector
control in a synchronous reference frame can be used to control the ac
current. A detailed description of this control is given in Appendix A.

4.2. Circulating current control

The circulating current icir is controlled via the voltage vsum. This
control is implemented in the αβ stationary reference frame, as de-
scribed in the following steps.

4.2.1. Discrete state-space representation of the circulating current
dynamics

From the definition of the circulating current given in Section 2.1
and considering (11), the zero-sequence component of this current is
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null; therefore, the circulating current dynamics (41) is simplified to
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cir cir sum (61)

where = i ii [ ]αβ α β T
cir cir cir and = v vv [ ]αβ α β T

sum sum sum , with (61) written in per-
unit values on the converter base, and ΩB being the system angular
frequency (in this work, ΩB = 2π× 50 rad/s). The above system can
be expressed in a state-space representation as follows

= +i̇ A i B vαβ
s

αβ
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s
, and I is the 2 × 2 identity matrix.

The continuous-time domain system (62) is discretized using the zero-
order hold (ZOH) method and represented in the discrete-time domain
resulting in
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The matrices of the discrete system are calculated as Gs = eAsTs and
∫= e dτH Bs

T τ
s

A
0

s s , with Ts being the control sampling time [39].

4.2.2. Computational delay compensation
The computational time delay can be considered in the control de-

sign by defining an auxiliary control input nαβ
sum as follows

=+v n .k
αβ αβ
sum( 1) sumk (64)

The variable nαβ
sum is one-sample time behind the control signal vαβ

sum and
emphasizes the delay between the measurement process and the control
signal update. In this way, the controller considers the computational
delay, improving the tracking performance and avoiding stability pro-
blems.

4.2.3. Control specifications
As it will be explained in Section 5, the circulating current controller

has to be able to: (i) control dc components, (ii) control fundamental-
frequency positive- and negative-sequence components, and (iii) nullify
undesired double-line-frequency (2ω) ripples. These requirements can
be met as follows: first, a proportional-integral (PI) control is im-
plemented to track the constant (or dc) components; second, a resonant
control (with resonant frequency at ω) is added to guarantee a zero
steady-state error in the tracking of fundamental-frequency references;
third, a resonant control (with resonant frequency at 2ω) is included to
nullify the double-line-frequency ripples. Additional resonant blocks
can also be added to nullify higher frequency ripples in the circulating
current. A procedure to extend the system model with these control
elements is given below.

This approach of using proportional-integral-resonant (PIR) controls
in the αβ stationary reference frame allows to control both positive- and
negative-sequence components of the circulating currents without
steady-state error and only requires a frequency-locked loop to adjust
the resonance frequency [40].

4.2.4. Extended model for the control design
The integral action of a PI controller =Q s E s( ) ( )s

1 can be im-
plemented in the discrete-time domain as qk+1 = qk + Tsek. In the case
of the circulating current control, two integrators are required (one for
the α-axis and another one for the β-axis), which can be written in
vector form as follows

= ++ Tq q ek s
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cir( 1) cirk cirk (65)

where = − ★e i iαβ αβ αβ
cirk cirk cirk is the tracking error, and the superscript ‘★’

indicates a reference value. On the other hand, in the continuous-time
domain, a resonant filter with resonant frequency at ωr is given by
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Two transfer functions of the form (66) (one for each α–β component)

can be discretized using the ZOH method and written in a state-space
representation as

= ++h A h B ek
ω ω

k
ω ω αβ

1 cirk
r r r r (67)

where R∈ ×hk
ω 4 1r is the state vector of the resonant filters. Then, by

combining the circulating current model (63), the computational delay
model (64), the PI control integrators (65), and the resonant filters with
resonant frequencies at ω and 2ω (67), the extended model is obtained
as follows

= + −+
★w A w B n B ic k

αβ r αβ
( 1) ce ck ce sumk ce cirk (68)

with state vector

=w i v q h h[ ]αβ αβ
k
ω

k
ω T

ck cirk sumk cirk
2 (69)

and matrices

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

TA

G H 0 0 0
0 0 0 0 0
I 0 I 0 0

B 0 0 A 0
B 0 0 0 A

s s

s
ω ω

ω ω

ce

2 2 (70)

=B 0 I 0 0 0[ ]T
ce (71)

= TB 0 0 I B B[ ] .r
s

ω ω T
ce 2 (72)

As it was previously stated, if additional resonant blocks need to be
considered, they can be added by extending the matrices (70)–(72) (see
[41]).

