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A B S T R A C T

This paper discusses the problem of whether creating a matrix with all the character state combinations that
have a fixed number of steps (or extra steps) on a given tree T, produces the same tree T when analyzed with
maximum parsimony or maximum likelihood. Exhaustive enumeration of cases up to 20 taxa for binary char-
acters, and up to 12 taxa for 4-state characters, shows that the same tree is recovered (as unique most likely or
most parsimonious tree) as long as the number of extra steps is within 1/4 of the number of taxa. This de-
pendence, 1/4 of the number of taxa, is discussed with a general argumentation, in terms of the spread of the
character changes on the tree used to select character state distributions. The present finding allows creating
matrices which have as much homoplasy as possible for the most parsimonious or likely tree to be predictable,
and examination of these matrices with hill-climbing search algorithms provides additional evidence on the (lack
of a) necessary relationship between homoplasy and the ability of search methods to find optimal trees.

1. Introduction

This paper explores the problem of whether all (or some) of the
possible character state distributions with different numbers of steps on
a given tree, produce a matrix for which that tree is the unique most
parsimonious or likely tree. The results shed some additional light on
problems recently discussed by Radel et al. (2013) and Goloboff (2014),
connects to results of Goloboff (1991) and Steel and Charleston (1995),
and illustrates both similarities and differences between two important
criteria for phylogenetic reconstruction, maximum parsimony (MP) and
maximum likelihood (ML).

The most common type of discrete morphological character are
binary characters. This paper is primarily concerned with discrete
binary data, for which it is easier to establish conclusions; discussion of
DNA sequence data is included at the end. While ML methods are most
commonly used for DNA sequence data, and discrete morphological
characters are usually analyzed with parsimony, the Mkv model (Lewis,
2001) is being used increasingly for ML analysis of morphological data,
and is implemented in recent releases of MrBayes (Ronquist et al.,
2012) and PAUP* (Swofford, 2002). Thus, the behaviour of the Mkv
model is studied also for the categorical (binary) datasets. Our main
finding is that it is possible to univocally define any phylogenetic tree
(both under ML and MP) by using characters with much larger amounts
of homoplasy than allowed by previous methods to generate datasets
with known optimal trees (e.g., Chai and Housworth, 2011).

2. Matrices with all s-step combinations

For any binary tree T with t leaves, there is a number n of ways to
assign states to the terminal branches such that the resulting character
has a number s of steps. For binary characters, this number n does not
depend on the shape of T, only on t and s (see formula in Steel and
Charleston, 1995: 370). Let MT s, be the matrix with a copy of every
possible character-state distribution with exactly s steps on tree T; de-
fine MT e, analogously, but for extra steps e instead of absolute steps s.
Note that in non-constant binary characters = −e s 1, so that

== =M MT s T e, 1 , 0, but this does not hold for 3 or more states. Let P and L
be respectively the (set of) most parsimonious and likely tree(s) for the
set of characters in question.

It is well known that (for binary characters and any value of t), when
=s 1, then P equals T: =MT s, 1 is the Baum-Ragan “matrix-representation

with parsimony” (or MRP) of tree T (Baum, 1992; Ragan, 1992). For the
MRP, T is also the unique most likely tree L, under the Mkv model of
Lewis (2001; in this paper, all the ML Mkv analyses were carried out
with PAUP*, vers. 4.0a151, with lset nstates=mkv mkstate-
space= fixed).

The problem of whether T can be uniquely retrieved from the matrix
MT s, when >s 1 has not been so far considered in the literature. That is,
the problem of whether =T P, ≠T P, or ⊂T P (i.e. T is a most parsi-
monious tree, but not the only one, so that MT s, does not univocally
define P). In the case of =t 4, it is easy to verify that for =MT s, 2, ≠P T
for any topology T. The length of T in that case is =ns 4 (2 characters of

https://doi.org/10.1016/j.ympev.2018.01.020
Received 26 June 2017; Received in revised form 30 December 2017; Accepted 26 January 2018

⁎ Corresponding author.
E-mail addresses: pablogolo@csnat.unt.edu.ar, pablogolo@yahoo.com.ar (P.A. Goloboff).

Molecular Phylogenetics and Evolution 122 (2018) 95–101

Available online 31 January 2018
1055-7903/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/10557903
https://www.elsevier.com/locate/ympev
https://doi.org/10.1016/j.ympev.2018.01.020
https://doi.org/10.1016/j.ympev.2018.01.020
mailto:pablogolo@csnat.unt.edu.ar
mailto:pablogolo@yahoo.com.ar
https://doi.org/10.1016/j.ympev.2018.01.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ympev.2018.01.020&domain=pdf


2 steps each), but the length of P is 3 (i.e. there are two most parsi-
monious trees, where one of the two characters perfectly matches a
group).

