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Abstract

Problems characterised by highly concentrated moving non-linearities are within the
most challenging to be solved by a numerical scheme. The simulation of the Selective Laser
Melting Additive Manufacturing process, intractable by traditional numerical techniques,
is a problem of this kind. In this work, a material Global-Local scheme is proposed for the
case of non-linear thermal problems with irreversible phase changes and highly concen-
trated heat sources. The Global-Local scheme consists in describing the neighbourhood
of the heat source by a moving local domain while the material phase fractions are repre-
sented in a global domain. A first approach is proposed, in which the equations governing
the non-linear thermal problem are assumed to be defined on the local domain only. This
is equivalent to consider that the extent of the local domain is large enough to capture the
most important variations of the temperature field. Additionally, a Hyper-Reduced Order
Model based on a variant of the Energy-Conserving Sampling and Weighting method is
proposed for the local domain problem. The performance of the introduced numerical
techniques is studied by solving a SLM problem taken from the literature.

Keywords: material Global-Local model, ECSW, HROM, Selective Laser Melting, irre-
versible phase changes

1 Introduction

Problems characterised by highly concentrated moving non-linearities are within the most chal-
lenging to be solved by a numerical scheme. Problems of this kind are frequently found in
engineering, making necessary to develop new alternatives to make them tractable from the
numerical point of view. One of these problems is the simulation of the Selective Laser Melting
(SLM) Additive Manufacturing (AM) process. This process is used to build complex geometries
by depositing successive powder beds which are melted with a laser heat source, resulting in
the consolidation of the material. The involved phase change problem is extremely non-linear,
not only because of the phase changes taking place but also because the powder and the con-
solidated material properties differ considerably. Another complication for its simulation is the
fact that the involved scales are of widely different orders of magnitude and the velocity of
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the heat source is quite large. This makes necessary to use very fine meshes and small time
increments, and therefore detailed 3D simulations of the process are almost impossible.

We address the simulation of SLM manufacturing where a thermo-mechanical simulation
of the process is usually required. Only the non-linear thermal phase change problem will
be analysed, however, in a first approach. Different numerical schemes can be found in the
literature for dealing with solid/liquid phase change problems, mainly moving mesh or front
tracking methods and fixed mesh methods [1]. In this work, the temperature based fixed mesh
method proposed by Fachinotti et al. [2] is adopted. An important detail in SLM thermal
problems is how the laser heat source is modelled. The Goldak heat source [3] is one of the most
general and flexible models for welding problems. However, a heat source model specifically
developed by Gusarov et al. [4, 5] for SLM is available, which was derived based on the laser
radiation transfer in a powder layer and will be used in this work. Despite the fact that no
metallurgical transformations will be considered, the irreversible transformation from powder
to consolidated material needs to be taken into account. An appropriate model handling this
transformation is also introduced.

Cosimo et al. [6] proposed a Global-Local scheme in order to deal with problems with
concentrated moving sources. It consists in describing the neighbourhood of the heat source by
a moving local domain with a fine mesh and in describing the global domain by a coarse mesh,
with both domains coupled by Lagrange multipliers. Only linear problems were studied in that
work, and a Reduced Order Model (ROM) was developed for the local domain. In this work we
extend that work to problems with non-linearities coming from material phase changes, mainly
to deal with the material phase evolution from powder to consolidated material. A second
objective is to develop a Hyper-Reduced Order Model (HROM) for solving the local domain
subproblem. We assume that the extent of the local domain is large enough to capture the
most important variations of the temperature field. This assumption allows us to consider the
temperature evolution in the local moving domain uncoupled from the global domain, being
the latter used only to track the irreversible change from powder to consolidated material.

The HROM to be used is an a posteriori ROM technique based on the Proper Orthogonal
Decomposition, in which the solution to a set of training problems is first required. A first
reduction is performed to reduce the dimensionality of the test and trial spaces. However, in
order to successfully reduce the complexity of non-linear problems, a second reduction must
be applied for decreasing the cost of assembling the non-linear forces and the tangent matrix
[7, 8]. One option is the Discrete Empirical Interpolation Method (DEIM) [9, 10]. However, in
highly non-linear processes such as welding applications, DEIM-based approaches can show an
unexpected behaviour, e.g. divergence for an increasing number of sampling entities, making
it necessary to consider another options. The Empirical Cubature Method (ECM) proposed
by Hernández et al. [11] and extended in [12] to multiscale problems, displays better results
than DEIM-based approaches. The ECM method shares some common points with the work of
An et al. [13] and consists in developing a cubature which approximates the involved integrals
with a reduced number of integration points. A similar alternative is the Energy-Conserving
Sampling and Weighting (ECSW) method proposed by Farhat et al. [14, 15], which consists in
approximating the assembling of reduced forces by sampling the FEM mesh in a reduced set
of elements, and weighting the elements contributions by appropriate non-negative factors. In
this work, the ECSW method is adopted because it is better adapted to solve phase change
problems [2]. However, a modification is proposed in order to reduce the cost of solving an
unrestricted least square problem that is involved in the formulation of the ECSW method.
Besides, this modification allows to apply the ECSW to self-equilibrated problems.