4.2.5. Control law
The control design is performed using a state-space approach, where

the extended states (69) are fed back with the control law

= −n Kw .αβ
sumk ck (73)

Substituting (73) into (68), the closed-loop system results in

= − −+
★w A B K w B i( ) .c k

r αβ
( 1) ce ce ck ce cirk (74)

Then, the gain matrix K is designed so that the closed-loop matrix
(Ace − BceK) has stable eigenvalues. To this end, linear techniques such as
eigenvalue assignment, H-infinity control, or the linear quadratic regulator
(LQR) method can be used. The last one is chosen in our work, where the
matrix K is calculated so that the state-feedback law (73) minimizes the
quadratic cost function =J ∑ +=

∞ w Qw n Rn{ ( ) }k
T αβ T αβ

0 ck ck sumk sumk . The
matrices Q and R are the weighting matrices of the states wc and the
control inputs nαβ

sum, respectively. The solution of this problem is found by
solving the associated algebraic Riccati equation (see [39,42] for further
details). In practice, the weighting matrices are usually diagonal. The re-
lative values of the diagonal elements of Q determine the relative im-
portance attached to certain states. For example, a large value in the di-
agonal element q{i,i} will penalize the transient deviation of the ith state
(i.e., a lower tracking error). Similarly, a large value in the diagonal of R
will penalize the action of the corresponding control input (i.e., a smaller
control effort). As a general guideline, the relative values of the design
matrices Q and R must be selected as a trade-off between the desired
tracking performance and the magnitude of the control inputs. If a parti-
cular control input is excessively saturated, it can be more heavily weighed
to reduce its magnitude. Since the pair (Ace, Bce) is controllable (i.e., its
controllability matrix has full rank), and by choosing Q and R positive
semi-definite and definite, respectively, the LQR method guarantees that
the closed-loop matrix will have stable eigenvalues [39].

4.3. DC current control

The dc current dynamics (39) is a first-order decoupled system that
can be regulated via vo

sum, using a PI controller with a feedforward term
to compensate the dc-bus voltage variations (see control system block
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diagrams in following sections).

4.4. Active and reactive power references

The ac current references are provided by outer control loops. The
reactive current (or power) reference can be set either to a desired value
(e.g., unity power factor condition) or to regulate the ac-bus voltage. On
the other hand, the active component reference can be set either to a
fixed value (P-Q operation mode) or to regulate the dc-bus voltage
(vdc-Q operation mode). Depending on the application, the dc-bus vol-
tage controller is implemented using specific schemes such as droop
control and voltage margin control, among others. A detailed descrip-
tion of these control schemes is given in [43].

As a general rule in cascade structures, the outer controls are de-
signed to have a bandwidth ten times slower than the inner current
controls. In this way, any adverse interaction between outer and inner
control loops is avoided.

4.5. Modulation technique

Once the modulation indices are calculated from the inner current
control loops, a modulation technique, such as nearest level control
(NLC), pulse-width modulation, or selective harmonic elimination, can
be used to obtain the drive signals of the submodule switches. The NLC,
which is a staircase-type modulation, is chosen in this work because it is
preferred for high-voltage and high-power applications (i.e., MMCs
with high number of submodules). Among its advantages are the low
switching losses, less computational effort, and simple implementation
[2]. A third-order harmonic is added to the modulation signal of the
difference voltage vdif (i.e., to the ac current control) to maximize the
use of the capacitor voltages [44].

5. Balancing of the arm energies

The MMC control system has to control both the converter currents
and the submodule capacitor voltages. The latter is performed in two
stages: in a first stage (called intra-arm balancing) the capacitor vol-
tages inside each arm are equally distributed using the sorting (or
module selection) method (see [44]); in a second stage, outer control
loops balance the arm energies (inter-arm balancing) and regulate the
total energy stored in the converter capacitors [36]. The inter-arm
balancing can be divided into the horizontal balancing, which equalizes
the energy of the three legs (inter-leg balancing), and the vertical bal-
ancing, which equalizes the energy between the positive and negative
arms of each leg (intra-leg balancing). These outer control loops bal-
ance the arm energies acting on the inner current control loops, as it
will be described below.

5.1. Voltage and current components

Under normal operating conditions, the voltage and current phasors
on the ac side have only positive-sequence components, and they are
represented by → = +v V eg g

j ωt θabc ( )g , → = +v V e j ωt θ
dif
abc

dif
( )dif , and

→
= +i I eg g

j ωt φ
abc

( )g , where Vg, Vdif, and Ig are the magnitudes of the ac
voltage, the difference voltage, and the ac current, respectively,
whereas the angles θg, θdif, and φg are their respective phases. The a-
phase of these signals is expressed as: = +v V ωt θsin( )g

a
g g ,

= +v V ωt θsin( )a
dif dif dif , and = +i I ωt φsin( )g

a
g g . On the other hand, the

sum voltage has only a dc component (i.e., =v vz
sum sum

dc ) [14], and the
circulating current is nullified by its controller to reduce the converter
steady-state losses. However, the circulating current can be transiently
managed to perform the inter-arm balancing [35]. With this aim, both
the dc components and the fundamental-frequency positive- and ne-
gative-sequence components of the circulating current have to be
controlled. The a-phase of this current is expressed as

= + + − + ++ + − −i I ωt φ I ωt φ isin( ) sin( )a a
cir cir cir cir cir cir

dc

where +Icir and −Icir are the magnitudes of the positive- and negative-se-
quence components, +φcir and −φcir are their phases, and i a

cir
dc is the dc

component.
The use of the circulating current to balance the arm energies is

advantageous because this current is independent (or decoupled) from
the ac and dc output currents; therefore, the energy balancing is in-
ternally performed by the converter controller and, from an input-
output point of view, it does not disturb the terminal behavior of the
MMC [36]. This fact will be considered in the reduced MMC model in
Section 6.