For the case of =MT s, 2 and =t 5, predicting whether =T P is harder.
A simple TNT script (testequality.run, available as Supplementary
Material) can be used to generate the matrix MT s, for each of the tree-
shapes (2 in the case of =t 5), and check whether =T P. The results are
shown in Table 1. While the number n of binary characters with s steps
does not depend on the shape of T, whether =T P may well depend on
the shape (see Felsenstein, 2004: 29-32 for a general discussion of
rooted tree-shapes, and Goloboff et al., 2017 for a recent application).
However, the equality between T and P will hold (or not), for every one
of the trees of a given shape, thus simplifying the task of checking
whether =T P for each of the possible trees for t taxa –it is only ne-
cessary to check every tree-shape, not every tree (specially convenient,
since the number of shapes is vastly smaller than the number of possible
tree topologies; see, e.g. Felsenstein, 2004: 30, Table 3.3). The script
used for this paper automatically generates MT s, for each of the relevant
tree-shapes for t taxa and checks whether =T P, using TNT (Goloboff
et al., 2008; Goloboff and Catalano, 2016) to find P. The script gen-
erates all the rooted shapes for −t 1 taxa, since TNT always uses one of
the taxa as root or outgroup; rooting the trees differently would change
neither the MP nor ML scores. For both tree-shapes for =t 5 and =s 2,

≠T P.
Is it possible that =T P, for some number t, and =s 2? As t increases

to 8, then for 10 of the 11 possible tree-shapes, =T P. For the 11th
shape (the shape that results from rooting the fully symmetrical 8-taxon
tree in one of the terminal taxa), ≠T P. This shows that it is indeed
possible for P to be identical to T for some shapes, and different for
others. For ≥t 9 and =s 2, it can be verified that =T P for every tree-
shape.

What about larger values of s? The number of steps a binary char-
acter can have on a most-parsimonious reconstruction is bounded by
the number of 0s and 1s (whichever is minimum; the maximum number
of steps an MP reconstruction can have is the integer t

2
). Thus, only for

≥t 6 there are some characters with =s 3. For =t 6 to =t 10, and
=s 3, ≠T P. For =t 11, some tree-shapes produce MRP matrices for

which =T P, but others produce matrices where T is not a shortest tree
(i.e. ≠T P) or where T is simply one of multiple MPTs (i.e. ⊂T P) (see
Table 1). When =s 3, =T P for every possible tree-shape only if ≥t 12.

The previous case, =s 3, fulfilled the condition of =T P for every

possible tree-shape for all cases where ≤s t0.25 . For larger values of t
and s, it can be verified that the same is true; for example, =MT s, 5 when

=t 20 fulfills the condition that =T P for every tree T, despite the fact
that all the characters have significant amounts of homoplasy. The only
exception to the relationship ≤s t0.25 is the case of =t 8, where one of
the 11 shapes does not fulfill =T P. Some cases where >s t0.25 have
some shapes producing a matrix MT s, for which T is a most parsimo-
nious tree (i.e. ⊂T P when >s t0.25 ), but there is no case where

≥s t0.3 for which T is a most parsimonious tree (i.e. ≠T P for all cases
of ≥s t0.3 ).

For >t 20, exhaustively checking whether all tree-shapes fulfill the
condition that =T P becomes difficult. First, the script works by gen-
erating all possible binary state distributions ( −2t 1, given that the root
only has 0 states), and for =s 6, T could be expected to equal P for all
shapes only when ≥t 24–this requires generating matrices with
8,388,608 characters or more. Second, the number of shapes also in-
creases rapidly; for =t 24, the number of shapes is 3,626,149, and the
990,080 characters with 6 steps on each of those shapes would have to
be identified (deactivating the rest), followed by a search for P. Taking
samples of the shapes, for t up to 28 (the maximum matrix size we could
handle with TNT), suggests that the same relationship between t and s
(i.e. ≤s t0.25 ) continues being valid for T to be equivalent to P.

The same bounds seem to hold for ML under the Mkv model, re-
garding the most likely tree L (i.e. =T L for all trees when ≤s t0.25 ,
and ≠T L for all trees when ≥s t0.3 ). When < <s0.25 0.3, the cases
where ≠T L or ⊂T L seem to be more common than the cases where

≠T P or ⊂T P; there are, however, some cases where ≠T P or ⊂T P
while =T L.

Note that, for these matrices, application of implied weighting
(which downweights characters with more homoplasy; Goloboff, 1993),
is guaranteed to produce exactly the same results as equal weights MP,
given that all the characters have the same homoplasy.