The paper is organised as follows. In Section 2, a Global-Local model for the solution

2



Tn−1 Tn

yi,n−1 yi,n

Time

Figure 1: Staggered approach for the coupling of the temperature field and the phase fractions.

of non-linear thermal solid/liquid phase change problems with irreversible material changes is
proposed. The formulation of a Hyper-Reduced Order Model for the thermal problem to be
solved in the moving local domain is studied in Section 3. The numerical performance of these
methods is assessed in Section 4 by solving a SLM problem, which is compared to results of
the literature. The conclusions and future work are outlined In Section 5.

2 Material Global-Local model

A material Global-Local model for the solution of non-linear phase change problems with highly
concentrated moving heat sources is next introduced. Cosimo et al. [6] proposed a Global-Local
scheme for the solution of problems with moving heat sources. However, non-linearities were
not taken into account. In this work we extend the Global-Local model to the analysis of
non-linear problems with irreversible material phase changes. For example, the SLM process is
characterised by irreversible phase changes which occur when the laser heat source melts the
material in powder state resulting in its consolidation. The phase fractions in this process are
the powder and the consolidated phase fractions, yp and yc, which take values in the range
[0, 1] and satisfy yp + yc = 1. It should be noted that the liquid phase fraction is not explicitly
considered in the modelling of this irreversible transformation and will be taken into account
in the formulation of the solid/liquid phase change thermal problem.

In order to deal with this problem, a material Global-Local model is proposed. By making
the hypothesis that the most important variations of the temperature field are concentrated in
the vicinity of the moving laser heat source, it is acceptable to describe the temperature field
and the equations governing its evolution only on the support of a local moving domain which
follows the heat source. The involved material properties depend on the temperature field and
on the material phases at a given point. A linear mixture rule is adopted for the material
properties, that is a generic material property m is interpolated as

m = mpyp +mcyc, (1)

where mp and mc are the properties values of the powder and of the consolidated phases. The
local moving domain cannot track the material phase fractions yp and yc. For the purpose of
tracking the evolution of those phase fractions and modelling the involved kinetics, a global
fixed domain is introduced.

Two additional issues must be considered under this scenario. On one hand, the procedure
of coupling the temperature field and the phase fractions must be specified, and, on the other
hand, the communication between the global and the local domains must be specified. The
latter issue is required because phase fractions are computed and tracked at the global domain,
whilst the temperature field is computed on the local domain. Therefore, the temperature field
must be communicated from the local to the global domain and the phase fractions must be
communicated from the global to the local domain.
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A staggered approach is adopted to couple the temperature field and the phase fractions,
(see Fig. 1 and [16] for details). Phase fractions at the previous time step tn−1 are used for
computing the temperature field at time tn. The temperature field at time tn is used as state for
computing the phase fractions at the current time tn. At the beginning of each time step, the
global domain transfers the state of the underlying material to the local domain. Meanwhile,
at the end of the time step, the temperature field is transferred from the local to the global
domain. More specifically, consider the case in which the current time is tn, then the involved
steps are:

1. Move the local domain to the configuration at time tn.

2. Project the material state, i.e. the phase fractions, from the global domain at time tn−1

to the local domain.

3. Compute the temperature field Tn at the current time by solving a set of advective-
diffusive equations in the local domain. This problem involves only the degrees of freedom
of the local domain.

4. Project the computed temperature field Tn from the local to the global domain.

5. Compute the material phase fractions at the current time yp,n and yc,n on the global
domain, using the kinetics modelling the (irreversible) consolidation of the powder state.

Figure 2: Flowchart with the kinetics modelling the irreversible transformation from powder
to consolidated phase.

The kinetics of the irreversible powder consolidation is specified next. The consolidation
of the material in powder state takes place at the consolidation temperature Tc in which the
material suddenly changes from powder to consolidated. A smoother transition zone from
powder to consolidated can also be considered. This is specified by an equilibrium phase fraction
for the powder phase, denoted by Yp and used in the simulations as:

Yp(T ) =


1, T < Tc − Tsb
1− T − (Tc − Tsb)

2Tsb
, Tc − Tsb ≤ T ≤ Tc + Tsb

0, T > Tc + Tsb

, (2)

where Tsb is a numerical parameter that specifies the temperature semibandwidth of the tran-
sition zone from powder to consolidated state. It should observed that taking large values of
this parameter will lead to approximate solutions with large transition zones, resulting in a
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deviation from the physics of the phenomenon. As a reference, this value was considered to be
of the same order than the extent of the mushy zone.

Additionally, irreversibility must be properly handled. That is, the material which is al-
ready in consolidated state cannot transform back to powder. The kinetics used to model the
introduced irreversible transformation is clearly stated in the form of a flowchart in Fig. 2.
Material phase fractions are considered constant by elements and are implemented as internal
variables located at the barycentre of the tetrahedral elements of both the global and local
domains.

Figure 3: Heat source local coordinate system.

