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Abstract. In this paper we study how the use of a more continuous set of basis functions affects
the cost of solving systems of linear equations resulting from a discretized Galerkin weak form.
Specifically, we compare performance of linear solvers when discretizing using C0 B-splines, which
span traditional finite element spaces, and Cp−1 B-splines, which represent maximum continuity.
We provide theoretical estimates for the increase in cost of the matrix-vector product as well as
for the construction and application of black-box preconditioners. We accompany these estimates
with numerical results and study their sensitivity to various grid parameters such as element size h
and polynomial order of approximation p in addition to the aforementioned continuity of the basis.
Finally, we present timing results for a range of preconditioning options for the Laplace problem.
We conclude that the matrix-vector product operation is at most 33p2

/
8 times more expensive

for the more continuous space, although for moderately low p, this number is significantly reduced.
Moreover, if static condensation is not employed, this number further reduces to at most a value
of 8, even for high p. Preconditioning options can be up to p3 times more expensive to set up,
although this difference significantly decreases for some popular preconditioners such as incomplete
LU factorization.
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1. Introduction. Isogeometric analysis (IGA) [25, 10] is a Galerkin finite el-
ement method which has popularized the use of the nonuniform rational B-splines
(NURBS) basis for solving partial differential equations (PDEs). The computer aided
design (CAD) community has long used NURBS as a basis due to its higher-order
continuity, ideal for designing smooth curves and surfaces. The aim of IGA is to
circumvent the need of creating an intermediate geometric description by using CAD
descriptions directly in an analysis program.

The higher-order continuous basis also enables alternative approaches to solving
PDEs. In [22, 23, 15], NURBS were used to create H2-conforming spaces for use in
the standard Galerkin method for solving higher-order problems. In [8, 19, 20, 24],
NURBS were used to create spaces which are H(curl) and H(div) conforming. It has
been shown that the approximability of the higher continuous spaces per degree of free-
dom is superior to that of traditional finite element spaces for problems with smooth
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solutions. When the solution contains singularities, it is possible to employ multipatch
techniques to achieve superior approximation properties [21, 27]. The superior approx-
imability of NURBS have been studied theoretically in [11, 18] as well as numerically
in [2, 3, 8, 19, 20]. This suggests that IGA not only links geometry to analysis but also
is an efficient method for solving a variety of PDEs. In each of the referenced works,
the efficiency of IGA is argued on the basis of its performance per degree of freedom.
In like manner, we turn to study how computational costs are affected by continuity,
polynomial order, and function support size on a per-degree-of-freedom basis.

As for any Galerkin method, the main computational cost of IGA comes from the
assembly and solution of a system of linear equations. When using a direct method
to solve this linear system, we showed in [9] that for large three-dimensional problems
of given polynomial order p, the number of floating point operations (FLOPS) needed
to solve a Cp−1 discretization is approximately p3 times more expensive than that
of a C0 discretization with the same order of approximation p and same number of
degrees of freedom (DOF). In other words, each DOF is p3 times more expensive to
solve when using Cp−1 discretizations as opposed to using C0 discretizations. This
theoretical estimate was corroborated by our numerical experiments for problem sizes
of practical interest.

In this work, we extend our previous study to the case of iterative solvers. The
main motivation for using iterative methods is to reduce computational costs (time
and memory). However, in general there are no a priori estimates for the compu-
tational time required by the iterative solver because it is a composition of many
factors. These costs include matrix-vector multiplications and additional operations
required by the iterative method (vector scalings, dot products) as well as the cost
of setting up and applying the preconditioner. While these costs may be estimated,
their influence on the overall computational time tightly depends on the number of
iterations required to reduce the linear algebra error to a prescribed tolerance. For
example, it often occurs that a preconditioner which leads to few required iterations
for convergence is also more expensive to construct and/or apply. In the limit, an
LU factorization is the ideal preconditioner in terms of iteration count; however it is
expensive to construct and apply.

To develop a baseline understanding for how continuity affects iterative solvers, we
study the canonical Laplace problem discretized using C0 and Cp−1 B-spline spaces,
representing minimum and maximum continuity. We only consider the matrix-vector
multiplication component of the iterative solver. The additional operations required
by different iterative methods (vector updates, orthogonalizations) are not dependent
on the basis used, and therefore may be ignored when comparing how continuity
affects the iterative solver. To better expose the effect of continuity on the cost of
the solver, we use preconditioned conjugate gradients (CG) as our iterative method
because it is among the most efficient methods in the Krylov family [32, 33].