3. Undecisive matrices

Of course, adding possible binary state distributions with fewer
steps than t0.25 also produces matrices where =T P and =T L.
However, adding those possible characters does not make it possible to
also add at the same time characters with >s t0.25 and still have =T P.
In the end, if all the characters ≤ ≤s(1, , , , )

t
2 are included in the ma-

trix, the matrix becomes completely undecisive (Goloboff, 1991): every
possible partition of the data is represented exactly once, and thus every

Table 1
Results of maximum parsimony (MP) analysis for matrices containing all the possible binary character with different numbers s of steps for each of the tree-shapes, for different numbers
of taxa. Cases where the matrix for every tree-shape produces the same tree T as single most parsimonous tree P (i.e. T= P) are indicated with +; cases where every one of the shapes
produces most parsimonious trees different from T are indicated with a dash (–). In the rest of cases, the number of shapes for which T= P is indicated first, followed by the number of
shapes where T is one among multiple equally parsimonious trees, ending with the number of shapes where T is not a most parsimonious for the corresponding matrix. Cases marked as
(*) were checked with a random sample of 200 shapes instead of exhaustively.

TAXA s= 2 s= 3 s= 4 s=5 s= 6 s= 7 s= 8 s= 9

4 −
5 −
6 − −
7 0,3,3 −
8 10,0,1 − −
9 + − −
10 + − − −
11 + 80,3,15 − −
12 + + − − −
13 + + − −− −
14 + + 813,0,170 − − −
15 + + + − − −
16 + + + − − − −
17 + + + 8911,0,1994 − − −
18 + + + + − − − −
19 + + + + − − − −
20 + + + + 102676,0,25236 −(*) −(*) −(*)
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possible (binary) tree is equally parsimonious (making ⊂T P). The
amount of homoplasy in undecisive matrices (with average character
length more than t0.3 for ≥t 7) is larger than in the matrices for which

=s t0.25 explored in the preceding section; but in this case P (the set of
all binary trees) does not equal T. Given that the number n of characters
with s steps for t taxa is constant (because, from Steel and Charleston,
1995, n depends only on s and t, not on tree-shape), then all the possible
trees have the same numbers of characters with 1, 2, … t

2
steps, and

therefore these matrices are also fully undecisive under implied
weighting, regardless of weighting strength (i.e. regardless of concavity
constant k; see Goloboff, 1993 for discussion of k).

These matrices, undecisive under MP, also seem to be fully un-
decisive under ML with the Mkv model: every possible tree has exactly
the same likelihood, as calculated by PAUP*. The undecisiveness,
however, only occurs when the possible state space is fixed at 2 for all
characters. When considering a state space of 4 (e.g., replacing the 0s
and 1s by 2s and 3s in odd-numbered characters, which still defines the
same partitions, and continues being undecisive for parsimony), some
tree-shapes have a worse likelihood than others. Fully pectinate trees
are always among the trees of worst scores; the score difference among
trees increases with number of taxa; as the number of characters for the
matrix to be undecisive under MP or 2-state Mkv grows rapidly, the
maximum number of taxa which could be checked with PAUP* was 16
–in that case, the score difference between best and worst trees (from
2706.17× 103 to 2708.36× 103) approaches significance (according
to the khtest= normal of PAUP*) at the 10% level (P= .1313).

Using a state space of 4 instead of 2 implies that, as branch length
increases, the probability of state transformations (as well as stasis)
along the branch converges to 0.25 instead of 0.5 –i.e. a ratio of 1:2.
This would suggest that the results for 2- and 4-state spaces would be
equivalent, simply with correspondingly lower likelihoods. However,
for very short branches, the probability of stasis (i.e. the same state for
ancestor and descendant) tends to 1 regardless of the size of the state
space, and the 1:2 correspondence does not hold for branches of in-
termediate lengths; the ratio actually varies with branch length. This
means that, as character changes are distributed along branches of in-
termediate (and different) lengths, the correspondence between results
for 2-state and 4-state spaces no longer holds. It also means that (in
empirical Mkv analyses) whether states not recorded in the matrix exist
may make a difference, even when those states would otherwise be
“uninformative” (e.g., restricted to a single taxon).

Parsimony is often used to combine trees (e.g., producing super-
trees). In this context, it is important to note that a fully undecisive MRP
matrix will result from single-group trees that represent each of the
possible taxon partitions, not from all possible binary trees for the taxa
at hand. For 6 taxa, combining the 105 possible trees for 6 taxa in an
MRP, does not produce the same 105 trees as result. In the 105 possible
binary trees for 6 taxa, every 2-taxon groups occurs in 15 of those,
while 3-taxon groups occur in only 9. The imbalance in the re-
presentation of these characters leads to an MRP matrix for which some
trees are shorter than others (producing, for 6 taxa, only 15 distinct
trees, instead of the 105 that would result from full undecisiveness).