The local domain moves following the heat source. Therefore, the thermal problem at the
local domain is governed by an advection-diffusion equation, whose variational formulation is
briefly introduced next, see [9] for details. In what follows, let us assume that only Robin
and Neumann boundary conditions are specified on the boundaries Γc and Γq respectively as
k∇T · n = hf (Tf − T ) and k∇T · n = qw, with n being the outward normal to the boundary
under consideration, hf the heat convection coefficient, Tf the external fluid temperature, and
qw a prescribed heat flux. Then, the variational formulation of the problem reads:

Find T ∈ H1(Ω) such that ∀w ∈ H1(Ω)∫
Ω

w

[
ρc
∂T

∂t
+ ρcv · ∇T + ρL∂fl

∂t
−Q

]
dΩ +

∫
Ω

∇w · [k∇T − ρLflv] dΩ

+

∫
Γc

whf (T − Tf ) dΓ +

∫
Γq

wqw dΓ = 0 , (3)

where ρ, c, k, L, fl and v are, respectively, the density, the heat capacity, the conductivity,
the latent heat, the liquid phase fraction and the velocity of the heat source. In the case of
non-isothermal phase change, the liquid fraction can be described in terms of a linear function
of temperature with solidus temperature Tsol and liquidus temperature Tliq as parameters and
given by

fl(T ) =


1 if T > Tliq
T − Tsol
Tliq − Tsol

if Tsol ≤ T ≤ Tliq

0 if T < Tsol

. (4)

The expression of the heat source Q depends on the application case. The Goldak heat source
[3] is one of the most general and flexible for welding problems. However, in the case of SLM, a
heat source model specifically developed by Gusarov et al. [4] and based on the laser radiation
transfer in a powder layer, is available [5, 4]. The parameters used to describe it are the
hemispherical reflectivity ρh, the extinction coefficient βh, the effective power We considered to
be 2

3
of the nominal laser power W , the powder layer thickness L and the radius of the laser

R. The expression of the heat source Q(x′, y′, z′) in the local coordinate system (x′, y′, z′), see
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Fig. 3, is given by

Q(x′, y′, z′) = −βhQ0
∂q

∂ξ
, (5)

where

Q0 =
3We

πR2

(
1− r

R

)2 (
1 +

r

R

)2

,

with r2 = x′2 + y′2. The function q has the expression

q =
ρha

D(4ρh − 3)

( [
1− ρ2

h

]
e−λ

[
(1− a)e−2aξ + (1 + a)e2aξ

]
−
[
3 + ρhe

−2λ
] [

(1 + a− ρh(1− a))e2a(λ−ξ) + (1− a− ρh(1 + a))e2a(ξ−λ)
] )

− 3(a− ρh)
(
e−ξ − ρheξ−2λ

)
4ρh − 3

,

where ξ = βhz
′, a =

√
1− ρh, λ = βhL, and

D = (1− a) (1− a− ρh (1 + a)) e−2aλ − (1 + a) (1 + a− ρh (1− a)) e2aλ.

Let us build a finite element approximation T h ∈ Vh ⊂ H1 such that

T h(x, tn) = NTTn, (6)

where N denotes the finite element basis and Tn ∈ RN are the FEM (Finite Element Method)
nodal degrees of freedom, with N the dimension of the FEM space. Linear tetrahedral elements
are used for both the local and global domains. By using a Backward-Euler scheme for time
integration, the discrete form of the nonlinear thermal problem to be solved in the local domain
reads

Π = Gc
n +Gk

n +Gvc
n +

Gl
n −Gl

n−1

∆t
−Gvl

n + Fn −Qn = 0, (7)

where

Gc
n =

∫
Ω

ρcnNN
T dΩ

Tn − Tn−1

∆t
, (8)

Gk
n =

(∫
Ω

∇Nkn∇NTΩ +

∫
Γc

hfnNN
T dΓ

)
Tn, (9)

Gvc
n =

∫
Ω

ρcnNvn · ∇NT dΩ Tn, (10)

Gl
n =

∫
Ω

ρLNfl(n) dΩ, (11)

Gvl
n =

∫
Ω

ρL∇N · vnfl(n) dΩ, (12)

Fn =

∫
Γq

Nqwn dΓ −
∫
Γc

hfnNTfn dΓ, (13)

Qn =

∫
Ω

NQn dΩ. (14)

Remark: the local domain is supposed to be coupled to the global domain only through
the kinetics of the powder and consolidated phases. The temperature field on the global domain
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is not modelled. Introducing the thermal coupling between local and global domains for 3D
non-linear problems is left as future work.

A detail of the proposed material Global-Local scheme concerns the projection from the
local to the global domain, and vice-versa. This projection is performed by collocation [17] in
order to minimise the computational cost. A sufficiently fine mesh is used for the global domain
in order to keep low the errors introduced by the projections. The adopted criterion is to make
this mesh at least as fine as the one used for the local domain.

Another aspect to consider in the non-linear thermal at the local domain, is the fact that
the Péclet numbers will be quite high for SLM applications because the powder conductivity is
low and the heat source velocity high. The development of a stabilisation scheme for tackling
this problem is considered out of the scope of this work. As it will be observed in the Applica-
tion Examples, this instability problem will be solved by artificially incrementing the powder
conductivity in conflicting zones of the domain.

