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ABSTRACT: On-line estimation of biomass concentration in batch biotechnological processes is an active area of research
because normally, the biomass is the desired process product output, and also because it is necessary for control purposes to
replace the unavailable biomass concentration measurements with reliable and robust on-line estimations. This work presents
five different alternatives to face the problem of biomass estimation in a particular batch bioprocess (d-endotoxins production
of Bacillus thuringiensis), namely: a phenomenological estimator based on dissolved oxygen balance, an extended Kalman
filter estimator, a Gaussian process regression-based estimator, an artificial neural networks-based estimator, and finally, an
estimator based on information fusion by a decentralized Kalman filter. Each proposed biomass estimation method has its
own advantages and drawbacks according to their ability to take into account the model uncertainties and the measurement
errors. First, the design techniques of these five biomass estimators are exposed, and finally, the behavior of each estimation
method is compared. The availability of efficient biomass estimators is of great importance for engineers because, on the one
hand, it allows developing new control strategies for other bioprocess variables such as for instance: the growth rate of the
microorganism, the dissolved oxygen concentration, and so on. On the other hand, it is also important to improve the
performance of the bioprocess optimization procedure. This work also aims to show the evolution on biomass estimation
techniques from classical to more contemporary approaches, such as the design based on neural networks and Gaussian
processes regression. © 2013 Curtin University of Technology and John Wiley & Sons, Ltd.
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INTRODUCTION

Biomass concentration in a biotechnological process is
one of the states that characterize a bioprocess. Moreover,
it is generally the main direct or indirectly desired product
output. It is well known that the biomass concentration is
not normally measured because this measurement is
not possible or is economically unprofitable. Therefore,
for control purposes, it is necessary to replace the
unavailable biomass concentration measurements with
reliable and robust on-line estimations. To this aim,
several states observers can be found in the literature. A
review of commonly used techniques can be found
in [1,2] and references therein. Observers can be coarsely
divided into two broad classes: first, principles or
phenomenological estimators and empirical estimators.
The phenomenological estimators can be also
subdivided into classical observers and asymptotic
observers. Classical observers include extended
Kalman filter (EKF), extended Luenberger observer,

high-gain observer, nonlinear observers, and full
horizon observer. In this class of estimators, a detailed
knowledge of the reaction kinetics and associated
transport phenomena are required to represent the
balance equations. Modeling the biological kinetics
reactions is a difficult and time-consuming task, and
therefore, the model used by the estimators could differ
significantly from reality. This is the main disadvantage
of these phenomenological estimators, i.e. their efficiency
strongly relies on the model quality. Empirical estimators
are based on constructing appropriate nonlinear
models of biotechnological processes exclusively from
the process input–output data without considering the
functional or phenomenological relations between the
bioprocess variables.
For the machine learning community, the data-based

modeling of the biomass concentration from a finite
number of noisy samples (the training dataset) is a
supervised learning problem. From this area, in recent
years, the artificial neural network (ANN) methodology
has become one of the most important techniques
applied to biomass estimation, e.g. [3–5] and references
therein. Neal’s work on Bayesian learning for neural
networks [6] shows that many Bayesian regression
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models based on neural networks converge to a class
of probability distributions known as Gaussian pro-
cesses according as the number of hidden neurons
tends to infinity. This fact motivates the idea of
replacing parameterized neural networks and work
directly with Gaussian process models for the high-
dimensional applications to which neural networks
are typically applied.[7]

This paper addresses the problem of the biomass
estimation in a batch biotechnological process, the
Bacillus thuringiensis (Bt) d-endotoxins production
process, and presents different alternatives that can be
successfully used in this sense. The development of the
paper includes the design of five biomass concentration
estimators. The first two are phenomenological esti-
mators, namely, a phenomenological estimator based
on dissolved oxygen (DO) balance, and an EKF esti-
mator. The next two are empirical estimators: a Gaussian
process regression-based estimator and an ANN-based
estimator. The fifth and last one is an estimator based
on the information fusion of two previously available
estimators through a decentralized Kalman filter. This
paper focuses on the most important aspect of the
design of these estimators and their consequences on
the basis of the previous work [8] where the tools used
were the most important. Finally, the last two sections
contain an analysis of results and discussion, and some
final conclusions.

BACILLUS THURINGIENSIS d-ENDOTOXINS
PRODUCTION PROCESS

The bioprocess

Bacillus thuringiensis is an aerobic spore-former
bacterium, which, during the sporulation, produces
insecticidal crystal proteins known as d-endotoxins. It
has two stages on its life span: a first stage characterized
by its vegetative growth and a second stage named
sporulation phase. When the vegetative growth finalizes,
the beginning of the sporulation phase is induced when
the mean exhaustion point has been reached. Normally,
the sporulation is accompanied by the d-endotoxin
synthesis. After the sporulation, the process is completed
with the cellular wall rupture (cellular lysis), and the
consequent liberation of spores and crystals to the culture
medium.[9–11] The microorganisms used in this work
were Bt serovar kurstaki strain 172–0451 isolated in
Colombia and stored in the culture collection of
Biotechnology and Biological Control Unit (CIB).[12]