4. Spread of changes in MT,s

A character with homoplasy on some tree, from the perspective of
parsimony, provides evidence against the tree –i.e. there is necessarily
an alternative tree with a better fit for that character. How is it possible
that selecting precisely those characters that seem to provide evidence
against the tree, uniquely determines that tree, both under MP and ML,
and that (as long as t increases) this can continue happening for larger
and larger numbers of extra steps?

Fig. 1a-b illustrates the situation of =s 2, showing some of the
characters that can support two of the groups in the tree (clades
numbered as 9 and 11). Fig. 1a shows the characters that (at least in

some MP reconstructions) have a change at branch 9 (marked with a
white square). The grey and black squares indicate other branches of
the tree where there could be changes such that the character has two
steps. Once a change occurs on branch 9, the second change could occur
in 5 branches (0, 2, 3, 7, 12, 13, marked with black) such that the
character can be unambiguously mapped as synapomorphies of the two
groups; it could also occur in 2 other branches (6, 11, marked in grey)
such that the character provides no clear-cut synapomorphy (i.e. the
famous acctran-deltran case). Fig. 1b shows the case of a character
occuring in branch 11; even when the branches where the second
change could be located such that the MP mapping is ambiguous
(branches 2, 3, 4, 7, 9) outnumber the branches where the MP mapping
is unambiguous (branches 0, 1, 5), there are still three unambiguous
synapomorphies for the clade corresponding to branch 11.

What is more important: for =s 2, the second change can occur in a
number of alternative locations, such that an alternative tree would
better explain that character, but individually: those alternative loca-
tions result in characters that are in conflict with each other. This conflict
between subsequent character changes is related to the condition

≤s t0.25 . As s is smaller relative to t, for each change to be acting as a
synapomorphy of a branch, the alternative changes in the other char-
acters can be spread more evenly on the tree (many of those, also
providing synapomorphies for some clades). The empirically observed
factor ¼ results evidently from the fact that changes, to be un-
ambiguous, have to be distributed (a necessary but not sufficient con-
dition, see next section) on branches that are at least 3 nodes apart
–more than t0.25 changes will clutter the tree, and synapomorphies will
not outnumber ambiguous changes. That the shape corresponding to
the symmetric 8-taxon tree is the only case where =s t0.25 does not
result in =T P reinforces this idea, for in that case (and only in that
case) no branch can be 3 or more nodes apart from the middle branches.

5. Large datasets, lots of homoplasy

Given that the characters providing unambiguous synapomorphies
(and with parallel changes conflicting in turn with each other) are a
significant majority, taking a sample of characters from MT s, , forming a
subset M 'T s, , generally leads to =T P for all tree-shapes. The fraction of
characters from MT s, that need to be included for this to be the case is
smaller as s is smaller relative to t (of course, when =s 1, every single
character must be included, or the tree will have unresolved groups, so
that ⊂T P).

The fact that only some characters with s steps need to be included
in M 'T s, for =T P, and the consideration of the branch distances be-
tween changes for the sample of characters to provide unambiguous
support for T, suggests a way to create matrices that have large amounts
of homoplasy, but for which the optimal tree P can be known in ad-
vance with (almost) certainty. Matrices for which P is known are useful
to study the ability of tree-search methods to actually find the optimal
tree. Finding the optimal tree, for both MP and ML, is a difficult, NP-
complete problem (Foulds and Graham, 1982; Roch, 2006), and the
problem of tree-searches continues being investigated (e.g., Goloboff
and Simmons, 2014; Ford et al., 2015; Goloboff, 2015; St. John, 2016).
Radel et al. (2013) were the first to use datasets for which P can be
known exactly (generated with Chai and Housworth’s, 2011 methods),
but where homoplasy is very abundant, to empirically test the effec-
tiveness of heuristic tree-search algorithms; inspired by Radel et al.
(2013), Goloboff (2014) also examined datasets for which P can be
known exactly but for which standard methods perform poorly (with
improved methods performing significantly better).