3 Hyper-Reduced Order Model for the non-linear ther-

mal problem

The hyper-reduction of the non-linear thermal problem in the local domain is analysed next.
Despite the fact that the computational cost decreases with the material Global-Local model,
the size of the problem to be solved in the local moving domain could be still quite large.
Therefore, the formulation of a HROM is of interest to obtain greater acceleration factors.

The proposed HROM is an a posteriori ROM technique based on the Proper Orthogonal
Decomposition (POD). POD-based ROMs are a posteriori techniques, because the construction
of the ROM requires first to compute the High-Fidelity (HF) solution to a set of training
problems [18]. Generally, two reduction steps are needed for a ROM to be successful for
reducing the computation time. In the first reduction, the dimension of the discrete versions of
the test and trial spaces is tackled. Nevertheless, for non-linear problems, the cost of assembling
the non-linear forces and the tangent matrix can be significant, making necessary to perform a
second reduction known as hyper-reduction [19, 11].

A reduced basis for the test and trial spaces is built in the first reduction step. For this
purpose, a set of snapshots of the solution to training problems is collected [20]. Then, the
Singular Value Decomposition [21] of the snapshots matrix is computed, taking the first np left
singular vectors Ψ (also referred to as POD modes) as a reduced basis to capture the response
of the system under study. In order for the ROM to be successful, np must be much smaller
than the number of DOFs N of the HF model, that is np � N . Previous experiences had
shown that this property is satisfied for welding problems [9, 6] provided the frame of reference
moves attached to the heat source, and a similar strategy is used in this case. We assumed for
simplicity that no essential boundary conditions are present; if this is not the case, we refer to
[22] for details on how to proceed.

In what follows, we specifically analyse the reduction of the non-linear conductivity term
denoted for simplicity by G, that is G ≡ Gk

n and re-written here for clarity as:

G =

∫
Ω

∇Nkn∇NTTn dΩ =
∑
e∈E

LTe ḡe , (15)

where E is the set of Finite Elements (FEs), Le is the assembling operator, and ḡe is the
contribution to the integral corresponding to element e. After the first reduction step, the
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following reduced-form of the conductivity term is obtained:

G̃ =
∑
e∈E

ΨTLTe ḡe =
∑
e∈E

ΨT
e ḡe =

∑
e∈E

ge, (16)

where Ψe is the restriction of the rows of Ψ to the global DOFs indexed by element e.
The second reduction step is next described. It consists in tackling the cost associated to the

assembling of the non-linear forces and the tangent matrix by approximating these quantities
by sampling just a few elements or Gauss points. The Discrete Empirical Interpolation Method
(DEIM) can be used for this purpose [9]. However, SLM processes are extremely non-linear
and the instability characteristic of DEIM-based approaches makes necessary to consider other
options. In this context, the term instability is used to refer to a situation in which the HROM
behaves unexpectedly, e.g. by diverging as the number of sampling entities is incremented.
Hernández et al. [11] presented the Empirical Cubature Method which shows a good behaviour
from the stability point of view. It is based on the work of An et al. [13] and consists in
developing a cubature which approximates the involved integrals with a reduced number of
integration points. Despite the fact that this method works very well, it requires to modify the
FEM code at the element level because the FEM formulation must be able to provide sampled
values of the integrand at FE Gauss points. However, the formulation we used for phase change
problems [2, 23], is only able to provide integrated values at the nodes of each FE. Therefore,
another option needs to be considered.

The Energy-Conserving Sampling and Weighting method proposed by Farhat et al. [14, 15]
is a good alternative. It is based on sampling elements, i.e. it can deal from its conception with
formulations which are only able to provide integrated values at the nodes of each FE, and it has
good behaviour from the stability point of view. The ECSW method consists in approximating
the assembling of G̃, Eq. (16), by means of sampling the FEM mesh at a reduced set of nz
elements, denoted by Ẽ, and weighting the elements contributions by appropriate non-negative
weights we. The idea is based on finding weights we and a set of elements Ẽ, such that

G̃ =
∑
e∈E

ge ≈
nz∑
e=1

wegze , (17)

where ze denotes the mapping from the numbering used for identifying the elements in the
reduced set Ẽ to the numbering identifying the corresponding element in the FE set E.

In what follows, let nj be the number of training samples, and denote with G̃j
i and gji,e the

i component of the assembled forces and element contributions for the training sample j. In
order to find the weights we and the indices ze, the following errors need to be minimised:

rji =
nz∑
e=1

weg
j
i,ze
− G̃j

i , for i = 1, 2, · · · , np; j = 1, 2, · · · , nj. (18)

In matrix notation it takes the form
Jzw = b (19)

with

Jz =

g
1
z1
· · · g1

znz
...

. . .
...

g
nj
z1 · · · gnj

znz

 ∈ Rnjnp×nz w =

 w1
...
wnz

 ∈ Rnz b =

 G̃
1

...

G̃nj

 ∈ Rnjnp (20)
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Then, the associated minimisation problem reads

(w, z) = arg min
w̄≥0,z̄

||Jz̄w̄ − b||. (21)

In order to find the elements z to sample and the corresponding weights w, a modified
version of the algorithm of Lawson and Hanson [24] for solving Non-Negative Least Square
(NNLS) problems is used. The pseudo-code of this algorithm is given in Algorithm (1).