We study a range of standard preconditioners which are appropriate for small-
and medium-sized problems. These include diagonal Jacobi, successive overrelax-
ation, incomplete LU factorization, and element by element. Despite the fact these
methods do not scale to large problems, they are frequently used as building blocks
to construct more complex preconditioners (approximate solvers on subdomains of
domain decomposition and physics-based preconditioners or smoothers in multigrid
techniques [31, 1, 4]). Most of the techniques we study here are described in Saad’s
book [32] and implemented in scientific software frameworks such as PETSc [7, 6]. It
is our aim to assess the additional cost incurred by a more continuous basis as well
as illuminate how standard approaches work for IGA discretizations.
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This study complements other work on iterative solvers for IGA discretizations
[12, 13, 21]. In [13], Beirão da Veiga et al. proposed a large family of domain-
decomposition two-grid solvers and prove theoretically that the condition number
of the preconditioned system is independent of element size h. They also provided
numerical evidence showing that the condition number is independent of p when the
overlap between subdomains is sufficiently large. In [21], geometric multigrid was
analyzed in the context of isogeometric analysis. However, the emphasis was to study
convergence properties (condition number and number of iterations) and not the com-
putational efficiency.

The rest of this paper develops in the following manner. In section 2 we detail the
model problem used throughout this work. Section 3 derives theoretical estimates of
FLOPS needed to perform matrix-vector multiplications of linear systems resulting
from C0 and Cp−1 discretizations, as well as estimates for the setup and application
of different preconditioners. In section 4 we present numerical results to complement
the theory. We show convergence in terms of iterations as well as computational time
on a range of discretizations varying in h and p.

2. Model problem. The problem used for our study is the Laplace equation in
three dimensions on the unit cube,

(2.1)

−∇ · (∇u) = 0 on Ω,

u = 1 on ΓD,

(∇u) · n = 0 on ΓN ,

where Ω = [0, 1]3, ΓD = (0, :, :) ∪ (:, 0, :) ∪ (:, :, 0), and ΓN = (1, :, :) ∪ (:, 1, :) ∪ (:, :, 1).
We use uniform h-refinements of C0 and Cp−1 B-splines to discretize the weak form
of the Laplace equation. This simple problem excites all the eigenmodes of the linear
system avoiding superconvergent results.

Dirichlet boundary conditions are enforced by keeping such DOFs as formal un-
knowns in the linear system. First, the element matrices are formed ignoring Dirichlet
boundary conditions. Then the columns associated with Dirichlet boundary condition
DOFs are scaled by the Dirichlet value and then subtracted from the right-hand side.
When assembling the element matrix, we omit values which would fall into rows or
columns associated with a Dirichlet DOF. Finally we place a one in the diagonal and
the prescribed value in the right-hand side. We do not modify the nonzero structure
of the matrix, despite the fact that we have some values which are zeros.

3. Theory. In this section we develop theoretical estimates for the increase in
cost associated with the use of higher continuous spaces in Galerkin finite elements.
We assess cost by counting the FLOPS required by matrix-vector products and the
setup of different preconditioning options. We use these estimates as a measure of the
relative cost between C0 and Cp−1 spaces.

3.1. Matrix-vector multiplication. The main cost of iterative methods is due
to the matrix-vector multiplication operation which is proportional to the number of
nonzero entries in both the system and preconditioner matrix. We develop estimates
for the number of nonzero entries in the stiffness matrix of the model problem re-
sulting from C0 and Cp−1 discretizations in three spatial dimensions. We do this by
considering the number of nonzero entries that a single element of a structured grid
mesh contributes to the system matrix.

We begin by considering a single element of a one-dimensional (1D), C0 dis-
cretization of order p. Consider Figure 3.1 where we have drawn such an element,
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2p+1 interactions p+1 interactions

element considered

Vertex DOF: Interior DOF:

Fig. 3.1. Sample cubic C0 discretization with a single element highlighted.

particularized to a cubic for the sake of illustration. The number of nonzero entries
which this element contributes to the matrix is the sum of the interactions that each
of its bases has with all other basis functions which have overlapping support. In the
1D case, there are two classes of basis functions—those associated with the vertices
and those with the interior of the element. A basis associated with a vertex overlaps
2p+ 1 others while the bases associated with interiors overlap p+ 1 others. We con-
sider a DOF for a single vertex per element (since the other vertex is actually the
first vertex of the next element) and (p− 1) DOFs per interior. The total number of
nonzero entries accumulated due to a single element is then (1)(2p+1)+(p−1)(p+1).
This number is attained by summing over all entities the total number of interactions
of all the DOFs associated with that entity.