5.2. Mean-value dynamics of the arm energies

The time derivative of the arm energies is given by

=e p˙pz p
z

(75)

=e p˙nz n
z (76)

where pp
z and pn

z are the positive and negative arm powers; neglecting
the arm losses, they can be calculated as follows

⎜ ⎟= = − ⎛
⎝

+ + ⎞
⎠

p v i v v i i
i( )

3 2p
z

p
z

p
z z z g

z
z

sum dif
dc

cir
(77)

⎜ ⎟= = + ⎛
⎝

− + ⎞
⎠

p v i v v i i
i( )

3 2n
z

n
z

n
z z z g

z
z

sum dif
dc

cir
(78)

where (9), (10) and (35), (36) have been used. To simplify the analysis
of the horizontal and vertical balancing, the sum and difference en-
ergies = +e e ez

n
z

p
z

sum and = −e e ez
n
z

p
z

dif are defined. Therefore, adding
and subtracting (75) and (76), and considering (77) and (78), result in

= − +e v i v i v i˙ 2
3

2z z z
g
z z z

sum sum dc dif sum cir (79)

= − +e v i v i v i˙ 2
3

2 .z z z
g
z z z

dif dif dc sum dif cir (80)

The dynamics of the sum and difference energies (79) and (80) can be
written in vector form and in the abc reference frame, as follows

= − ∘ + ∘iė v v i v i2
3

2gsum
abc

sum
abc

dc dif
abc abc

sum
abc

cir
abc

(81)

= − ∘ + ∘iė v v i v i2
3

2gdif
abc

dif
abc

dc sum
abc abc

dif
abc

cir
abc

(82)

where ∘ stands for the element-by-element multiplication. Transforming
(81) to the oαβ reference frame and considering the voltage and current
components described in the previous subsection, the components of
the vector ėoαβ

sum give

= − −e v i V I φ θ˙ 2 2
3

1
2

cos( )o
g gsum sum

dc
dc dif dif (83)

= + + +

− + + +

+ +

− −

e v i v I φ ωt

v I φ ωt V I φ θ ωt

˙ 2 2 sin( )

2 sin( ) cos( 2 )

α α

g g

sum sum
dc

cir
dc

sum
dc

cir cir

sum
dc

cir cir
1
2 dif dif (84)

= + + +

− + + +

+ +

− −

e v i v I φ ωt

v I φ ωt V I φ θ ωt

˙ 2 2 cos( )

2 cos( ) sin( 2 ).

β β

g g

sum sum
dc

cir
dc

sum
dc

cir cir

sum
dc

cir cir
1
2 dif dif (85)

In (83)–(85), there are oscillating terms with sinusoidal shape (i.e.,
alternating powers with zero mean value) that introduce ripples in the
arm energies, and other constant terms (i.e., non-alternating powers
with non-zero mean value) that can be used to control the energy mean
value. Because the inter-arm balancing is focused on regulating the
mean value of the arm energies, only the non-alternating power terms
need to be considered; therefore, (83)–(85) are reduced to
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= −
−

e v i
V I φ θ

˙ 2 2
3

cos( )

2
o g g
sum sum

dc
dc

dif dif

(86)

=e v i˙ 2α α
sum sum

dc
cir

dc (87)

=e v i˙ 2 .β β
sum sum

dc
cir

dc (88)

Proceeding in a similar way, (82) is transformed to the oαβ reference
frame, and the mean-value dynamics of the difference energies is de-
scribed by

= −+ +e V I φ θ˙ 2 cos( )o
dif dif cir cir dif (89)

= − +− −e V I φ θ˙ cos( )α
dif dif cir cir dif (90)

= − +− −e V I φ θ˙ sin( ).β
dif dif cir cir dif (91)

The different energy components can be controlled by using certain
converter currents as shown in (86)–(88) and (89)–(91). To obtain the
references of these currents in the oαβ reference frame, the above
equations are converted from Polar to Cartesian coordinates.