Algorithm 1 NNLS to find elements and weights

1: procedure NNLS(J, b, τ, nz)
2: z ← ∅ . variable storing elements to be sampled
3: y ← {1, 2, · · · , ne}
4: n← 0
5: r ← b
6: while ||r||/||b|| > τ and n ≤ nz do
7: Compute new element i as i = arg maxj∈y J

T
y r . select the element to sample

8: . in a greedy manner
9: Move i from set y to set z

10: n← n+ 1
11: while True do
12: β = arg minη∈R|z| ||Jzη − b||2 . unrestricted least squares
13: if all(β ≥ 0) then
14: w = β
15: break
16: end if
17: d← min

(
wi

wi−βi

)
for i ∈ with βi < 0

18: w ← w + d (β − w)
19: y ← zero value indices(w)
20: z ← {1, 2, · · · , ne} \ y
21: n← |z|
22: end while
23: r ← b− Jzw
24: n← |z|
25: end while
26: end procedure

It should be noted that Farhat et al. [14, 15] used a slightly different approach to introduce
the ECSW method. They end up with an optimisation problem defined in the zero-norm, which
is NP-hard to solve. Therefore, they re-stated the problem in the L2 norm, and proposed to
solve inexactly the resulting NNLS problem. They referred to that algorithm as sparse-NNLS,
which is very similar to the one presented in Algorithm (1).

An important detail concerning the hyper-reduction of phase change problems is how to
deal with the many non-linear terms that appear in Eq. (7). In this work, each non-linear term
is separately hyper-reduced, leading to a HROM with the following residual:

Π̃ = G̃c
n + G̃k

n + G̃vc
n +

G̃l
n − G̃l

n−1

∆t
− G̃vl

n + ΨTFn − ΨTQn = 0. (22)

In this expression, the terms with tilde are the ones to be hyper-reduced with the ECSW
method. It should be noted that the terms Fn and Qn are not hyper-reduced. On one hand the
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term Fn is not hyper-reduced because in the examples to be solved this term does not contribute.
However, if this term contributes to the problem and its contribution is time dependent, it can
be hyper-reduced by considering it part of the conductivity term Gk

n and hyper-reduce both as
a single entity. On the other hand, the heat source term Qn is not hyper-reduced because the
local domain moves following the heat source, therefore its contribution can be computed only
once at the beginning of the simulation.

3.1 Reformulation of the ECSW method

Note that an unrestricted least squares problem must be solved at each iteration of Algorithm
(1). The cost of solving it increases considerably with the size of the matrix Jz. Therefore, we
reformulate the ECSW method to reduce the size of this matrix using an approach similar to
that presented by Hernández et al. in the context of the ECM method [11]. From Eq. (17),
the assembling of the component i of G̃j for the training sample j can be written as

G̃j
i =

∑
e∈E

gji,e =
∑
e∈E

1 · gji,e = 1T Gj
i, (23)

where 1 = [1, 1, · · · 1]T and Gj
i = [gji,1, g

j
i,2, · · · , gji,ne

]T . Then, 1T can be interpreted as a linear

transformation T = 1T which maps elements from Rne to R. Therefore, the domain of the
linear transformation T can be decomposed into two orthogonal components, namely the Null
space of T , N (T ), and the range space of T T , R(T T ), i.e. Rne = N (T )⊕R(T T ). By noting

that 1 spans R(T T ), the projection G̊j

i of Gj
i on R(T T ) is given by

G̊j

i =
1

||1||

(
1T

||1|| G
j
i

)
= 1

G̃j
i

ne
=

1

ne

G̃
j
i

...

G̃j
i

 . (24)

The projection of Gj
i on N (T ), denoted by Ĝj

i, is computed by subtracting G̊j

i from Gj
i, that

is

Ĝj
i = Gj

i− G̊j

i =


gji,1 −

G̃j
i

ne
...

gji,ne
− G̃j

i

ne

 =

 ĝ
j
i,1
...

ĝji,ne

 , (25)

which provides the following equation:

0 = 1T Ĝj
i. (26)

The reduced set of weights w and elements Ẽ is then determined such that the following
quantities are well approximated

0 = 1T Ĝj
i ≈

nz∑
e=1

weĝ
j
i,ze
, for i = 1, 2, · · · , np; j = 1, 2, · · · , nj; (27)

ne = 1T1 ≈
nz∑
e=1

we. (28)
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Then, we have to solve a NNLS problem similar to that given by Eq. (21), but with Jz and b
redefined as:

Jz =


ĝ1
z1
· · · ĝ1

znz
...

. . .
...