For the multidimensional case, we extend this method of counting the nonzero
entries of the matrix by a tensor product construction. In addition to vertex and inte-
rior DOFs, we have DOFs associated with edges in two and three dimensions as well
as DOFs associated with faces in three dimensions. We summarize the enumeration
of DOFs and their interactions in Table 3.1. The total number of nonzeros (nnz) due
to a single-element contribution is the row sum of the product of all columns in this
table. Specifically, for three dimensions we have

(3.1)

nnzC
0

= (p− 1)3︸ ︷︷ ︸
interior DOF

· (p+ 1)3

+ 3(p− 1)2︸ ︷︷ ︸
face DOF

· (2p+ 1)(p+ 1)2

+ 3(p− 1)︸ ︷︷ ︸
edge DOF

· (2p+ 1)2(p+ 1)

+ 1︸︷︷︸
vertex DOF

· (2p+ 1)3

= p6 + 6p5 + 12p4 + 8p3

= p3(p+ 2)3 = O(p6).
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Table 3.1

Summary table of the interactions of degrees of freedom associated with a C0 basis.

Number DOFs Number
Dimension Entity of entities per entity of interactions
1D vertex 1 1 (2p + 1)
1D interior 1 (p− 1) (p + 1)
2D vertex 1 1 (2p + 1)2

2D edge 2 (p− 1) (2p + 1)(p + 1)
2D interior 1 (p− 1)2 (p + 1)2

3D vertex 1 1 (2p + 1)3

3D edge 3 (p− 1) (2p + 1)2(p + 1)
3D face 3 (p− 1)2 (2p + 1)(p + 1)2

3D interior 1 (p− 1)3 (p + 1)3

Table 3.2

Actual and estimated increase in cost of a matrix-vector multiply for Cp−1 spaces relative to
C0 spaces, where N is the total number of DOFs in the system. The first four rows correspond to
ratios of timings for 1000 matrix-vector products corresponding to Cp−1 versus C0 spaces.

Polynomial order, p
N 2 3 4 5

103 1.19 1.95 1.93 0.94
104 1.76 2.22 2.96 3.19
105 1.74 2.56 3.02 3.46
106 1.80 2.60 3.08 3.51
∞ 1.95 2.74 3.37 3.88

In the case of Cp−1 B-splines, each basis function interacts with (2p+1)3 others.
To make the estimates comparable to the single element of C0 basis functions, we
multiply by the number of DOFs per element in a periodic domain, p3:

(3.2) nnzC
p−1

= p3(2p+ 1)3 = 8p6 + 12p5 + 6p4 + p3 = O(8p6).

We conclude that in the case of large p the increase in cost of matrix-vector
multiplication of Cp−1 spaces is no more than eight times that of C0 spaces. However,
for the range of meaningful discretizations of polynomial order p, we see this factor
smaller than the limit, approximately two for p = 2 and three for p = 3. In Table 3.2
we present some numerical results for the actual ratios of times for 1000 matrix-vector
products of Cp−1 and C0 spaces as the number of DOFs N in the system increases.
We compare these time ratios to the theoretical ratio of number of nonzero entries for
a system of infinite size, (3.2) divided by (3.1).

Note on static condensation. When using C0 spaces, it is common to first
eliminate (using Gaussian elimination) all DOFs interior to an element, a technique
known as static condensation [37]. This approach is also used in a multifrontal direct
solver algorithm [16, 17] and known to be of reduced value when using Cp−1 spaces
(see [9]). Iterative solvers can also make use of the technique, solving on the reduced
system, called the skeleton problem. The skeleton problem is not only of smaller
rank than the full matrix, but it also contains fewer nonzero entries. This affects the
iterative solver in that matrix-vector multiplications are economized.

To see this effect, we compute the number of nonzeros for a single element in
the resulting matrix after performing static condensation. In Table 3.3, we repeat
a portion of Table 3.1 which corresponds to the three-dimensional results. If we
statically condense the interior DOFs, these nonzero entries are now removed (the
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Table 3.3

Summary table of the interactions of DOFs associated with a C0 basis in three dimensions with
the interior DOFs statically condensed.

Number DOFs Number Statically
Entity of entities per entity of interactions condensed

vertex 1 1 (2p + 1)3 −8(p − 1)3

edge 3 (p − 1) (2p + 1)2(p+ 1) −4(p − 1)3

face 3 (p − 1)2 (2p + 1)(p + 1)2 −2(p − 1)3

Table 3.4

Actual and estimated increase in cost of a matrix-vector multiply for Cp−1 spaces relative to
C0 spaces with static condensation, where N is the total number of DOFs in the system. The first
four rows correspond to ratios of timings for 1000 matrix-vector products corresponding to Cp−1

versus C0 spaces.