In a generic phasor → = +x Xe j ωt ϕ( ), the magnitude X and the phase ϕ
are related to the α–β components as follows

→ = + + + = +x X ωt ϕ j ωt ϕ x jxcos( ) X sin( ) .β α (92)

For example, in the case of the ac current, it is verified
= +i I ωt φsin( )g

α
g g and = +i I ωt φcos( )g

β
g g , whereas the positive- and

negative-sequence components of the circulating current are given by
= ± +± ± ±i I ωt φsin( )α

cir cir cir and = ± +± ± ±i I ωt φcos( )β
cir cir cir . Then,

(86)–(88) and (89)–(91) are converted to Cartesian coordinates using
(92), which results in

= −
+

=e v i
v i v i

u˙ 2 2
3 2

o
α

g
α β

g
β

o
sum sum

dc
dc

dif dif Δ
sum (93)

= =e v i u˙ 2α α α
sum sum

dc
cir

dc Δ
sum (94)

= =e v i u˙ 2β β β
sum sum

dc
cir

dc Δ
sum (95)

and

= + =+ +e v i v i u˙ 2 ( )o α α β β o
dif dif cir dif cir

Δ
dif (96)

= − =− −e v i v i u˙ α α α β β α
dif dif cir dif cir

Δ
dif (97)

= − − =− −e v i v i u˙ .β α β β α β
dif dif cir dif cir

Δ
dif (98)

5.3. Total energy control and horizontal balancing

The total converter energy (i.e., the sum of all the arm energies) is
regulated controlling the energy e o

sum, which is proportional to the total
energy ( =e eC

o3
2 sum). This is achieved by managing the power flow

between the ac and dc sides. Depending on the MMC operation mode
[9], this can be done using either the dc power v isum

dc
dc or the ac power

+v i v iα
g
α β

g
β

dif dif [see (93)].
On the other hand, the horizontal balancing is performed nullifying

the energies e α
sum and e β

sum, which are controlled via the dc components
i α
cir

dc and i β
cir

dc of the circulating current [see (94) and (95)]. The dy-
namics of the sum energies are transformed to first-order systems of the
form =e u˙sum sum by defining the auxiliary control inputs u o

sum, u α
sum and

u β
sum [see (93)–(95)]. Then, PI controllers are designed to regulate the

energies esum to the desired value. Finally, the current references to
achieve the horizontal balancing are calculated from (94) and (95) as
follows

=★i
u
v2

α
α

cir
dc sum

sum
dc (99)

=★i
u
v2

β
β

cir
dc sum

sum
dc (100)

where the auxiliary control inputs u α
sum and u β

sum are obtained from the
mentioned PI controllers.

5.4. Vertical balancing

The vertical balancing is performed nullifying the energies edif ,
which are controlled using the fundamental-frequency positive- and
negative-sequence components +i α

cir ,
+i β

cir ,
−i α

cir , and
−i β

cir of the circulating
current [see (96)–(98)]. Similar to the previous subsection, the aux-
iliary control inputs u o

dif , u α
dif and u β

dif are defined to simplify the control
design and to obtain decoupled first-order systems of the form

=e u˙dif dif .
Because three energies need to be controlled (i.e., e o

dif , e α
dif , and e β

dif ),
and there are four circulating current components to be chosen, an
additional constraint is introduced to minimize the required apparent
power [36]. This can be achieved by stating that the current +icir is in-
phase with the voltage vdif; that is, by zeroing the following reactive
power

= − =+ +q v i v i 0.α β β α
cir dif cir dif cir (101)

Finally, the circulating current references to achieve the vertical bal-
ancing are calculated from (96)–(98) and (101) as follows

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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−

⎤
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⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

★ +

★ +

★ −

★ −

−
i

i
i

i

v v

v v

v v

v v

u

u

0 0

0 0

0 0

0 0 0

.

α

β

α

β

α β

α β

β α

β α

u

α

β

cir

cir

cir

cir

dif dif

dif dif

dif dif

dif dif

1

2

dif

dif

o
dif

(102)

A schematic block diagram of the complete MMC control system is
shown in Fig. 2.

6. Reduced MMC model

6.1. Equivalent dynamics of all submodule capacitors

To reduce the order of the MMC model, it is assumed that the intra-
arm balancing method achieves an even distribution of the submodule
voltages in each arm. In this way, the individual submodule voltages do
not need to be represented. Therefore, adding the voltage equation (43)
for all the submodules results in

= − −C
N

v
v
R N

m i˙ z
z

p
z

p
z

SM

Cp
arm Cp

arm

SM (103)

where (55) and (59) have been used. Proceeding in a similar way with
the voltage equation (44) and considering (9) and (10), we obtain

⎜ ⎟= − − ⎛
⎝

+ + ⎞
⎠

C
N

v
v
R N

m i i
i˙

3 2
z

z

p
z g

z
z

SM

Cp
arm Cp

arm

SM
dc

cir
(104)

⎜ ⎟= − − ⎛
⎝

− + ⎞
⎠

C
N

v
v
R N

m i i
i˙

3 2
.z

z

n
z g

z
z

SM

Cn
arm Cn

arm

SM
dc

cir
(105)

The equations (104) and (105) represent the voltage dynamics of the six
arms modeled with an equivalent capacitor per arm. This reduces the
MMC model to an eleventh-order model with five converter currents
(ig

α, ig
β, i α

cir, i β
cir, and idc) and six arm voltages (v a

Cp
arm , v b

Cp
arm , v c

Cp
arm , v a

Cn
arm ,

v b
Cn
arm , and v c

Cn
arm ) as state variables.