Growth experiments of the fermentation process were
performed in a reactor with a nominal volume of 20L
(Fig. 1). The fermentations were developed with an
effective volume of 11L of cultivation medium, and they
were inoculated to 10% (v/v) with the microorganism Bt
culture. The pHmedium was adjusted to around 7.0 with
potassium hydroxide before its heat sterilization. If the

Figure 1. Fermentation pilot plant scheme.
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pH controller has a malfunction, the pH values do not
deviate too much from the suitable values for the growth
of Bt (5.5–8.5 as reported by [13]). An equation for the
growth kinetics is used for cases where the pH has a
significant effect on cell growth; however, such is not
the case for this work.
Bacillus thuringiensis d-endotoxins production is

an aerobic operation, i.e. the cells require oxygen as a
substrate to achieve cell growth and product formation.[14]

The temperature was maintained around 30C� by
using an ON/OFF controller, whereas the pH was fixed
between 6.5 and 8.5. The airflow was set up at 1320L/h
and the agitation speed at 400 rpm. Manometric
pressure in the reactor was set at 41,368 Pa by using a
pressure controller. Temperature, pH, DO, and glucose
concentration were registered by a data acquisition
system using an AdvantechW PCL card. DO was
measured by a polarographic oxygen sensor InPro
6000 (Mettler Toledo, Switzerland), and glucose
concentration with a rapid off-line measurement
method through a glucose analyzer (YSI 2700).

Bioprocess model

A simple phenomenological model was proposed by
Rivera et al.,[15] a modification to the Rivera model
was given by Atehortúa et al.[16] Afterward, Amicarelli
et al. [5,17] improved the model process by adding the
DO dynamics due to its importance in the biomass
estimation problem and the posterior process control.
The DO dynamic model is based on unstructured and
unsegregated descriptions of the cell population. The
microorganism growth is affected by DO concentration
(below the 10% critical value). In this work, the DO is
considered in excess by an adequate airflow and
agitation speed. In a previous work,[17] a DO controller
was presented and given an experimentally validated
temporal profile of the DO during the fermentation;
the controller can maintain the DO level at an optimum
level for this process. For the fermentations where the
DO concentration is below its critical value, the process
with the controller presents an improved behavior.
The following state-space model is the discrete time

version of the continuous-time counterpart developed
by Amicarelli et al.[17]

where Xv is the vegetative cell concentration, XS the
sporulated cell concentration, X =Xv +XS is the total
cell concentration (X(k + 1) =(m(k) - ke(k))TsXv(k) +X
(k)), S is the limiting substrate concentration, and DO
is the DO concentration.
The following algebraic equations define the specific

growth speed m (model based on Monod equation for
each limiting nutrient S and DO), the spore formation
rate kS, and the death cell specific rate ke.

m kð Þ ¼ mmax
S kð Þ

Ks þ S kð Þð Þ
DO kð Þ

KO þ DO kð Þð Þ
� �

(2)

ks kð Þ ¼ ksmax
1

1þ eGs S kð Þ-Psð Þ

� �
-ksmax

1

1þ eGs Sinitial-Psð Þ

� �
(3)

ke kð Þ ¼ kemax
1

1þ eGe Ts k-Peð Þ

� �
-kemax

1

1þ eGe tinitial-Peð Þ

� �
(4)

The complete notation and model parameter’s values
are presented in the Nomenclature and in Table 1.
Four batch cultures with different initial glucose

concentration (8, 21, 32, and 40 g.L�1) and initial
vegetative cell concentration (0.424 g.L�1 for the first
three substrate conditions and 0.605 g.L�1 for the
last one) were carried out to generate experimental
data for model validation and parameters tuning. The
initial sporulated cell concentration is 0 g.L�1 in all
fermentations. In this context, four parameter sets
guarantee a representative covering of an intermittent
fed-batch culture with total cell retention in the
operation space according to the work of Atehortúa
et al.,[16] see Table 1.
Maximum glucose concentration in the medium

(Smax) was used as the switching criteria among the
estimated batch parameter sets.

BIOMASS ESTIMATORS DESIGN

The duration of the batch fermentation is limited and
depends on the initial conditions of the microorganism
culture. All the fermentations used in this work were
initialized with an inoculum and different substrate
concentration conditions.[16] When the medium is
inoculated, the biomass concentration increases at the