Polynomial order, p
N 2 3 4 5

103 1.32 2.66 3.26 2.00
104 1.96 3.07 5.14 6.87
105 1.95 3.56 5.29 7.58
106 2.00 3.62 5.42 7.74
∞ 2.16 3.81 5.93 8.54

row of the table is removed). However, we also need to remove all interactions that
the vertices, edges, and faces have with interior DOFs. To this end, we have added
another column which represents these DOFs. For each entity we eliminate (p − 1)3

DOFs which correspond to each interior to which that entity was connected. Vertices
connect to eight interiors, edges to four interiors, and faces to two interiors. We then
sum the nonzero entries as before:

(3.3)

nnzC
0

sc = 3(p− 1)2︸ ︷︷ ︸
face DOF

· [(2p+ 1)(p+ 1)2 − 2(p− 1)3]

+ 3(p− 1)︸ ︷︷ ︸
edge DOF

· [(2p+ 1)2(p+ 1)− 4(p− 1)3]

+ 1︸︷︷︸
vertex DOF

· [(2p+ 1)3 − 8(p− 1)3]

= 33p4 − 12p3 + 9p2 − 6p+ 3 = O(33p4).

For large enough problems, the matrix-vector product of C0 spaces becomes
p2
/
33 more expensive that the statically condensed system. In the case of Cp−1

spaces, this number approaches 8p2
/
33. While the process of static condensation

incurs additional cost in the matrix assembly phase, in practice this approach is more
efficient than standard C0 approaches and not worthwhile in the case of Cp−1 spaces.
See Table 3.4 for comparison of theory to timing results.

While the gains in static condensation when using relatively low p are moderate,
for higher p the added efficiency is of greater importance. In Figure 3.2 we plot the
theoretical ratios of the number of nonzero entries for Cp−1 relative to C0 spaces with
and without static condensation. These plots represent, as p increases, how much
more expensive a matrix-vector product is when using Cp−1 spaces. When no static
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Fig. 3.2. The theoretical ratio of the number of nonzeros in system matrices, independent of
the number of unknowns.

condensation is used, we see that the increase asymptotically approaches (slowly)
a factor of eight. However, when compared to the use of static condensation, the
increase in cost continues to grow with high p. If one is to advocate the use of Cp−1

basis functions as a high-p method, the merits of the basis must be weighed against
this increase in cost.

3.2. Black-box preconditioners. Now we consider how more continuous bases
affect black-box preconditioning techniques, such as those found in [32, Chapter 10,
pp. 317–339]. We develop theoretical cost estimates in terms of FLOPS for both
forming and applying each preconditioner. In the paragraphs to follow we briefly
describe each preconditioner and explain how these estimates may be formed.

Diagonal Jacobi. Practical implementations of diagonal Jacobi preconditioning
extract the diagonal entries from the matrix and invert them, storing the result in a
vector. The application of the preconditioner is then performed by pointwise multipli-
cation of residual entries with the diagonal inverses. Both the setup and application
of this preconditioner require N FLOPS, independent of the continuity of the basis.

Symmetric successive overrelaxation (SSOR). The SSOR preconditioner is
based on a relaxation scheme, similar to Gauss–Seidel iterations. Practical implemen-
tations of SSOR preconditioning extract the diagonal entries from the matrix, invert,
and then scale them by the relaxation parameter in order to make the application of
the preconditioner more economical. The application of this preconditioner consists
of forward and backward sweeps, which roughly amounts to a single matrix-vector
product.

Incomplete LU factorization (ILU). ILU is a preconditioning technique based
on Gaussian elimination. Here we address only ILU with zero fill in. The ILU pre-
conditioner is formed by performing LU factorization, omitting entries which would
change the nonzero pattern of the original matrix. Thus, ILU is a crude approxima-
tion to the LU factors of the system matrix; however, more economical to compute
and apply.
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Table 3.5

Comparison of FLOPS estimates for the setup and application of different preconditioners for
C0 and Cp−1 spaces.

Type Space Setup FLOPS Apply FLOPS

Jacobi C0 N N
Jacobi Cp−1 N N
SSOR C0 N 2Np3

SSOR Cp−1 N 16Np3

ILU C0 2
3
Np6 Np3

ILU Cp−1 32Np6 8Np3

EBE C0 2Np6 Np3

EBE Cp−1 2Np9 8Np3

BBB Cp−1 210Nr9 ( 2r/p )98Np3

Implementations of the zero fill-in ILU preconditioner are based in the IKJ (see
the discussion in [32] starting on page 304) version of Gaussian elimination on the
static nonzero pattern of the input sparse matrix. The algorithm traverses the sparse
matrix by rows. At each row, the Gaussian elimination algorithm is applied on only
the nonzero entries.

Denoting by Li the number of nonzero entries in the strictly lower-triangular
part of the ith row and Uk the number of nonzero entries in the strictly upper-
triangular part of the kth row, the number of FLOPs required to eliminate the ith
row is Li(1 + 2Uk). For a Cp−1 system matrix, every row has (2p + 1)3 nonzero
entries; thus the number of nonzero entries in the strictly lower-triangular and upper-
triangular parts of the ith and kth rows is

Li = Uk =
(2p+ 1)3 − 1

2

and the total number of FLOPS for N rows is

FLOPSC
p−1

ILU = N
(
32p6 + 96p5 + 120p4 + 76p3 + 24p2 + 3p

)
.