Phylogenetic programs cannot analyze all the numerous characters
with s steps for a large t due to memory limitations, so the fact that
subsamples of c characters with s steps also define =T P is specially
convenient. The considerations of the previous section, on the distances
needed between changes for the characters to support T as P, can be
used to generate datasets with very large amounts of homoplasy.
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Guaranteeing that =T P would require that characters are selected as
synapomorphies for each (internal) branch of T, and then that the ad-
ditional changes are uniformly spread along all the branches (in such a
way that no single branch concentrates parallelisms on different char-
acters, and that there is a distance of at least 3 nodes between each
point of change). A simpler script can generate datasets randomly
choosing for each character points of change such that each point is 3 or
more nodes from previous points of change. This does not guarantee
that =T P, but the probability that parallelisms in the characters sup-
porting a branch of T can be concentrated on another branch decreases
with the number c of characters, and therefore the probability that

=T P asymptotically approaches unity as c grows (and as long, of
course, as s remains within t0.25 ). This script (maxhomo.run, available
in the Supplementary Material) first sets, for each character, the points
of change, then sets the root to state 0, and travels the tree in an uppass
(inverting the state as it crosses each point of change). After “evolving”
the character in this way, the character is mapped onto the tree to
ensure that the number s of steps has been effectively obtained (see
Fig. 1c for a case where the character can be mapped on the tree with
fewer steps than the points of change, even if all points of change are
separated by 3 nodes); otherwise, the character is re-evolved by
spreading points of change again. As the first points of change are as-
signed randomly, it may well be that the last points of change cannot be
assigned so that they are 3 or more nodes away from existing points of
change; in that case, the process is started again from scratch for that
character. For every character, the initial point of change is assigned to
one of the internal tree branches; after all internal branches have been
assigned one such character, the branches start being revisited (so that
each branch has several characters that act as “synapomorphies”). Since
the rest of the changes gets randomly distributed over the tree, it be-
comes increasingly improbable –as the number c of characters grows–
that several changes can be concentrated on some tree branches (thus
leading to a different most parsimonious tree). This informal argument
strongly suggests that, for the datasets generated with this TNT script
(used in the experiments summarized in Table 2), even when P is not
known with certainty, there is a high probability that =T P; simulation
of many datasets also suggests that this is indeed the case.

In addition to the method just described, of maximum homoplasy,
there are 4 additional methods (other than the trivial MRP) to generate
a matrix for which P can be known with certainty. Ordered from lowest
to highest amounts of homoplasy these 5 methods are:

(a) Quad-Char: datasets where P is uniquely defined by four (i.e. =c 4)

multistate characters with no homoplasy (Huber et al., 2005; see
also Steel and Penny, 2005); T can have any topology.

(b) Max-Missing: datasets with missing entries and no homoplasy, such
that each character has only two 0s and two 1s, providing a syna-
pomorphy for each of the branches of T; studied in detail by
Goloboff (2014), based on Steel (1992), and Bocker et al. (2000). T
can have any topology, = −c t 3.

(c) Modular: a “fractal” expansion of a pattern of binary characters
(Goloboff, 2014) for which P is known; for the pattern expanded to
a level p, the resulting dataset has = +t 1 4 p; if cp is the number of
characters for level p (with =c 91 ), then = +−c c(4 ) 9p p 1 . These
datasets have low amounts of homoplasy (the consistency index for
all the expansions of this pattern is 0.6923; see Goloboff, 2014:123)
but P can be easily missed by hill-climbing searches.

(d) Chai-Housworth: two types of construct (Chai and Housworth,
2011), composed of the minimum number of binary characters that
support a fully pectinate or fully symmetrical tree (and with sig-
nificant amounts of homoplasy). Radel et al. (2013) studied the
symmetrical case in more detail.

(e) Max-Homoplasy: the M 'T s, construct defined above; T can have any
topology, and each of the characters has t

4
steps. For T to be the

same as P with high probability, c must be at least t3 .

The Chai-Housworth datasets Radel et al. (2013) studied in more
detail have a much lower average number of steps than the datasets
constructed with the Max-Homoplasy method. Symmetrical Chai-
Housworth datasets are built by expanding a pattern, based on an in-
teger ≥p 2, such that s steps per character are obtained for a matrix

with =t 2p and = −c p4 3, with =
−

−

+

s p
2 3

4 3

p 1
(see Radel et al., 2013: 1188;

note that their formula is for homoplasy, subtracting 1 to the value
given here, since these are binary characters). Chai and Housworth’s
(2011) goal was to find sets of binary characters that would define a
uniquely most parsimonious tree with the minimum number of char-
acters, not with the maximum homoplasy; homoplasy is thus high in
their datasets, but far from the maximum possible to still have =T P.
For the same numbers of taxa, generating datasets with the Max-
Homoplasy method described here, = =s t