Xv kþ 1ð Þ
Xs kþ 1ð Þ
S kþ 1ð Þ
DO kþ 1ð Þ

2
664

3
775 ¼

m kð Þ-ks kð Þ-ke kð Þð ÞTsþ 1ð Þ Xv kð Þ
ks kð ÞXv kð Þ Tsþ Xs kð Þ

-
m kð Þ
Yx=s

þms

� �
Xv kð Þ Tsþ S kð Þ

K1-K2Tsð Þ X kð Þ-K1 X kþ 1ð Þ þ DO kð Þ þ K3QATs DO�-DO kð Þð Þ

2
66664

3
77775 (1)
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expense of the nutrients, and the fermentation concludes
when the glucose that limits its growth is consumed
or when 90% or more of cellular lysis is presented.
Note that the latency period is removed (the
bioprocess dead time is not considered here) and note
also that the duration of each experiment is
approximately 16 h.
The collected data from the fermentations are a set

of concentration measurements of DO, primary
substrate (S), and biomass (X), which have been
sampled at different frequencies: 10 samples per hour
for the concentrations of DO and glucose and 1 per
hour for the biomass concentration that was
quantified by cell dry weight method. Practically,
DO can be continuously measured, whereas S can
be measured up to 20 times per hour. From the
bandwidth estimation of system signals by using
Fourier frequency analysis, the sampling time Ts = 1/
10 hours has been selected for DO and substrate
measurements.[18,19] To design biomass estimators
for the Bt d-endotoxins production process, it is
proposed a two-stage method.[18] In the first stage,
the biomass concentrations dataset is completed to
have the same size as the DO concentration and
primary substrate (glucose) concentration data sets.
For this missing data problem, it was considered a
Bayesian Gaussian process regression as an
imputation strategy for filling the missing values.[18]

In the second stage, different biomass estimators are
designed.

First stage design for all estimators – filling
the biomass missing data

Suppose that we have a noisy training data set D, which
consists of m pairs of n-dimensional input vectors {xi}

(regression vector) joined in an n�m matrix X, and m
scalar noisy observed outputs {yi} collected in a vector y.

D ¼ xi; yið Þf ji ¼ 1; L;mg ¼ X; yf g (5)

To construct a probabilistic statistical model for D,
the following data-generating process is assumed:

yi ¼ f xið Þ þ ei (6)

where the latent real-valued function f is the deter-
ministic or systematic component of the model, and the
additive random term e is the observation error. The
aim of regression is to identify the systematic component
f from the empirical observations D.
In this section, the biomass concentration data vector

is completed with virtual filtered measurements to have
the same size as DO and substrate data vectors. This is
a missing data problem, and the Gaussian process
regression will be used as imputation method for filling
the missing values (note that this task in a deterministic
framework, which can be viewed as a curve-fitting or
interpolation problem).
For all experimental fermentations, the data-generating

model for biomass concentration is:

X tkð Þ ¼ X̂ tkð Þ þ e tkð Þ (7)

The training data set D consists of 18 pairs of time
inputs t= {tk} ={1, . . .,18} (in hours), and noisy biomass
measurements outputs X= {Xk} ={X(t1), . . .,X(t18)}. The
latent functions X̂ ¼ X̂ k

� � ¼ X̂ t1ð Þ; . . . ; X̂ t18ð Þ� �
are

the estimated biomass concentrations.
The expression ‘Gaussian process regression model’

refers to the use of a Gaussian process as a prior on f.

Table 1. Model parameters for the intermittent fed-batch culture with total cell retention of Bacillus thuringiensis
serovar. Kurstaki.

Smax<10 g.L�1
10 g.L�1< Smax

< 20 g.L�1
20 g.L�1< Smax

< 32 g.L�1 Smax> 32 g.L�1

mmax[h
- 1] 0.8 0.7 0.65 0.58

Yx/s[g. g- 1] 0.7 0.58 0.37 0.5
Ks[g. L

- 1] 0.5 2 3 4
Ko[g.L

- 1] 1� 10- 4 1� 10- 4 1� 10- 4 1� 10- 4

ms[g/g/h] 5� 10- 3 5� 10- 3 5� 10- 3 5� 10- 3

ksmax 0.5 0.5 0.5 0.5
Gs[g.L- 1]- 1 1 1 1 1
Ps[g. L- 1] 1 1 1 1
kemax[h- 1] 0.1 0.1 0.1 0.1
Ge[h- 1] 5 5 5 5
Pe[h] 4 4.7 4.9 6
K1 dimensionless 9.725� 10- 4 4.502� 10- 3 3.795� 10- 3 1.597� 10- 3

K2[h
- 1] 1.589� 10- 4 0.046� 10- 3 0.729� 10- 3 0.561� 10- 3

K3[L
- 1] 4.636� 10- 4 0.337� 10- 3 2.114� 10- 3 1.045� 10- 3

Ts[h] 0.1 0.1 0.1 0.1
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This means that every finite-dimensional marginal joint
distributions of function values f associated to any
input subset of X is multivariate Gaussian.

p f X; yPj Þ ¼ N m Xð Þ;K X; yPð Þð Þð (8)

A Gaussian process is fully specified by a mean
function m(X)= [m(x1), L,m(xm)]

T and a positive definite
covariance matrix K(X, yP), and it can be viewed as a
generalization of the multivariate Gaussian distribution
to infinite dimensional objects. Choosing a particular
form of covariance function, the hyperparameters yP
may be introduced to the Gaussian process prior.
Depending on the actual form of the covariance function
K(X, yP), the hyperparameters yP can control various
aspects of the Gaussian process.
In this work, the elements of the parameterized

covariance matrix, C(X, yP, s
2), are denoted Cij = C

(xi, xj), and they are functions of the training input data
X, because these data determine the correlation
between the training data outputs y. A suitable
parametric form of the covariance function is:[18]

Cij ¼ y0 þ y1 exp -
1
2

Xn
l¼1

x lð Þ
i -x lð Þ

j

� �2

r2l

2
64

3
75

þ y2 d i; jð Þ þ
Xn
l¼1

al x
lð Þ
i x lð Þ

j (9)

where xi
(l) is the lth dimension of the input vector, xi.