For a C0 system matrix, the number of nonzeros per row depends on the kind of
DOF (see section 3.1) associated with that row. Obtaining analytic estimates is much
more involved. We use instead a computational approach consisting of building the
graph for a mesh of 5 × 5 × 5 elements for a C0 discretization of degree p = 1 . . . 7.
For every p, we compute the preconditioner row by row and add up the number of
FLOPS required for performing the ILU factorization for the middle element. By
using polynomial fitting, we obtain the coefficients of a degree 6 polynomial. Finally,
the cost of constructing the ILU preconditioner for a C0 system matrix is

FLOPSC
0

ILU = N

(
2

3
p6 +

26

3
p5 +

128

3
p4 +

601

6
p3 +

355

3
p2 +

200

3
p+

83

6

)
.

The ILU preconditioner is inexpensive relative to the full LU factorization and
is in both cases of order N . In three spatial dimensions, the highest-order term in
terms of the polynomial order is p6 for both C0 and Cp−1 spaces. In the case of large
p the increase in cost of matrix-vector multiplication of Cp−1 spaces is no more than
48 times that of C0 spaces. In the summary Table 3.5, we only include these leading
terms in order to more succinctly compare preconditioners. The application of this
preconditioner consists of forward and backward substitution steps, which roughly
amounts to a single matrix-vector product.
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Element by element (EBE). In the context of C0 finite element spaces, an
additive-Schwarz [34] preconditioner may be constructed in the limit where the sub-
domains are the elements of the finite element discretization. This preconditioner is
known as the EBE preconditioner. This preconditioner departs from that described
in [32] and follows [31]. Given the fully assembled system matrix, this preconditioner
is constructed by extracting the local element matrix and inverting it explicitly. The
inverse of the local element matrix is assembled into a preconditioner matrix which
has the same nonzero pattern as the original system matrix.

The cost of constructing the preconditioner for both C0 and Cp−1 spaces is the
number of elements Ne times the cost of inverting the small blocks,

Ne

(
2p9

)
.

For C0 discretizations the number of DOFsN can be related to the number of elements
by the relationship N = O(Nep

3). Therefore, the preconditioner cost can then be
expressed in terms of number of DOFs as 2Np6. In Cp−1 spaces, the number of
elements is roughly the number of DOFs N = O(Ne), which leads to the total cost
being 2Np9. We emphasize that in this case, the resulting matrix-vector product is
no more expensive than for the original system matrix. This means that the EBE
preconditioner is again at most 8 times more expensive to apply for Cp−1 spaces when
compared to C0.

Basis by basis (BBB). For Cp−1 spaces, we also construct an additive-Schwarz-
type preconditioner based on the family of preconditioners presented in [13]. We con-
sider a selection of these preconditioners constructed by taking single-basis-function
subsets of the function space. We explore the performance of this family of precon-
ditioners by varying the number of overlapping basis functions, 0 ≤ r ≤ p. We call
this preconditioner BBB and note that if r = 0, the preconditioner corresponds to
diagonal Jacobi. In the case that r = p/2 the preconditioner is similar to the EBE
preconditioner described above. If the polynomial order is even and the domain is
periodic, it is identical to the element-based preconditioner.

The cost of constructing this preconditioner is the number of basis functions
multiplied by the cost of inverting the block, N2 (2r + 1)

9
. However, in this more

general family of preconditioners, the nonzero structure of the preconditioner matrix
varies with choice of r, resulting in a significant change in the cost of the matrix-
vector product. The number of nonzero entries in the system matrix for a Cp−1 basis
is N(2p + 1)9. The number of nonzero entries in the preconditioner matrix can be
obtained by a similar expression, this time each row interacting with 4r+1 columns.
This leads to a number of nonzero entries which grows like N(4r + 1)9. Thus the
cost of the matrix-vector product of the preconditioner matrix relative to the system
matrix can be expressed as (2r/p)9. If r = p/2 , then applying the preconditioner is
just as expensive as a matrix-vector product of the system matrix.

Summary. We summarize the cost of setting up and applying each precondi-
tioner in Table 3.5. We note that in all cases, except for the trivial diagonal Jacobi or
SSOR, the setup cost of these preconditioners is more expensive for the Cp−1 spaces.
Also, the application of the preconditioners we study is in most cases no more expen-
sive than the matrix-vector product of the corresponding space. Of particular interest
in the case of Cp−1 spaces, is that the EBE and BBB preconditioners are estimated
to take p3 more FLOPS to set up, suggesting that they might not be as useful from a
practical point of view. This estimation is corroborated by the numerical experiments
in section 4.
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4. Numerical results. In this section, we first present numerical results con-
firming the theoretical estimates presented in the previous section. We do this to
isolate the cost of sparse matrix kernels from the iterative method in which they are
employed. Second, we present results on iteration counts as the spaces are scaled in
h and p for a range of preconditioners. Finally, we report wall-clock times required
to solve the model problem. In all our numerical tests, we start from an initial guess
of zero, and declare convergence when the preconditioned residual norm decreases by
eight orders of magnitude.