ĝ
nj
z1 · · · ĝnj

znz

1 · · · 1

 ∈ R(njnp+1)×nz , b =


0
...
0
ne

 ∈ R(njnp+1). (29)

An additional improvement can be done. Suppose that we know in advance a basis Φs,

with s = 1, 2, · · · , ns, which spans the space of Ĝj
i. Then, Ĝj

i =
∑ns

s=1Φscs and Eq. (27) can be
equivalently written as

0 ≈
nz∑
e=1

weĝ
j
i,ze

=
nz∑
e=1

we

ns∑
s=1

Φs,zecs =
ns∑
s=1

(
nz∑
e=1

weΦs,ze

)
cs, (30)

where Φs,e is the e component of basis vector Φs. Due to the fact that parameters cs are
arbitrary, the previous expression is equivalent to

0 ≈
nz∑
e=1

weΦs,ze , for s = 1, 2, · · · , ns. (31)

Adopting this formulation the expression for Jz and b are given by

Jz =


Φ1,z1 · · · Φ1,znz

...
. . .

...
Φns,z1 · · · Φns,znz

1 · · · 1

 ∈ R(ns+1)×nz , b =


0
...
0
ne

 ∈ R(ns+1). (32)

The basis Φ is built by collecting snapshots of ĝje at each FE, arranged as

Ĥ = [Ĝ1
. . . Ĝj

. . . Ĝnj
] (33)

Then, the Singular Value Decomposition (SVD) of Ĥ is computed and the most ns significant
left singular vectors are taken as the basis Φ.

In order to solve for w and gather the reduced set of elements Ẽ, an algorithm similar to
the one presented in Algorithm (1) is adopted. The number of POD modes ns used for the
basis Φ is always taken as ns = nz − 1 = |Ẽ| − 1. In this way, the NNLS solver will always
converge to a solution with an error close to machine precision.

Remark: from Eq. (20) it can be noted that self-equilibrated problems result in an ill-posed
minimisation problem. With the modification introduced in this section, the ECSW method
can also deal with this kind of problems.

3.2 Alternative reformulation of the ECSW method. Equivalence
with the ECM method.

It can be observed from Eq. (32) that an additional restriction is added to avoid ill-posedness
in self-equilibrated problems: the weights sum must be equal to the number of elements ne. In
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this sub-section, we scale this restriction so that the weights sum equals the volume V of the
domain, to show the equivalence with the ECM method. Let us re-write Eq. (23) as

G̃j
i =

∑
e∈E

√
Ωe ·

gji,e√
Ωe

=
√
Ωe

T
V j

i, (34)

where
√
Ωe

T
= [
√
Ω1,
√
Ω2, · · ·

√
Ωne ] and V j

i = [gji,1/
√
Ω1, g

j
i,2/
√
Ω2, · · · , gji,ne

/
√
Ωne ]

T .
It should be observed that in this case, the linear transformation operator is given by

T =
√
Ωe

T
, from which the projection of V j

i to N (T ) is given by

V̆ j
i = V j

i−
√
Ωe

||√Ωe ||

( √
Ωe

T

||√Ωe ||
V j

i

)
=



√
Ω1

(
gji,1
Ω1

− G̃j
i

V

)
...√

Ωne

(
gji,ne

Ωne

− G̃j
i

V

)


=

 ğ
j
i,1
...

ğji,ne

 , (35)

where V is the volume of the analysis domain. Therefore, the reduced set of weights w now
must comply to

0 =
√
Ωe

T
V̆ j

i ≈
nz∑
e=1

we√
Ωze

ğji,ze , for i = 1, 2, · · · , np j = 1, 2, · · · , nj (36)

V =
√
Ωe

T√
Ωe ≈

∑
e∈Ẽ

we. (37)

Then, we have to solve a NNLS problem similar to that given by Eq. (21), but with Jz and b
redefined as:

Jz =


ğ1
z1

· · · ğ1
znz

...
. . .

...
ğ
nj
z1 · · · ğ

nj
znz√

Ωz1 · · ·
√
Ωznz

 , ∈ R(njnp+1)×nz , b =


0
...
0
V

 ∈ R(njnp+1). (38)

As done before, a basis Φ is built for the space of V̆ j
i by taking the left singular vectors of

the snapshots matrix

Ĝ
v

= [V̆1
. . . V̆2

. . . V̆nj
]. (39)

This results in the following expression for Jz and b:

Jz =


Φ1,z1 · · · Φ1,znz

...
. . .

...
Φns,z1 · · · Φns,znz√
Ωz1 · · ·

√
Ωznz

.

 ∈ R(ns+1)×nz , b =


0
...
0
V

 ∈ R(ns+1). (40)

Remark: Equivalence between the ECSW and the ECM methods. In case only
one Gauss point is used per finite element, the equivalence of both methods follows from Eq.
(34). Under this scenario, contributions gji,e are computed as gji,e = Ωef

j
i (x̄e), where x̄e is the

12



barycentre of the element and f ji is the component i of the integrand of Eq. (15) for the training
sample j. Therefore,

G̃j
i =

∑
e∈E

Ωe

gji,e
Ωe

=
∑
e∈E

Ωe
Ωef

j
i (x̄e)

Ωe

=
∑
e∈E

Ωef
j
i (x̄e), (41)

result on which is based the ECM method. The equivalence is, therefore, demonstrated.

3.3 A note on the computation of the Singular Value Decomposition

Figure 4: Algorithm for computing the SVD of large snapshots matrices.