From the training data D, and by means of a
conjugate gradient routine # y= 5 hyperparameters,
and the matrix C are determined recursively through:

logy ¼ ½logy0; logy1; logr1;
::; logrn; logy2; loga1; ::; logan�T

(10)

and

L ¼ -
1
2
log Cj j- 1

2
yTC-1 y-

m

2
log2pþ logp yð Þ þ c

@L
@yi

¼ -
1
2
trace C-1

@C

@yi

� �
þ 1
2
yTC-1

@C
@yi

C-1yþ @logp yð Þ
@yi

8><
>:

(11)

Afterward, at different times, t* = 0.1, 0.2, . . ., 17.9,
18, by (12)

f̂ � ¼ E f�ð jD; x�;K;s2Þ ¼ k�T C-1 y

s2
f̂ �
¼ k**-k�

T C-1 k�
(12)

the latent functions X̂� ¼ X̂�
� � ¼ X̂ t�ð Þ� �

and the
variance s2

X̂�
are estimated. The expression ‘virtual

filtered measurements’ refers to the latent functions X̂�,
because the additive normal noise e has been removed
(filtered) from the ‘virtual measurement’ X* in the data-
generating model (7). Figure 2 gives an example of
completion of biomass missing data for two fermentations
(Fermentation 1 and Fermentation 2).

Second stage design – implementation
of estimators

In this second stage of biomass estimators design, five
different estimators are implemented. The first two
are phenomenological estimators, namely, a phenom-
enological estimator based on DO balance and an EKF
standard estimator. The next two are empirical estimators:
a Gaussian process regression-based estimator and an
ANN-based estimator. The fifth and last one is an
estimator based on the information fusion of two (or
more) previously available estimators through a
decentralized Kalman filter.

Phenomenological biomass estimator based on
dissolved oxygen balance
To design a phenomenological biomass estimator,
consider the discrete time state-space model described
previously in Section Bioprocess model. The fourth
equation of the bioprocess model (1) explains the
dynamic of the DO balance, which is repeated here
for convenience.

DO kþ 1ð Þ ¼ K1-K2Tsð Þ X kð Þ-K1 X kþ 1ð Þ
þ DO kð Þ þ K3QATs DO�-DO kð Þð Þ (13)

Figure 2. Example of completion of biomass missing data
for Fermentations 1 and 2. The crosses being the biomass
concentration measurements (training data), the small circles
represent the biomass estimated (virtual filtered biomass
measurements), and the gray region depicts the 95%
confidence interval for the estimations (�2 standard
deviations) (from [17]).
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Rewriting this difference equation, and replacing the
unknown biomass X by their estimates X̂ , we obtain
our proposed phenomenological biomass estimator:

X̂ kð Þ ¼ 1
K1

K1-K2Tsð Þ X̂ k-1ð Þ -
1
K1

DO kð Þ

þ 1
K1

1-K3QATs½ �DO k-1ð Þ

þK3QATs
K1

DO*

(14)

Note that (14) is a linearly parameterized estimator.
If y denotes the known parameter vector and ’(k)
describes the regressor vector of measured (or known)
signals, then the phenomenological biomass estimator
(14) can be written compactly as:

X̂ kð Þ ¼ yT’ kð Þ

wherey ¼ K1-K2Ts
K1

-
1
K1

1-K3QATs
K1

K3QATsDO*
K1

� 	T
and ’ kð Þ ¼ X̂ k-1ð Þ DO kð Þ DO k-1ð Þ 1


 �T
:

From (14), it can be inferred that the total biomass
concentration can be estimated on-line with experimental
data of DO concentration (DO(k), k=0, 1,⋯) and with
the biomass initial values X(0) (obtained by dry weight
method). Figure 3 shows the model structure for the
phenomenological biomass estimator.
Figure 4 shows the phenomenological estimation

results. This observer can approximate the biomass
concentration better than the first model proposed by
Atehortúa et al.[16] This is because, this estimator
includes the DO consumption for growth and
maintenance of the microorganism on its structure and

through the experimental data of DO available on-line
(Fig. 3). Figure 5 and Fig. 6 show the time evolution of
DO percentages and S concentrations for both
fermentations respectively. Moreover, Figure 4 shows
satisfactory results and a correct behavior of the
phenomenological estimator for two different fermen-
tations. It is important to remark that the estimator
involves in its structure the original model of vegetative
and sporulated cells, whereas the consideration of the
DO influence on the microorganism concentration
improves the biomass estimation performance. When
the DO influence is not significant, the biomass
estimation achieved with the model without the DO
dynamics and the phenomenological estimators are
comparable (see Fermentation 1 in Fig. 4.). However,
for those cases in which the DO approaches critical values
(see Fermentation 2 in Fig. 4), the phenomenological
observer gives better estimations (Fermentation 2).