4.1. Sparse matrix kernels. In this subsection, we chose a periodic three-
dimensional grid of N = 60 × 60 × 60 = 216,000 degrees of freedom. By using
polynomial degrees p = 1 . . . 5, we can construct C0 and Cp−1 discretizations with
(60/p)× (60/p)× (60/p) and 60× 60× 60 elements, respectively. For these discretiza-
tions, we assemble stiffness matrices and use them for our experiments. The exper-
iments consist in measuring the wall-clock time spent in the various sparse matrix
kernels discussed in section 3. Because these times can be on the order of millisec-
onds, we report the average time over 100 samples. The experiments were conducted
on a desktop machine with a 3.07-GHz Intel Core i7 950 processor, 8 megabytes of L3
cache, and a cache line of 64 bytes, a 4.8-GT/s Intel QPI memory interconnect, and
12 gigabytes of 1066-MHz DDR3 memory. The standard STREAM Triad benchmark
performance [28] is 11 gigabytes per second of achieved memory bandwidth.

Figures 4.1–4.3 present the results of our experiments. The plots on the left
present estimated and measured wall-clock times for C0 and Cp−1 spaces. Square
markers correspond to measured time and solid lines correspond to our theoretical
FLOP count. The theoretical FLOP count is obtained by first recalling that sparse
matrix-vector product operations, symmetric successive overrelaxation sweeps, and
triangular solves require 2 FLOPS per nonzero entry in the sparse matrix. We then
scale with the achieved mean FLOP rates in order to relate FLOP count to time.
Plots on the right present the time ratio for C0 and Cp−1 discretizations.

Overall, the measurements match closely the theoretical estimates except for
SSOR sweeps. In the case of SSOR, forward and backward sweeps operate on the
lower- and upper-triangular parts of the sparse matrix. Furthermore, the backward
sweep is performed in reversed row ordering. The data access pattern is much more
irregular than that of the matrix-vector product. This leads to higher variability in
the mean FLOP rate as p varies which accounts for the mismatch in the plots.
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Fig. 4.1. Matrix-vector product. Average wall-clock time over one hundred products for systems
of 216,000 degrees of freedom for C0 and Cp−1 discretizations.
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Fig. 4.2. SSOR application cost. Average wall-clock time over one hundred applications for
systems of 216,000 degrees of freedom for C0 and Cp−1 discretizations.
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Fig. 4.3. ILU. Average wall-clock time over one hundred factorizations and applications for
systems of 216,000 degrees of freedom for C0 and Cp−1 discretizations.

Textbook implementations of ILU factorization and forward/backward triangular
solves also suffer from this issue. However, PETSc employs a different data layout
to store the LU factors and is able to achieve a FLOP rate comparable to that of
matrix-vector products. See [35] for a thorough analysis and discussion about the
importance of data layout in triangular solves.

While intended as verification for our theoretical estimates, these experiments re-
veal additional information about the costs of these preconditioners. For both SSOR
and ILU we observe that the application cost roughly doubles for each additional order
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p when using C0 spaces. However, the application costs of ILU are smaller relative to
SSOR. For both preconditioners, the Cp−1 spaces are roughly p/2 times more expen-
sive to apply than their C0 counterparts. While smaller than the application cost, the
setup costs for ILU grow more quickly with respect to p, a factor of approximately
3 for each p. In this case the factorization of Cp−1 spaces are consistently 2p times
more expensive.

4.2. Iteration counts. The purpose of a preconditioner is to improve the spec-
trum of the eigenvalues of the original operator. The number of iterations required for
convergence is tightly related to this spectrum [29]. While the setup and application
cost of the preconditioner is an important factor, a measure of how well precondition-
ers work in terms of number of iterations is also critical. In Tables 4.1 and 4.2, we
present numerical results which test how well each preconditioner works in terms of
number of iterations.

We study the iteration counts as the function spaces vary in h and p. In this
study we interpret h as half of the basis support size as opposed to the traditional
interpretation of the element size, denoted as he. This element size corresponds to
the size of the partition used for numerical integration (quadrature). This means that
h retains its original meaning in the case of C0 spaces, that is h = he. However, for
Cp−1 spaces, h = he(p+ 1)/2. We argue this based on the observation that under
this definition, the condition number scales as standard theory suggests (h−2 see [5])
for the Laplace problem. If one considers scaling of the condition number based on
he, the integration support, then the scaling artificially appears to be better.