In the MMC, the ac output current passes through the submodule
capacitors; therefore, the alternating arm currents cause ripples in the
six arm voltages during normal steady-state operation. This is a draw-
back in power system stability studies where a constant equilibrium
point is required both to initialize the states in time-domain simulations
and to perform small-signal analysis. To overcome this problem, the
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MMC model can be further reduced by assuming that the inter-arm
balancing method balances the six arm voltages, as described in Section
5. This allows to combine the voltage dynamics of the six arms in a
single equivalent capacitor that represents the capacitive energy of all
submodule capacitors. With this purpose, the voltage dynamics of each
converter leg is firstly obtained by adding (104) and (105) (i.e., as-
suming = =v v vC

z z z
Cp
arm

Cn
arm )

= − − +C
N

v
v

R N
m i m i2 ˙

2 2
3C

z C
z

z z
g
z

SM

SM sum dc dif (106)

where

= +m m m1
2

( )z
n
z

p
z

sum (107)

= −m m m1
2

( ).z
n
z

p
z

dif (108)

As explained in Section 5, the circulating current is only transiently
used to balance the arm energies, and then it is nullified by the circu-
lating current control. Therefore, in (106), it has also been assumed that
the circulating current is zero (i.e., =i 0z

cir ). Finally, the total voltage
dynamics is obtained by adding (106) for the three legs z = {a, b, c}
(i.e., assuming =v vC C

z)

= − − +C v v
R

m i m i˙ 2 ( )C
C o T

g
eq

eq sum dc dif
abc abc

(109)

where =C C
N

eq 6 SM
and =R R Neq

6

SM
are the equivalent capacitance and

resistance, respectively, and = m m mm [ ]a b c T
dif
abc

dif dif dif . The capacitor time
constant (i.e., the converter capacitive energy per volt-ampere) is given
by =τ C v S/C C B

1
2 eq

2 , where SB is the rated power of the MMC.

6.2. Dynamics of the DC and AC currents

Assuming Ron = 0 and considering = =v v vC
z z

Cp
arm

Cn
arm , the arm vol-

tages (57) and (58) are reduced to

=v m vp
z

p
z

C (110)

=v m vn
z

n
z

C (111)

and the following expressions are found using (107) and (108)

= vv m Csum
abc

sum
abc (112)

= vv m .Cdif
abc

dif
abc (113)

Then, the dynamics of the dc and ac currents are obtained by sub-
stituting (112) and (113) into (30) and (31), respectively, which results
in

= − − +L i R i v m v2
3

˙ 2
3

2s s
o

Cdc dc dc sum (114)

= − + −L R vi̇ i Q v m( ).t g t g g C
abc abc abc

dif
abc

(115)

6.3. Transformation to DQ coordinates

In electromechanical transient simulations, to obtain constant va-
lues in steady state, the models are represented in dq coordinates using
the Park transformation. This is achieved by transforming the variables
from abc to αβ coordinates, and then from αβ to dq coordinates. To
convert from the αβ stationary reference frame to the dq synchronous
reference frame, the following Park transformation = θf P f( ) αβdq is
used

= ⎡
⎣

− ⎤
⎦

θ θ θ
θ θ

P( ) cos sin
sin cos

.
(116)

Then, a fourth-order model of the MMC (with state variables: the
output currents ig

d, ig
q, and idc, and the equivalent capacitor voltage vC) is

obtained by writing the current and voltage dynamics (114), (115), and
(109) in dq coordinates, as follows

= − − + ∼L i R i v m v2
3

˙ 2
3s s

o
Cdc dc dc sum (117)

= − − + −L i R i ωL i v m v˙t g
d

t g
d

t g
q

g
d d

Cdif (118)

= − + + −L i R i ωL i v m v˙t g
q

t g
q

t g
d

g
q q

Cdif (119)

Fig. 2. Overview of the MMC control strategy used in the detailed model. Reference signals are filtered to avoid high frequency noise, and they are also limited to
their maximum values (not shown for the sake of clarity).
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= − − + +∼C v v
R

m i m i m i˙ 3
2

( )C
C o d

g
d q

g
qeq

eq sum dc dif dif (120)

where =∼m m2o o
sum sum. The resulting nonlinear model (117)–(120) can

be linearized for small-signal (modal) analysis. Note that the model
equations (117) and (120) explicitly reflect the effect of the zero-se-
quence modulation index on the dc-side behavior. If the conduction
resistance is considered, the corrected values = +R R NRs s

corr
on and

= +R R Rt e s
corr 1

2
corr have to be used.

6.4. Comparison between the traditional VSC and the MMC

Electrical circuits representing the traditional VSC model [45] and
the MMC model (117)–(120) are shown in Fig. 3. Both converters have
a similar representation on the ac side, but a different one on the dc
side. The MMC directly controls the dc current through the inductance
2/3Ls [see Fig. 3(d)]; thus, it has a current-source characteristic on the
dc side (inductive ending) [9]. On the other hand, the traditional VSC
configuration, due to the concentrated dc capacitor Cdc, directly con-
trols the dc-bus voltage and has a voltage-source characteristic on the
dc side (capacitive ending). The traditional VSC model does not reflect
the dc-side behavior of the MMC because the MMC capacitors are not
directly coupled to the dc bus, like in the case of the traditional VSC
[20]. The operating characteristics of the MMC are better represented
by modeling the total converter voltage vC (i.e., the sum of all sub-
module capacitor voltages) and the dc-bus voltage vdc as independent
variables [32] [see MMC representation in Fig. 3(d)].