Figure 3. Simulated output model structure for the
phenomenological biomass estimator.

0 2 4 6 8 10 12 14 16
0

5

10

15

Figure 4. Biomass estimator performance. The dash-dot line
describes the behavior of biomass when considering the
model (1), the solid line depicts the phenomenological
estimator behavior based on DO dynamics, and the real
biomass measurements are represented by small circles.

Figure 5. Dissolved oxygen experimental data. The
solid line describes the dissolved oxygen behavior for
Fermentation 1, the dash-dot line depicts the dissolved
oxygen behavior for Fermentation 2, and the dotted
line corresponds to the percentage of dissolved oxygen
for the critical dissolved oxygen concentration for
this process.
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Extended Kalman filter standard estimator
The basic or standard EKF is the most commonly used
state estimator for nonlinear systems. The quality of
the estimation achieved by an EKF depends on
the process model accuracy as well as on the
available noisy measurements. There are numerous
improvements to the standard EKF scheme, for
example, by using different coordinate systems for
the design, or by using different factorizations of the
covariance matrix, or by using second or higher order
Taylor series corrections to the state vector prediction,
and so on.[20] The underlying theory of the EKF is
largely known in the literature devoted to filtering,
estimation, and control; see, for example, the classic
books by [21]; [22], or most recently, the book by
Simon.[23] Therefore, in this work, only brief
explanations of the specific EKF implementation for
the Bt fermentation process are given. In the EKF
framework, the state transition and observation models
are nonlinear differentiable states functions.
State transition model:

x kþ 1ð Þ ¼ f x kð Þ; u kð Þ; kð Þ þ w kð Þ (15)

Measurements model:

y kð Þ ¼ h x kð Þ; kð Þ þ v kð Þ (16)

where f(�,�) is the state transition function, h(�,�) is
the measurement function, x(k) is the system state
vector with initial condition x(0) ~N(x0,Q0) (as is
usual in statistical literature the symbol (~) means
‘distributed according to’), u(k) is the input or control
vector, y(k) is the observation vector, w(k) is a discrete
time normal white noise process (process noise)
with null mean and covariance matrix Q, i.e. w(k) ~N
(0,Q), and v(k) is a discrete time normal white noise

process (measurements noise) with null mean and
covariance matrix R, i.e. v(k) ~ N(0,R). The initial
condition x(0) and the sequences w(k) and v(k) are
uncorrelated for all time shifts.
In our case, the nominal state transition model

(without the process noise w(k)) is obtained by
introducing (2), (3), and (4) in (1).

x k þ 1ð Þ ¼ f x kð Þ; kð Þ (17)

The system state vector is x kð Þ ¼ XV kð Þ XS kð Þ½
S kð ÞDO kð Þ�T, the input vector is u(k) = 0 (the bioprocess
has no external input), and the bioprocess outputs
(observation vector) isy kð Þ ¼ S kð Þ DO kð Þ½ �T (Fig. 7).
The measurement model is linear in the states:

y kð Þ ¼ Hx kð Þ (18)
where

H ¼ 0 0 1 0
0 0 0 1

� 	

Taking into account the scales of the outputs, a
balanced linear combination of S(k) and DO(k) can
be considered as an alternative measurement model.

y’ kð Þ ¼ H’x kð Þ ¼ aS kð Þ þ bDO kð Þ (19)

In this measurement model H’ ¼ 0 0 a b½ �
where:
a=DOmax/(Smax+DOmax) b=Smax/(Smax+DOmax)
The next step is to obtain the Jacobian matrices

@f x kð Þ;kð Þ
@x and @h x kð Þ;kð Þ

@x evaluated at x̂ k-1ð jk-1Þ.

Finally, initializing the elements of the matrices P, Q,
and R, we have all the components of the EKF
algorithm. To obtain the best possible fit of the EKF

Figure 6. Substrate concentration experimental data.
The solid line describes the substrate concentration
for Fermentation 1 and the dash-dot line depicts the
substrate concentration for Fermentation 2.
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to the experimental data, the elements of the matrices Q
and R are empirically adjusted by simulations.
The experimental DO percentages and substrate

concentration data employed are shown in Figs. 5 and 6.
Figure 8 shows results for two different fermentations.
It is performed a comparison between this estimator
and the phenomenological observer based on DO
dynamics previously presented. It can be concluded
that the performance of the standard EKF estimator is
adequate. This of course does not mean that the
performance of the EKF cannot be meaningfully
enhanced by using a better model of the bioprocess
or by some of the improvements pointed out at the
beginning of this section.