4
2
4

p
, and thus the ratio of

average number of steps with the method of Chai-Housworth, is
−

−+

t p(4 3)
2 12p 3 . This ratio increases with number of taxa; for =p 4 (32 taxa),
the average character length for Max-Homoplasy datasets is 2.2295
times that of Chai-Housworth datasets, but for =p 15 (32,768 taxa) the
ratio of average character lengths is 7.1253. While Radel et al. (2013)

Fig. 1. (a) The possible binary character-state distributions that have 2 steps and a synapomophy at group 9. The second step can occur in two branches (6, 11) such that the optimization
is ambiguous, and in 6 branches (0, 2, 3, 7, 12, 13) such that the character provides an unequivocal synapomophy for group 9. (b) The same, for a synapomorphy at group 11. Although
there are more places of change producing ambiguous optimizations (2, 3, 4, 7, 9) than unequivocal synapomophies for group 9 (0, 1, 5), the characters resulting from changes at nodes 2,
3, 4, 7 or 9 are also in conflict with each other, so that they cannot simultaneously have a better fit on an alternative tree. (c) A case where placing points of change on the tree, spread 3
nodes apart, still produces character-state distributions in the terminals that can be parsimoniously mapped with fewer steps than points of change. The terminal branches receive a grey
or black color depending on the points of change (with initial state grey, for the root); the internal branches receive their color in a most parsimonious optimization (based on the terminal
colors). See text for additional discussion.
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show (their Theorem 1, p. 1187) that the maximum homoplasy in da-
tasets with binary characters that determine a uniquely most parsi-
monious tree is unbounded and quickly grows with t (which they il-
lustrate by means of Chai-Housworth datasets), the homoplasy grows
more quickly in the present Max-Homoplasy datasets than in Chai-
Housworth constructs, and yet it is still bounded by t

4
(as otherwise the

dataset cannot determine a uniquely most parsimonious tree).
Radel et al. (2013) examined only Chai-Housworth datasets; they

considered it remarkable that tree-searches in TNT could consistently
find the optimal trees (up to 32,768 taxa), despite the large amounts of
homoplasy, which indicates that homoplasy does not necessarily erase
“phylogenetic signal” (Radel et al., 2013: 1186–1187). Goloboff (2014)
examined Chai-Housworth datasets in more detail, as well as Modular
and Max-Missing datasets; the present paper adds Max-Homoplasy and
Quad-Char datasets. Of all these, the datasets where tree-search algo-
rithms perform best are, surprisingly, those with the maximum homo-
plasy (Table 2). The tree-landscape for the homoplasy-free Quad-Char
datasets is (for comparable numbers of taxa) even less rugged than for
the highly homoplastic Chai-Housworth datasets. Quad-Char datasets
still seem to have a single local optimum (when saving numerous
multiple trees), but swapping on a single tree often gets stuck in a local
optimum –for Max-Homoplasy datasets, even TBR swapping on a single
tree finds the optimal tree in the vast majority of cases.

The optimal tree is so well defined by the Max-Homoplasy datasets,
that bootstrapping (Felsenstein, 1985) or other measures of group
support based on resampling (e.g., Farris et al., 1996; Goloboff et al.,
2003) find that all groups of the tree have supports of 99% or more
(even when analyzing each resampled data sets with a single random
addition sequence followed by TBR without saving multiple trees,
which makes it more likely that the optimal tree will be missed, and
thus tends to produce lower frequencies for groups actually supported
by the data).

This does not mean, of course, that finding optimal trees will always
be harder for datasets with less homoplasy –only that the relationship
between homoplasy and ease of analysis is not a lineal one, with the
distribution of homoplasy among the different terminals coming into
play as well when determining the shape of the tree-landscape. In ad-
dition, none of the methods (a)-(e) listed above consist of evolving
characters on a tree –rather, a tree topology T is being used to select
characters in such a way that the optimal tree P follows. In a sense, this
is a “model-less” method for generating experimental datasets. One of
the obvious difficulties in translating the present results to real biolo-
gical datasets is that the homoplasy in those cases tends to be con-
centrated in certain parts of the tree, or in specific characters, or with
particular patterns. In addition, all the studies of tree search algorithms
based on the empirical performance on real datasets show that even the
best tree-search algorithms often have difficulty converging to the same
tree-scores for datasets with even a few hundred taxa (e.g., see
Goloboff, 1999; Roshan et al., 2004; Goloboff and Pol, 2007, for par-
simony-based comparisons).

6. Equivalence (or not) under ML

For all the types of dataset examined in the previous section, except
Max-Missing, the results obtained under MP or ML are always the same
–repeated analysis with PAUP* (e.g., branch-swapping with T as
starting point, trying to find trees of better likelihood) suggests that
indeed = =T P L for those datasets.