7. Control of the reduced MMC model

Power system simulations involve a large number of continuous-
time ordinary differential equations, which are then solved by the Euler
and trapezoidal methods. Therefore, in order to integrate the reduced
MMC model to these simulations, its control system has to be also im-
plemented in the continuous-time domain. On the other hand, as per-
formed in Section 4 for the control design, it is convenient to convert
the system (117)–(120) to per-unit values on the converter base. Thus,
the control parameters are independent of the converter rated power,
simplifying the tuning and implementation of the controls in studies
with multiple MMCs.

First, the dc and ac current dynamics (117)–(119) are transformed
to three decoupled first-order linear systems by defining the following
auxiliary control inputs

= − + ∼w v m vo o
Csum

Δ
dc sum (121)

= − + −w ωL i v m vd
t g

q
g
d d

Cdif
Δ

dif (122)

= + −w ωL i v m v .q
t g

d
g
q q

Cdif
Δ

dif (123)

The resulting systems, of the form = − +Li w˙ R i , are regulated using PI
controllers, and then the modulation indices ∼m o

sum, m d
dif , and m q

dif are
calculated from (121)–(123). The current references for these systems
are obtained from outer control loops, as previously explained in Sec-
tion 4.4. Fig. 4 shows a block diagram of the control system for the
reduced model, where droop controls are chosen to regulate the ac- and
dc-bus voltages, and an energy-based control is used to regulate the
total converter energy =e C vC C

1
2

eq 2 [15]. As recommended in [1], a
transient droop compensation is included to transiently reduce the
control gain and to avoid exciting the transmission line modes.

8. Performance assessment

The tests are performed using the 1000-MW MMC with 400 sub-
modules per arm of the France-Spain electrical interconnection
(INELFE) project (see converter parameters in [21]).

8.1. MMC operation and control system performance

A test is carried out to verify the performance of both the current

Fig. 3. Models of the ac/dc converter stations for transient stability studies. (a and b) Configuration and equivalent electrical circuit of the traditional VSC. (c and d)
Configuration and equivalent electrical circuit of the MMC.

Fig. 4. Control system for the reduced MMC model including both the inner and
the outer control loops.
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control and the voltage balancing control under different operating
conditions. In this test, the model from Sections 2 and 3 and the control
system from Sections 4 and 5 are used.

The active power reference is initially set to zero; at 0.33 s, an active
power step of 1000 MW is applied; then, at 0.58 s, the power flow is
reversed with a 100-ms ramp from inverter to rectifier operation. The
reactive power reference is set to zero and changes to 350 MVAr at
0.83 s [see active and reactive powers in Fig. 5(a)]. Two disturbances
are also considered: the first one is a 300-ms voltage sag to 50% applied
at 1.03 s [see Fig. 5(b)], and the second one is a shutdown of the
converter performed at 1.53 s by setting the current references to zero

( =★i 0g ) [see Fig. 5(c)]. From the above figures, it can be seen that an
accurate current control is achieved. In the control scheme, an active
power priority is implemented when the current reaches its maximum
value [see Fig. 5(a) during the voltage sag].

The total arm voltages are initialized to different values [see
Fig. 5(e)] to show the horizontal and vertical balancing illustrated by
the sum and difference energies in Fig. 5(f) and (g), respectively,
whereas the total energy control is shown in Fig. 5(h). In Fig. 5(e)–(i), it
is seen that all capacitor voltages and arm energies are properly con-
trolled and balanced under the different operating conditions. Finally,
Fig. 5(j) shows how the fundamental-frequency and dc components of

Fig. 5. (a) Active and reactive powers (blue and red lines, respectively). (b) Phase-to-ground ac voltage. (c) AC current. (d) DC current. (e) Sum of all capacitor
voltages in each arm. (f) Components of the sum energy vector (horizontal balancing) eαβ

sum. (g) Components of the difference energy vector (vertical balancing) eoαβ
dif .

(h) Total converter energy. (i) Submodule capacitor voltages of the phase-a positive arm. (j) Circulating current.
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the circulating current are transiently used to achieve the voltage bal-
ancing tasks, and then they are nullified in steady state.