Two alternatives of the ECSW method have been proposed. In both of them, the SVD of
the snapshots matrix for the reduced generalised forces, generically denoted in what follows by
X, needs to be computed. It should be observed that this matrix could be quite large in size
making it practically impossible to compute its SVD because of memory requirements. One
option would be to use domain decomposition and apply parallelisation, a complicated option.
One disadvantage of this option is that from a global point-of-view the number of selected
elements to be sampled will be larger than to apply the selection algorithm to the global domain.
Another option to tackle this issue was proposed by Hernández et al. [11] by using a partitioned
SVD. It is based on approximating the SVD of the snapshots matrix by partitioning it into
block matrices and computing the individual SVDs of these block matrices. In brief, suppose
that the snapshots matrix X is partitioned into r blocks as X = [X1, X2, · · · ,Xr] and that
the first n left singular vectors need to be computed. Then, the SVD of each block is computed
by keeping only the first rm = min(rank(Xm), n) vectors so that Xm = UmΣmV

T
m + Em,

where Em is the matrix of errors in taking the SVD of rank rm. Following, the sought left
singular vectors U are obtained from the computation of the SVD of rank n of the matrix
X̄ = [U1Σ1, U2Σ2, · · · ,UrΣr].

The approach followed in this paper is based on the partitioned SVD. The algorithm is
depicted in Fig. 4. It should be noted that it is a sequential algorithm which proceeds in a
cascade manner, but controlling the amount of memory needed by each SVD. Another option
would be to base the algorithm in a binary tree displaying a high degree of parallelism and
allowing to run it in a cluster.

Finally, in order to minimise the time spent on computing the SVD, the randomised-SVD
implemented by Voronin and Martinsson [25] is used.
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4 Application Examples

Two application examples are shown to assess the performance of the introduced methods.
First, the numerical behaviour of the material Global-Local model is studied by solving a SLM
manufacturing problem in which one layer of powder is heated by a laser beam. Results for two
different velocity values of the heat source are computed and compared to those found in [5, 4].
In the second example, the proposed HROM for the local domain is tested by solving one of the
previous problems. The on-line performance of the HROM model is tested by running the same
problem used for training, with the purpose of showing that it has good stability properties and
approximates correctly the behaviour of the system under study. In the presented examples,
the value for Tsb, see Eq. (2), is 10K. The tetrahedral elements modelling the phase change are
exactly integrated (see Fachinotti et al. [2]).

Local domain

Global domain

Heat source Advancing direction

(a) Global and local domains’ configurations.

Heat source
location

Local domain

Global domain

Advancing direction

(b) Meshes used for the global and local domains. The
local domain has been mirrored for the sake of its visu-
alisation.

Figure 5: Details of the global and local domains meshes. The local domain mesh is refined in
the vicinity of the heat source.

4.1 Example 1

In order to verify the numerical performance of the High Fidelity material Global-Local scheme
proposed in Section 2, the SLM problem of Gusarov et al. [4] and also solved by Hodge et
al. [5] is studied for two different values of the heat source velocity. The problem consists in
the laser beam heating of a block of 0.2 mm depth in which the top 0.05 mm is powder and
the rest is consolidated material. The laser moves along the x-direction and, therefore, only
one half of the domain is modelled with a symmetry boundary condition at y = 0 (Fig. 5a).
The global and local domains can be seen in that figure. Dimensions of the local domain are
(1.2 mm, 0.2 mm, 0.2 mm), whilst those of the global domain are (2.4 mm, 0.2 mm, 0.2 mm).
The meshes are shown in Fig. 5b. The local domain mesh has a total of 576,000 tetrahedra with
a refinement in the vicinity of the heat source towards the advancing direction. The powder
conductivity is artificially incremented in the front part of the domain, as described in Table
1. These refinement and conductivity increment are done in order to lower the Pèclet number
in that area, and stabilise the numerical solution and avoid spurious oscillations. The global
domain has a total of 1,152,000 tetrahedra. A non-isothermal phase change model is assumed,
with a solidus temperature, Tsol = 1, 678 K and a liquidus temperature, Tliq = 1, 718 K. The
Gusarov heat source, Eq. (5), is used for modelling the energy input from the laser. It is
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defined by the following parameters: We = 30 W, ρh = 0.7, βh = 60, 000 1
m

, R = 0.06 mm and
λ = 3. The initial temperature is taken to be 303 K and the material properties are given in
Table 1. A time increment of 10−5 s is used for the time interval [0, 0.00416 s].

Description Value

Specific heat, powder 2.98@1,600, 5.95@1,700 (MJ/m3K@K)
Specific heat, consolidated 4.25@1,600, 5.95@1,700 (MJ/m3K@K)
Thermal conductivity, powder 0.2@200, 0.3@1,600, 20@1,700 (W/mK@K)
Thermal conductivity incremented, powder 0.2@200, 3@1,600, 20@1,700 (W/mK@K)
Thermal conductivity, consolidated 20 (W/mK@K)

Table 1: Thermo-physical properties for Examples 1 and 2 [5].