Estimator based on Bayesian Gaussian
process regression
The first step in the design is to select the regressor
variables, i.e. the components of the input vector x.
This is a laborious task, and has been performed

heuristically, chosen from numerous alternatives. The
best empirical results have been achieved with:

x kTSð Þ ¼ DO kTsð Þ; S kTsð Þ; X̂ k-1ð ÞTsð Þ; X̂ k-2ð ÞTsð Þ
 �T (22)

where k = {1,L,180} is the time index, Ts = 1/10 hours
is the sampling time,DO(.) is the DO concentration, S(.)
is the substrate concentration, and X̂ :ð Þ is the virtual
filtered biomass measurement. In this case, the training
data set D consists of 180 pairs of input vectors {x
(kTs)} = {xk}2R4 collected in a matrix X2R4� 180,
and scalars outputs X̂ kTsð Þ� � ¼ X̂k

� �
collected in a

vector X̂ 2 R180 (note that in this section, the virtual
filtered biomass measurements X̂k

� �
are considered

as true observed measurements).

The data-generating process is X̂k ¼ ^̂Xk þ ek, being

the latent function ^̂Xk :ð Þ, and the additive normal noise
e. Once again, the # y= 11 hyperparameters and the
new covariance matrix C Eqn. (9) are determined via
a conjugate gradient routine from (11) and:

Cij ¼ y0 þ y1 exp -
1
2

Xn
l¼1

x lð Þ
i -x lð Þ

j

� �2

r2l

2
64

3
75

þ y2 d i; jð Þ þ
Xn
l¼1

al x
lð Þ
i x lð Þ

j (23)

Furthermore, by (12), the biomass concentration
^̂X� ¼ ^̂X t�ð Þ and the variance s ^̂X

2
� are estimated for a

set of different times {t *},< t *< 16 hours.
For the training stage, a one-step ahead predicted

output schema is performed, i.e. the input
measurements, DO(k)S(k), and the previous output
measurements X̂ k-1ð Þ, X̂ k-2ð Þ are used as repressors in:

^̂X kð Þ ¼ ^̂X DO kð Þ; S kð Þ; X̂ k-1ð Þ; X̂ k-2ð Þ� 
(24)

For on-line estimation, the implemented estimator is
the simulated output schema, i.e. only input
measurements DO(k), S(k) are used. The simulated
output is obtained as previously, by replacing the
measured outputs by the simulated output from the
previous steps, i.e. previous outputs from the model
have to be fed back into the model computations on-
line (Fig. 9).

^̂X kð Þ ¼ ^̂X DO kð Þ; S kð Þ; ^̂X k-1ð Þ; ^̂X k-2ð Þ
� �

(25)

This one-step ahead predicted output scheme is known
as nonlinear auto-regressive with exogenous input
model, or as series–parallel model.[24,25] Furthermore,

Figure 7. Simulated output model structure for EKF
biomass estimator.

Figure 8. Biomass estimator performance. The dashed line
describes the biomass evolution obtained from the original
model (1), the solid line depicts the EKF behavior, the
dashed-dotted line depicts the phenomenological estimator
behavior based on DO dynamics, and the real biomass
measurements are represented by small circles.
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the simulated output schema is known as nonlinear
output error model, or as parallel model.[24,25]

The biomass concentration of Fermentations 1 and 2
from the preceding section (see Fig. 2) has been adopted
as training and validation data, respectively. Figures 5
and 6 show the measurements of DO percentages (DO)
and glucose concentration (S), respectively. Both signals
have been filtered with a low-pass filter with a 1/36Hz
corner frequency.
Figure 10 shows the evolutions of the true biomass

measurements, the virtual filtered biomass measurements,
and our proposed biomass estimator within its 95%
confidence intervals. This figure clearly shows the
correct behavior of the biomass estimator based on
Gaussian process regression. The estimated biomass
follows closely the true and the virtual filtered biomass
measurements. This performance is achieved setting
the 11 hyperparameters of the covariance function.

Artificial neural networks-based estimator
Through ANN, the empirical knowledge (set of mea-
surements) that characterizes a phenomenon of interest
can be adequately codified. Because of the high degree
of parallelism, the high generalization capability, and
the possibility to use architecture of multiple inputs
and outputs, the ANNs can provide a satisfactory
solution to the problems of models identification,
variables estimation, pattern recognition, and functions
approximation among others. ANNs have the ability to
abstract automatically essential characteristics of the
experimental data, and to generalize from the previous
experience; this allows the identification of the model
process at lower cost.
Supervision and control techniques require optimizing

the fermenter operation and the monitoring of all
variables on-line is the best solution, because the
methods offline delay the possibility of getting results
and generally require more effort.
The ANN employed in this work is a recurrent

multilayer perceptron with one hidden layer of 30
neurons and one output in the output layer. The activation
functions of the hidden layer were hyperbolic tangent and
a linear function for the output layer. The input vector to
the ANN is the same as the previous section, i.e.
DO kTsð Þ; S kTsð Þ; X̂ k-1ð ÞTsð Þ;


X̂ k-2ð ÞTsð Þ�T , and the
scalar output is the biomass estimate X̂ kTsð Þ . This
one-step ahead predicted output scheme X̂ kTsð Þ ¼
f DO kTsð Þ; S kTsð Þ; X̂ k-1ð ÞTsð Þ; X̂ k-2ð ÞTsð Þ� 

is the
same nonlinear auto-regressive with exogenous input
model or series–parallel model presented in previous
section.
For the training stage, the back-propagation algorithm

[25] was employed. The network was trained with data
from a fermentation identified as ‘Fermentation 1’ (see
Fig. 11) and was generalized with other set of
experimental data ‘Fermentation 2’ (see Fig. 12).