8.2. Comparison of the detailed and reduced models

In this section, the previous test is repeated using both the detailed
and the reduced models to compare their steady-state and transient
responses. The trajectories of the currents and the total converter en-
ergy of both systems are almost the same [see Fig. 6(a)–(c)], which is
expected because they are regulated to track the same reference signals.
The sum and difference components of the arm voltages obtained from
the controllers are also quite similar [see Fig. 6(d)], which reflects an
appropriate representation of the MMC dynamics by the reduced
model. Fig. 6(e) shows the sum of all submodule capacitor voltages in
each arm vC p n

z
{ , }

arm (detailed model) and the equivalent capacitor voltage
vC (reduced model). In the control law, the modulation indices com-
pensate the capacitor voltage variations. Therefore, since the capacitor

voltage ripples are neglected in the reduced model, its modulation in-
dices differ from the ones obtained in the detailed model. In the mod-
ulation index m z

dif , this difference has mostly a fundamental frequency
component, which is seen as a dc offset in the magnitude

= +m mm| | d q
dif
dq

dif
2

dif
2 [see Fig. 6(f)]. Other differences observed in the

zoom windows on the right side of Fig. 6 are mainly due to the transient
use of the circulating current by the balancing control, which is ne-
glected in the reduced model.

A test with a three-phase fault is also presented to show the beha-
vior of the models under a more severe disturbance. The fault is applied
on the high-voltage side of the transformer, and it lasts 250 ms [see the
resulting ac-side voltage in Fig. 7(a)]. During the fault, it can be ob-
served that the capacitor voltages are properly controlled, and the ac
current is limited to its maximum value (more serious faults will require
the shutdown of the converter). Despite the simplifications performed
in the reduced model, Fig. 7(b)–(d) show a good agreement between the
transient responses of both models. To study the converter start-up and

Fig. 6. Response comparison between the detailed and the reduced models under different operating conditions. (a) D-axis and q-axis currents. (b) DC current. (c)
Total converter energy. (d) Components of the synthesized arm voltages. (e) Capacitor voltages. (f) Modulation indices.
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dc-side faults, it is necessary to add a blocking module to model the

blocked state of the MMC (see [13,30] for a detailed description of this
issue).

9. Conclusion

In this work, the modeling and control of the MMC were described
in detail. Dynamic equations were obtained directly from the electrical
circuit of the MMC, allowing a better understanding and representation
of the converter behavior. Both a model with information on the sub-
module level and a reduced model for electromechanical transient si-
mulations and small-signal analysis were developed. They were com-
pared to evaluate and quantify the impact of the considered
simplifications. The results showed that the reduced model closely
matched the transient response of the more detailed version, making
the reduced model suitable for large-scale power system studies where
the computational cost is a challenge. The models were tested under
different set-point changes and disturbances using the ac/dc converter
station of the INELFE project. Differences between the traditional VSC
and the MMC were also discussed to show their distinctive dc-side
operating characteristics.
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Appendix A

The design of the ac current control is developed in this appendix. The ac current ig is controlled via the difference voltage vdif, and the controller
is implemented in a rotating reference frame as described in the following steps.

A.1 Discrete state-space representation of the AC current dynamics

As explained in Section 2.3, the zero-sequence component of the ac current is null; therefore, the ac current dynamics (40) is simplified to

= − + −L Ri̇ i v v1
ΩB

t g
αβ

t g
αβ

g
αβ αβ

dif (124)

where = i ii [ ]g
αβ

g
α

g
β T , = v vv [ ]g

αβ
g
α

g
β T , and = v vv [ ]αβ α β T

dif dif dif , and the model (124) is written in per-unit values on the converter base. A state-space
representation of (124) is given by

= + −i̇ A i B v B vg
αβ

t g
αβ

t g
αβ

t
αβ
dif (125)

where = −A It
R

L
Ωt B
t

and =B It L
ΩB

t
. Then, (125) is discretized using the ZOH method obtaining

= + −+i G i H v H vg k
αβ

t
αβ

t
αβ

t
αβ

( 1) gk gk difk (126)

where the matrices of the discrete system are calculated as Gt = eAtTs and ∫= e dτH Bt
T τ

t
A

0
s t [39].

A.2 Transformation to a rotating reference frame

To simplify the control design, the ac current dynamics (126) is transformed to the dq synchronous reference frame. First, the discrete Park
transformation at the sample times k and k + 1 is introduced

= ⎡
⎣⎢

− ⎤
⎦⎥

θ θ
θ θ

P
cos sin
sin cosk

k k

k k (127)

= ⎡
⎣⎢

− ⎤
⎦⎥

+
+ +

+ +

θ θ
θ θ

P
cos sin
sin cos

.k
k k

k k
1

1 1

1 1 (128)

The transformation P rotates at the system angular frequency ΩB; then, θk = ΩBtk and = = ++ +θ t t TΩ Ω ( )k B k B k s1 1 . Therefore, the following matrix
can be defined using (127) and (128)

Fig. 7. Response comparison between the detailed and the reduced models
under a three-phase fault. (a) AC voltage. (b) DC current. (c) D-axis and q-axis
currents. (d) Equivalent capacitor voltage.
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= = ⎡
⎣⎢

− ⎤
⎦⎥

+
−Ω

T T
T T

P P
cos(Ω ) sin(Ω )
sin(Ω ) cos(Ω )

.k k
B s B s

B s B s
1

1

(129)

For a generic vector fαβ, it is verified =f P fk k k
αβdq and =+ + +f P fk k k

αβ
1

dq
1 1; consequently, applying the Park transformations (127) and (128) to the system

(126) results in

= + −+
−

+
− − −P i G P i H P v H P v .k g k t k t k t k1

1
( 1)

dq 1
gk
dq 1

gk
dq 1

difk
dq

(130)

Finally, premultiplying (130) by Pk+1 yields

= + −+i G i H v H vg k t t t( 1)
dq

gk
dq

gk
dq

difk
dq

(131)

where = +
−G P G Pt k t k1

1 and = +
−H P H Pt k t k1

1.