In both spaces, the remarkable result is that the ILU preconditioner outperforms
other options in terms of number of iterations as well as the p scaling. Of greater
interest is that in the case of Cp−1 spaces, its p scalability is perfect. We reason
that this may be due to the linear systems resulting from Cp−1 basis functions being
more interconnected. However, this is only a conjecture and the reason behind this
attractive property remains unknown to the authors.

Our interest in studying the cost of solving medium-sized problems using standard
techniques is at the core of more complex preconditioning approaches such as domain

Table 4.1

Number of iterations required for convergence of CG using different preconditioners and C0

B-spline spaces.

Basis support size, h
p type 1/2 1/4 1/8 1/16
1 Jacobi 5 11 23 45
2 Jacobi 19 31 42 61
3 Jacobi 68 91 97 107
4 Jacobi 216 355 406 424
1 SSOR 5 7 14 24
2 SSOR 11 14 17 27
3 SSOR 27 30 31 37
4 SSOR 65 75 77 80
1 ILU 1 7 12 22
2 ILU 7 9 15 26
3 ILU 8 11 19 34
4 ILU 10 14 24 42
1 EBE 6 21 30 45
2 EBE 17 34 45 65
3 EBE 23 38 50 86
4 EBE 27 47 63 111
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Table 4.2

Number of iterations required for convergence of CG using different preconditioners and Cp−1

B-spline spaces. The BBB preconditioner is shown for r = p/2 .

Basis support size, h
p type 1/2 1/4 1/8 1/16
1 Jacobi 5 11 23 45
2 Jacobi 22 30 39 65
3 Jacobi 70 99 100 105
4 Jacobi 165 139 149 152
1 SSOR 5 7 14 24
2 SSOR 13 15 19 29
3 SSOR 33 34 34 41
4 SSOR 82 68 65 66
1 ILU 1 7 12 22
2 ILU 5 7 12 22
3 ILU 6 7 12 20
4 ILU 6 8 12 20
1 EBE 6 21 30 45
2 EBE 26 45 51 60
3 EBE 50 74 81 89
4 EBE 77 109 116 123
1 BBB 5 11 23 45
2 BBB 18 22 26 42
3 BBB 30 35 38 54
4 BBB 29 32 36 51

Table 4.3

Number of iterations required for convergence with a two-grid solver.

Basis support size, h
p space 1/2 1/4 1/8 1/16

1 C0 4 16 19 19
2 C0 15 18 20 21
3 C0 18 20 21 22
4 C0 20 24 25 26
1 C0 4 16 19 19
2 C1 14 15 17 19
3 C2 14 15 18 19
4 C3 14 15 18 19

decomposition and multigrid. For example, despite the fact that ILU does not scale
as well in h, we can use it in a multigrid approach to remove h dependence. For
example, in Table 4.3 we show iteration counts for a two-grid solver we constructed.
On the fine grid, we use CG with ILU and a direct solver on the coarse level. The
coarse level is a factor of 23 unrefined in h from the fine level. We see that as in
standard C0 spaces, a multigrid approach is able to remove h dependence from linear
systems discretized using Cp−1 spaces.

The iteration counts for the BBB preconditioner shown in Table 4.2 are for an
overlap parameter r = p/2. We have selected this size in an attempt to balance
the cost of applying the preconditioner and its convergence. In Table 4.4, we show
convergence results for more choices of the overlap parameter r. Note that when r = 0
the preconditioner is diagonal Jacobi. As the overlap increases, we see an improvement
in the number of iterations. However, when the overlap is at its maximum, r = p,
the setup and application of the preconditioner is prohibitively expensive. We suggest
that the choice r = p/2 leads to a good compromise between fast convergence and
moderate application cost.
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Table 4.4

Number of iteratures required for convergence for the BBB preconditioner where the basis sup-
port size is a constant h = 0.25, p varies from 1 to 8, and the overlap r varies from 0 to p. Underlined
entries represent a preconditioner with approximately the same number of nonzero entries as the
original system matrix.

Basis overlap, r
p 0 1 2 3 4
1 11 16
2 30 22 21
3 99 35 25 24
4 139 56 32 28 27
5 345 76 48 35 30
6 353 112 68 48 35
7 610 167 104 64 43
8 737 201 130 92 65

(a) p = 2 (b) p = 3

(c) p = 4 (d) p = 5

Fig. 4.4. Solution times of various preconditioning options for C0 and Cp−1 spaces consisting
of N = 105 degrees of freedom.

4.3. Timing results. While the number of iterations required for convergence
is a useful measure to study, it is not sufficient to understand which preconditioning
options are better from a practical point of view. Frequently, a practitioner must
experiment with different options on a meaningful range of problem sizes. For a
preconditioner to be effective, the cost of setting up and applying must be weighted
against its capability to improve the spectrum of eigenvalues, effectively reducing the
total number of iterations.