Figure 9. Simulated output model structure of proposed
biomass estimator (from [18]).
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Figure 10. Biomass estimator performance. The bold
solid line describes the behavior of the proposed biomass
estimator ( ^̂X kTsð Þ ), the crosses are the true biomass
measurements, the virtual filtered biomass measurements
( X̂ kTsð Þ ) are represented by small circles, and the gray
region depicts the 95% confidence interval (from [18] ).
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Figure 11. Biomass estimator performance. The dashed line
describes the biomass evolution obtained by the ANN in the
training stage and the real biomass measurements are
represented by the solid line. The perceptual training error
e = 0.16%.
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Fusion through decentralized Kalman filter
The aim of this section is to obtain an improved
estimate of the biomass value for the process of Bt
by using classical data fusion techniques. Recall that
the data fusion approach to estimation problem
combines independent data from multiple estimators
to produce an improved estimate that could not be
achieved by the use of only a single estimator. For
simplicity, in what follows, the data fusion technique
is exemplified by considering only two independent
sequences of biomass estimates. The first one is
provided by the phenomenological estimator based
on DO balance designed in Section Phenomenological
biomass estimator based on dissolved oxygen balance,
and the second one is given by the ANN estimator
designed in the preceding section. To refine the accuracy
of the biomass estimation, these two sequences of
estimates are fused through a decentralized Kalman
filter.[26]

Assuming that the estimations are the optimum value
for each sequence in time and the relationship between
these values is given by:

Xi ¼ XiOPT þ vi (26)

where vi is a random variable with zero mean and
covariance Ri. In a basic approach of the decentralized
Kalman filter, each local filter operates autonomously.
Each local filter has its own set of measurements, and
there is no sharing of measurements. Note that this is
inherently a cascaded operation mode, because the
outputs of one or more of the local filters are acting
as inputs to the master filter. The local filters (one
for each sequence of measurements), the master filter,
and the different variables involved can be appreciated
in Fig. 13.

The mean and covariance for each sequence of
measurements are calculated recursively according to:

X̂i kþ 1ð Þ ¼ X̂i kð Þ þ m Xi kð Þ-X̂i kð Þ� 
(27)

Ri ¼ Ri þ m Xi-X̂i
� 2

-Ri
� �

(28)

where X̂ i is the average sequence value of Xi and 0< m< 1
is a design constant. Then, each sequence is individually
filtered:

Pi
� -1 ¼ Mi

� -1 þ Ri
� -1

(29)

Xi:OPT
v ¼ Pi mi Mi

� -1 þ Ri
� -1

Xi
v

h i
(30)

Equation (29) provides the updated information
matrix, whereas (30) are the states estimated
updates, M i and mi are the covariance error and
the previous estimation values for the measurements
sequences X i, respectively. All values are merged to
obtain the optimum value of the estimated biomass.
In Fig. 14, the results achieved with this approach
can be observed.

X ¼ P
m
M

þ
X
i

Xi:OPT
l

Pi
-
mi

Mi

� �" #
(31)

P-1 ¼ M-1 þ
X
i

Pi
� -1

- Mi
� -1h i

(32)

Mi ¼ Pi

mi ¼ Xi:OPT

m ¼ X
M ¼ P

(33)

This architecture allows the complete autonomy of
the local filters. The system achieves optimality in each
individual local filter and global optimality in the
primary filter.
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Figure 12. Biomass estimator performance. The dashed line
describes the biomass evolution obtained from the ANN in
the generalization stage and the real biomass measurements
are represented by the solid line. The perceptual
generalization error e = 0.25%.

Figure 13. Fusion scheme through a decentralized Kalmanfilter.
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RESULTS, ANALYSIS, AND DISCUSSION

From Figs. 4, 8, 10, 12, and 13, it can be seen that the
five proposed estimators follow more or less closely the
true and the virtual filtered biomass measurements.
Similar results can be obtained for almost all
fermentations except for some atypical fermentations
in which the DO concentration decreases markedly
due to the excessive aggregation of antifoam during
the batch evolution. This undesirable behavior can be
avoided or at least minimized by an adequate control
of the antifoam dosage.
As was pointed out in the introduction, the

performance of phenomenological estimators depends
strongly on the accuracy of the model used to describe
the bioprocess. In the case of the phenomenological
biomass estimator based on DO balance, it is important
only that the model describe accurately the dynamics of
DO concentration (see (13). However, in the case of
EKF, it is necessary the accuracy of the full model
described in Section Bioprocess model (see (15 to
21). This fact and the simplicity of the estimator based
on DO balance are the main advantages over the
standard EKF (other drawbacks of the EKF are that is
difficult to tune and is reliable only for systems that
are almost linear).
Another interesting point related to the previous