A.3 Computational delay compensation

Similar to what is described in Section 4.2.2, the computational delay can be considered in the control design by defining an auxiliary control
input as follows

=+v n .k
αβ αβ
dif( 1) difk (132)

Eq. (132) is transformed to the dq reference frame proceeding as in (130), obtaining

=+v nΩ .kdif( 1)
dq

difk
dq

(133)

A.4 Extended model for the control design

In the dq synchronous reference frame, the fundamental frequency components of the ac current references are transformed to constant (or dc)
signals, which can be easily tracked using a PI controller. The integrators of two PI controllers, one for the d-axis and another one for the q-axis, are
discretized and written in vector form as follows

= ++ Tq q eg k s( 1) gk gk
dq

(134)

where = − ★e i igk
dq

gk
dq

gk
dq is the tracking error. Then, an extended model is obtained by combining the ac current model (131), the computational delay

model (133), and the PI control integrators (134)

= + + −+
★w A w B n B v B ig k

v r
( 1) ge gk ge difk

dq
ge gk

dq
ge gk

dq
(135)

with state vector

= ⎡⎣ ⎤⎦w i v q
T

gk gk
dq

difk
dq

gk (136)

and matrices

=
⎡

⎣
⎢
⎢

− ⎤

⎦
⎥
⎥T

A
G H 0
0 0 0
I 0 I

t t

s

ge

(137)

= ΩB 0 0[ ]T
ge (138)

=B H 0 0[ ]v
t

T
ge (139)

= TB 0 0 I[ ] .r
s

T
ge (140)

A.5 Control law

The control law consists of feedback and feedforward terms, and it is designed using a state-space approach. In a PI controller, the integral action
modifies the integrator value to achieve a zero steady-state tracking error when disturbances such as changes in either the current reference or the ac
grid voltage occur. Because these disturbances are measured, the steady-state integrator value can be calculated beforehand as a function of the
current reference ★ig

dq and the ac voltage v g
dq (i.e., in a feedforward manner), consequently improving the control performance and avoiding high

gains in the PI controller to compensate these disturbances. Firstly, the following feedback control law is considered by measuring the states (136) –
the feedforward term will be calculated afterwards–

= −n K w .tdifk
dq

gk (141)

The closed-loop system is obtained substituting (141) into (135) yielding

= − + −+
★w A B K w B v B i( ) .g k t

v r
( 1) ge ge gk ge gk

dq
ge gk

dq
(142)

As in Section 4.2.5, the feedback gain matrix Kt is designed to obtain a desired closed-loop matrix −A B K( )tge ge using the LQR method.
In steady-state, the values of the state variables wg are constant and satisfy

A.E. Leon, S.J. Amodeo Electric Power Systems Research 163 (2018) 196–210

208



= =+w w w .g kgss ( 1) gk (143)

Therefore, from (142) and considering (143), the steady-state value wgss is obtained as follows

= − ★w J B v B i( )v r
gss ge gk

dq
ge gk

dq
(144)

where = − + −J I A B K( )tge ge
1. Expanding (144), the following sub-matrices Jij can be defined

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢
⎢−

⎤

⎦

⎥
⎥
⎥★T

i

v
q

J J J
J J J
J J J

H v
0
i

.
t

s

gss
dq

difss
dq

gss

11 12 13

21 22 23

31 32 33

gk
dq

gk
dq

(145)

Then, from the third row of (145), the steady-state integrator value is calculated as

= − ★Tq J H v J i .t sgss 31 gk
dq

33 gk
dq

(146)

The value qgss is added, in a feedforward manner, to the integrator output (i.e., to the state variable qgk) in the control law (141) as follows

= −
⎡

⎣

⎢
⎢
⎢ +

⎤

⎦

⎥
⎥
⎥

n K K K
i

v
q q

[ ]difk
dq

ti tv tm

gk
dq

difk
dq

gk gss (147)

where the feedback gain matrix has been divided into the following sub-matrices Kt = [Kti Ktv Ktm]. Finally, rearranging (147), the complete control
law is given as

= − − − ★n K w K v K it s rdifk
dq

gk gk
dq

gk
dq

(148)

where =K K J Hs ttm 31 and Kr =− TsKtmJ33. In (148), the first term is the feedback part, and the last two terms are the feedforward compensation.
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