In the case of Max-Missing, which have no homoplasy, for some
datasets =P L, and for others ≠P L. Fig. 2 illustrates one case where

≠P L, with 7 compatible characters, each of which determines a 4-
taxon tree. All these 4-taxon trees are compatible, and thus P displays
all 7 trees as subtrees (with a length of 7 steps). Although the partitions
determined by the data are compatible, L is a different tree, 8 steps long
(this analysis used the JC69 model, Jukes and Cantor, 1969, as im-
plemented in PAUP*, with short branches collapsed); instead of dis-
playing the subtree (A(H(IB))), L displays the subtree (A(I(BH))). The
subtrees corresponding to characters 1–7 do not have conflict in terms
of partitions, but their branch lengths cannot be combined in a single
tree; thus, ML perceives a “conflict”, which in terms of the parameteres
used by the method (i.e. branch lengths) is legitimate. Such a situation
illustrates possible problems of using quartets to reconstruct the ML tree
(e.g., Schmidt et al., 2002; Yang et al., 2014); optimality cannot be
guaranteed even in the case of fully compatible quartets. The example
also shows that partitions and homoplasy are not necessarily compar-
able in MP and ML, and that the latter method –if so required for better
fitting branch lengths– may prefer trees that require some homoplasy
for the data, even when some other tree would allow fitting the data
with no homoplasy whatsoever.

7. DNA sequences

The previous analyses used all the n combinations (or a sample
thereof) of the binary characters that have s steps on a given tree T. For
characters with more than two states, the number n of characters with s
steps changes with tree-shape (Steel and Charleston, 1995). It is pos-
sible that matrices which determine that =T P can be constructed with
even larger amounts of homoplasy, when the characters can take more
than 2 alternative states. For example, the maximum amount of
homoplasy in a binary character is the integer = −e t 1max

1
2 , but for a

character with 4 states it is = −e t 3max
3
4 , a larger number, suggesting the

possibility that larger amounts of homoplasy in 4-state characters still
allow constructing matrices for which =T P. However, this seems not
to be the case, based on the results shown in Table 3. Table 3 sum-
marizes the results of creating, for up to 12 taxa, the matrix MT s, for
each tree-shape (as for binary characters, MT s, was created by deacti-
vating in turn all the characters except those having s steps, from a
matrix containing all −4t 1characters for t taxa, with the first taxon
having the first state for each character; this is 4,194,304 characters for
12 taxa). In the case of 4-state characters for low numbers of taxa, =T P
for ≤s t0.5 –twice the number of steps as in binary characters! But the

Table 2
Results of applying hill-climbing searches to five types of data set where the most parsimonious tree can be known in advance. “Mult= hold 1” is a random addition sequence Wagner tree
followed by TBR branch-swapping saving a single tree; “Mult=hold 10” saves up to 10 trees. The probability of finding the minimum length (known in advance) with a search is
indicated, as well as the number of rearrangements examined on average by each type of search. Both types of searches, as implemented in TNT. The datasets where finding minimum
length is easiest are those with the most homoplasy.

mult= hold 1 mult= hold 10

Method Taxa Chars Min. length Homoplasy (CI) P (min. length) Rearrangs per repl. P(min length). Rearrangs per repl.

Max-Hom 64 300 4800 Very high (0.0625) > 99% 250×10^3 > 99% 300×10^3
Chai-Hous. 64 21 125 High (0.168) 25% 180×10^3 62.5% 630×10^3
Quad-Char 64 4 61 None (1.00) 1.2% 180×10^3 30% 1.2× 10^6
Modular 65 189 273 Low (0.692) 0.2% 65×10^3 0.2% 100×10^3
Max-Missing 64 61 61 None (1.00) ≪0.01% 160×10^3 ≪0.01% 1.3× 10^6
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relationship between T and P follows a pattern similar to that for binary
characters as t and homoplasy (i.e. extra steps, or number of steps be-
yond the minimum possible) grow. In the case of binary characters, the
homoplastic steps always equal the number of steps minus 1; such is not
the case for 4-state characters, because different characters may have
the same value of s steps, but a different minimum, thus a different
value of homoplastic steps e. For matrices including all characters with
e steps of homoplasy, the cases where =T P for all tree-shapes continue
being those in which ≤e t0.25 . But a character with 4 states will have a
minimum possible number of 3 steps at the most, so that ≤ +s e 3,
implying that the total number of steps s for =T P in 4-state characters
must be ≤ +s t0.25 3 (note that the case of =t 12, shown in Table 3, for
which =T P for all tree-shapes when the number of steps =s 6, obeys
this inequality). For a large enough t, the inequality for 4-state char-
acters ≤ +s t0.25 3 is in practice the same as that for binary characters,

≤s t0.25 , which is to say that both the maximum possible numbers of
steps, and the maximum possible homoplasy, for T to be unambiguously
recovered from the corresponding matrix, are similar for binary and for
4-state characters.