paragraph is as follows: to ensure an efficient
production of d-endotoxin of Bt, it is important to keep
throughout the fermentation an optimal profile of DO
concentration. In other words, the DO concentration
should be controlled in such a way that it never falls
below the minimal critical value for the microorganism
growth (for most of the microorganisms the effect of
oxygen limitation ranges between 0.1 and 1mg/L), or
exceeds certain threshold level of DO concentration
(high levels of DO concentrations promote the formation

of toxic O2 compounds for Bt). This means that if the
DO concentration is adequately controlled, then the
linear model of the biomass estimator based on the DO
balance (see (13) is approximately valid throughout the
fermentation.
Regarding biomass empirical estimators, recall that

they are constructed exclusively from the process input–
output noisy data without considering the functional
relations between the bioprocess variables. The time
evolution of biomass is conceived as a dynamic system
perturbed by a certain process noise. The estimation of
the biomass concentration is obtained indirectly through
the observation of noisy measurements. This means that
the biomass empirical estimation problem can be
formulated as a filtering problem.
For the two proposed empirical biomass estimators,

i.e. an estimator based on Bayesian regression with
Gaussian process and an ANN biomass estimator of
the same set of regressors have been selected. This
selection is a problem related to the choice of states
in a state-space representation of the system, and they
are chosen as finite-dimensional projections of past
data. Finding a set of ‘good’ regressors for biomass
estimation is a nontrivial task. In this work, this
selection has been performed heuristically by trial and
error between numerous alternatives.
For the same training data set D, in the case of the

estimator based on Bayesian Gaussian process
regression, an acceptable performance is achieved setting
the 11 hyperparameters of the covariance function (see
(23) in Section Estimator based on Bayesian Gaussian
process regression). To obtain a similar performance with
a multilayer feedforward neural network-based estimator
with four inputs to the input layer (the dimension of the
regressor vector), one hidden layer of 30 neurons, and
one neuron in the output layer (see Section Artificial
neural networks-based estimator) hundreds of parameters
can be calculated during the training phase. Due to the
higher number of ANN parameters, it is very probable
that the variance of the ANN biomass estimator over
different experiments (fermentations) is higher than the
Gaussian process estimator.
Finally, with regard to the estimator based on

information fusion by a decentralized Kalman filter. This
is an example to show how to refine the accuracy of the
biomass estimation by using two sequences of
independent estimates. The first one is provided by the
phenomenological estimator based on DO balance and
the second one by the ANN-based estimator. These two
sequences are ‘fused’ by a decentralized Kalman filter,
and as a result, we obtain a slightly improved estimation
performance (see Fig. 14.). This result holds because
when two or more estimators of the same quality are
fused, the resulting estimator shows only a marginal
improvement. In this situation, the advantages of this
estimator are not apparent. The major advantage of this
scheme is the relative insensitivity to errors in the fused
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Figure 14. Biomass estimator performance. The dashed line
describes the biomass evolution obtained from the
phenomenological estimator and the dot line describes a
biomass estimation obtained from the ANN. The solid line
describes the biomass evolution obtained through the
decentralized Kalman filter. The real biomass measurements
are represented by small circles.
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estimators, for example, in case of one of the fused
estimators in the previous situation fail suddenly; in this
new situation, the resulting estimator shows only a little
degradation of performance. This property is known as
‘fault-tolerance’ or ‘graceful degradation’ property.

CONCLUSIONS

In this paper, it has been addressed the problem of on-line
estimation of the biomass concentration in a particular
batch bioprocess (d-endotoxins production of Bt). This
research topic has been primarily motivated by the need
to replace in the process control system the actual
(unavailable) biomass concentration measurements by
reliable and robust on-line estimations. Five different
alternatives to face the problem of biomass concentration
estimation have been developed and discussed. If a
reliable and accurate model of the bioprocess is available
(as in our case study), then simple phenomenological
estimators (as the biomass estimator based on DO
balance) are the first option.
From the process control point of view, the graceful

degradation property of the estimator based on
information fusion is of great importance. This is so
because the insensitivity of the control system relative
to estimator errors is increased, thereby increasing the
overall system robustness. This fact motivates the
inclusion of robust biomass estimators in the control
loop. This task will be addressed in future works.
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NOMENCLATURE

Symbol Description
S Limiting substrate concentration [g. L- 1]
Ts Sampling time [h]
Xs Sporulated cells concentration [g. L- 1]
Xv Vegetative cells concentration [g. L- 1]
m Specific growth rate [h- 1]
mmax Maximum specific growth rate [h- 1]
ms Maintenance constant

[g substrate. [g cells. h- 1]� 1]
ks Kinetic constant representing the spore

formation [h- 1]
ke Death cell specific rate [h- 1]
YX/S Growth yield [g cells. g substrate- 1]
Ks Substrate saturation constant [g. L- 1]
KO Oxygen saturation constant [g. L- 1]
K1 Oxygen consumption constant by growth

(dimensionless)
K2 Oxygen consumption constant for

maintenance [h� 1]
K3 Ventilation constant [L- 1]
DO* O2 saturation concentration (DO

concentration in equilibrium with the oxygen
partial pressure of the gaseous phase) [g. L- 1]

QA Air flow that enters the bioreactor [L. h- 1]
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