We first present some timing results for linear systems consisting of 105 degrees
of freedom. In Figure 4.4 we display bar graphs representing the total solution time
required for convergence for different preconditioning options and varying polynomial
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(a) p = 2 (b) p = 3

Fig. 4.5. Solution times of various preconditioning options for C0 and Cp−1 spaces consisting
of N = 106 degrees of freedom.

order p. In each plot we display C0 spaces on the left and Cp−1 on the right. Fur-
thermore, each bar is divided into two parts. The bottom part represents the setup
time required for each preconditioner and the top the remaining solve time. We also
include the number of iterations required for convergence on the top of each bar.

Most striking is the time required by the EBE and BBB preconditioners for Cp−1

spaces. As predicted in the theoretical estimates for setup cost, these precondition-
ers are considerably more expensive to set up and additionally they are not able to
significantly reduce the total number of iterations. This is an effect that continues to
grow as we increase N , the size of the problem.

We would like to make an additional comment on the ILU preconditioner. From
the analysis of setup costs, it is clear that EBE and BBB preconditioners are p3 times
more expensive to set up than ILU. However, the EBE, BBB, and ILU preconditioners
are all based on the Gaussian elimination process. The EBE and BBB preconditioners
are built by taking into account the interaction between a compact neighborhood of
DOF (defined by elements in the case of EBE and by the overlap r in the case of BBB).
Due to its algorithmic structure, we intuitively argue that ILU is able to capture the
interactions between different DOFs in a more global manner, and therefore has a
better effect on the convergence of the problem.

In Figure 4.5 we remove the EBE and BBB preconditioning to better highlight
the differences between the remaining choices. Also, we have increased the number of
DOFs to 106. We see that in this case, the remaining preconditioners (Jacobi, SSOR,
and ILU) all perform similarly in terms of time. We also see that SSOR and ILU
require a similar number of iterations. The Cp−1 spaces are two times as expensive
as the C0 spaces for p = 2 and three times as expensive for p = 3, as predicted by
our theoretical estimates.

We extend the study to include a range of DOFs in Figure 4.6(a); however, we
only consider the ILU preconditioner. We show the ratio of solve times for Cp−1

to C0 for a range of problem sizes N and polynomial orders p. For this example,
the cost of the use of the higher continuous basis is anywhere from p to 2p times
more expensive. However, in the theory section, we showed that the solve cost can
be greatly reduced when using static condensation and solving the skeleton problem.
In Figure 4.6(b) we have repeated the numerical experiment, this time using static
condensation on the C0 spaces. The additional assembly time incurred due to static
condensation operations has been included in the solve cost. In this case, the Cp−1

spaces are O(p2) times more expensive to solve, as predicted by the theoretical cost
of the matrix-vector multiplication estimates.
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(a) Cp−1 versus C0

(b) Cp−1 versus C0 with static condensation

Fig. 4.6. Solve-time ratios for Cp−1 and C0 spaces using CG preconditioned with ILU. Solve
time is inclusive of the setup of the preconditioner but excludes assembly time. In the case of
static condensation, the solve time includes extra assembly time required to compute the Schur
complements.

5. Conclusions. We have presented a study on the additional cost incurred in
the iterative solver due to the use of a more continuous basis in a Galerkin weak
form. We have presented theoretical estimates for computational costs of matrix-
vector multiplication as well as preconditioner setup and application for a variety of
preconditioning techniques. We present numerical results for the Laplace problem to
establish a baseline understanding of how continuity affects the solver.

We conclude that the matrix-vector product is at most eight times more expensive
for the Cp−1 spaces. However, when using high p with static condensation, this factor
increases to 8p2

/
33. We expect that the improved approximability per DOF of the

Cp−1 spaces may be better realized when using the iterative solver, particularly for
low p. This is, however, strongly tied to the performance of the selected preconditioner
applied to the equation of interest.
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For moderate N and the Laplace problem, the EBE and BBB preconditioners are
prohibitively expensive options for Cp−1 spaces. This is because there is an element
per basis function which results in far greater setup costs than in C0 spaces. For these
options to be effective for a particular problem, they should lead to a considerably
large decrease in iterations compared to other options. This is not the case for the
simple Laplace problem and, intuitively, we do not expect this to be the case for more
complex applications.

The ILU preconditioner, while lacking a theoretical ground for convergence, per-
forms quite well in terms of iterations and computational time. Remarkably, for Cp−1

spaces we observe perfect almost p-scaling of the preconditioned operator condition
number up to 106 DOFs.

In this work we show how solve costs are affected by a more continuous basis
on a per DOF basis. In order to assess the behavior of the error with respect to
computational cost, ones needs to combine the results described in this article (cost
per DOF) with those analyzed in other publications (error per DOF). Both of these
properties are highly dependent on the problem being analyzed.
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