As in the case of binary characters, ML produces results that are
similar (overall) to those of MP, but not exactly identical. Testing cases
with significant numbers of taxa using PAUP* (with the JC69 model)
becomes difficult, for tree searches proceed extremely slowly (due to
the large numbers of characters). The largest case we could analyze
exhaustively is for 8 taxa. ML on =MT e, 1 produces =T L for 7 of the 11
possible tree-shapes, but ≠T L for the remaining 4 (when MP, see
Table 3, produces =T P for each of the tree-shapes). Thus, using 4-state
instead of binary data makes parsimony more able to recover T from

=MT e, 1 (with all shapes instead of only 10 producing =T P), while it
makes ML less able to recover T from =MT e, 1 (with 7 shapes instead of 8
producing =T L). Similarly, all 11 tree-shapes produce =T P for =MT s, 4
in the case of MP, while all tree-shapes produce ⊂T L in the case of ML.

For binary data, the matrix of all possible combinations of 0s and 1s
is perfectly undecisive for both parsimony and a 2-state Mkv model (as
discussed in Section 3). However, in the case of 4-state characters, the
matrix with all possible combinations of states 0–3 (or ACGT) is, sur-
prisingly, not fully undecisive under MP: for such matrix, some tree-
shapes have fewer steps than others. This seems to be so because the

Fig. 2. A case where 7 compatible characters (i.e. defining compatible subtrees), producing a unique most parsimonious tree (of 7 steps and no homoplasy), produce a different tree (of 8
steps) under maximum likelihood (with the JC69 model). See text for additional discussion.

Table 3
Results of maximum parsimony analysis for matrices containing all the possible 4-state characters with different numbers of steps (s) and different numbers of extra steps (e), for each of
the tree-shapes, for different numbers of taxa. Cases where the matrix for every tree-shape produces the same tree T as single most parsimonous tree P (i.e. T= P) are indicated with (+);
cases where every one of the shapes produces most parsimoniou(s) tree(s) different from T are indicated with (−). In the rest of cases, the number of shapes for which T= P is indicated
first, followed by the number of shapes where T is one among multiple equally parsimonious trees, ending with the number of shapes where T is not most parsimonious for the
corresponding matrix. The Ø symbol indicates that no possible distribution of 4 states can have (for the given number of taxa) that number of extra steps.

Taxa s=2 e=2 s=3 e=3 s= 4 e=4 s= 5 e=5 s= 6 e=6 s= 7 e=7

5 + Ø −
6 + − 0,1,2 Ø −
7 + − + Ø − Ø
8 + – + − 8,0,3 Ø − Ø
9 + − + − + − − Ø
10 + + + – + − + Ø − Ø
11 + + + − + − + − − Ø − Ø
12 + + + + + − + − + − − Ø
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number of characters that appear as synapomorphies depends on the
size of the group. For example, for 2-taxon groups the two taxa must
have an identical state for the character to be mapped as a synapo-
morphy; instead, for groups with more taxa, one of the taxa (nested
within a subgroup) may have a different state, but as long as its suc-
cessive sister groups have the same state (different from its outgroup),
the character will be mapped as an unambiguous synapomorphy
nonetheless. Because of this, the numbers of characters supporting each
possible taxon partition are not the same –some partitions are sup-
ported by more characters than others.

The matrix with all combinations of 4 states is perfectly undecisive
when analyzed under JC69 or 4-state Mkv: all tree-shapes have the
same likelihood, as calculated by PAUP*. The frequencies of the dif-
ferent state patterns in these matrices is the same one expected when
large numbers of characters are generated, assigning any of the 4 states
at random to each of the terminals, or when characters are evolved on a
tree with infinite branch lengths. Those data carry no phylogenetic
signal, and they are reassuringly perceived by current ML methods as
completely lacking any information to discriminate trees.

8. Conclusions and open questions

The relationships between confidence, ease of finding P or L, and
equivalence between MP and ML, do not simply depend on amounts of
homoplasy, but instead on more complex aspects of how the homoplasy
is distributed. The present analysis determined the maximum amount of
homoplasy in a set of binary characters over a tree T to be t0.25 for T to
be the same as P (and L), by empirically enumerating all possible
combinations for low numbers of taxa, and explained this number with
a general argumentation. It would be interesting to determine that
number from a more formal analysis, and if possible, to identify the
conditions that in the boundary of =s t0.25 cause P to be the same as T
for some tree-shapes but not for others.
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