(a) Solution for v = 120mm
s at time instant: 0.0002s (b) Solution for v = 120mm

s at time instant: 0.0022s

(c) Solution for v = 120mm
s at time instant: 0.00416s

Figure 6: Solution to the problem at different time instants for v = 120mm
s

. The evolution of
the phase fraction of the consolidated material is shown on the global domain. The temperature
field is shown on the local moving domain, which is drawn mirrored for the sake of visualisation.

Two advancement velocities are tested: v = 120mm
s

and v = 240mm
s

. In Figs. 6a-c, the
evolution of the phase fraction of the consolidated material and of the temperature field for a
velocity v = 120mm

s
for the heat source are shown for three time instants. The purpose of these

figures is showing how the material Global-Local model works. As it can appreciated, the global
domain is fixed and tracks the material phase changes, mainly the irreversible transformation
from powder to consolidated material. On the other hand the local domain moves following
the laser heat source while coupled to the material state computed on the global domain. The
results look good without the presence of spurious oscillations. However, it must be called
the attention that the minimum computed temperature is 226.6K which is below the initial
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temperature of 303K. A much finer mesh or a good stabilisation scheme would be needed in
order to make the minimum computed temperature closer to 303K. Despite this fact, from a
general point-of-view the obtained solution is of good quality.

In order to validate the proposed material Global-Local model, the results for both velocities
are compared to those obtained by Gusarov et al. [4] and by Hodge et al. [5]. More specifically,
the shape and the maximum depth of the melt pool are taken as sources of comparison. The
melt pool is considered to be defined by the temperature contour at 1700K. In Figs. 7 and 8 the
comparison of the obtained results for the melt pool depth and its shape can be respectively
observed. From these figures, it can be concluded that the proposed material Global-Local
model performs well from the numerical point-of-view, showing results similar to those obtained
by state-of-the-art numerical techniques.

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.10

0.12

0.14

0.16

0.18

0.20

(a) Melt pool depth for v = 120mm
s . From left to right: this work, Gusarov et al. and

Hodge et al.

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.10

0.12

0.14

0.16

0.18

0.20

(b) Melt pool depth for v = 240mm
s . From left to right: this work and

Gusarov et al.

Figure 7: Melt pool depth for heat source velocities of v = 120mm
s

and v = 240mm
s

. The
cross-sections were taken at maximum melt pool depth.
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(a) Melt pool shape for v = 120mm
s . From left to right: this work, Gusarov et al. and

Hodge et al.
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(b) Melt pool shape for v = 240mm
s . From left to right: this work, Gusarov et al. and

Hodge et al.

Figure 8: Melt pool shape for heat source velocities of v = 120mm
s

and v = 240mm
s

.
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4.2 Example 2: numerical performance of the proposed HROM

The numerical performance of the proposed HROM for the non-linear phase change problem
is investigated by studying the v = 120mm

s
example.The on-line performance of the HROM is

tested by running the same problem used for training, with the purpose of showing the stability
properties of the HROM.

The HROM proposed in Section 3.1 was used. The snapshots for the reduced generalised
forces, Eq. (33), were collected in a consistent manner. That is, first the HF model was solved
for collecting snapshots of the temperature field. Then, the POD modes Ψ for the temperature
field were computed and used for performing the first reduction. Next, the snapshots for the
reduced forces were collected by solving the training problem with the ROM resulting from the
first reduction. This ensures that the snapshots collection strategy for the reduced forces is
consistent. A total of np = 24 POD modes for the temperature field were used. Every computed
time step from the HF model is used as snapshot for the temperature field. No partitioned
SVD is used for the computation of the SVD for these POD modes. On the other hand, for the
computation of the basis Φ of the Null space of T , the partitioned SVD algorithm presented
in Section 3.3 was used with 9 partitions.

It can be observed from Eq. (22) that a total of five non-linear generalised forces need to
be separately hyper-reduced. Therefore, we need to compute five different basis Φ, one for
each term, and then to apply the NNLS algorithm in order to select the elements to sample
and their corresponding weights. In order to study the convergence of the error obtained with
the proposed HROM, an increasing number of selected elements for each non-linear term was
tested as specified in Table 2. Due to the fact that the maximum number of elements to be
sampled is 700, the partitioned SVD of rank 832 was computed for every term, i.e., twice the
number of time steps computed for the HF model.

Non-linear term Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

G̃c 40 60 80 100 300 500 700

G̃k 40 60 80 100 300 500 700

G̃vc 40 60 80 100 300 500 700

G̃l 24 36 48 60 170 290 400

G̃vl 24 36 48 60 170 290 400

Table 2: Number of selected elements to be tested for each non-linear term.

The Frobenius norm of the relative error obtained for each test is given in Fig. 9. We
observe from this figure that the proposed HROM behaves well from the stability point-of-view,
based on the fact that the error decreases monotonically as the number of sampled elements is
increased.

The CPU-times and speedup obtained for the different HROM tests can be observed in
Figs. 10a-b. The reference time is the time taken by the HF model running in parallel with 12
threads. The HROM tests were also run in parallel using 12 threads. The time spent writing
the solution to disk is part of the time measured for the HF model. The time necessary for
writing the solution was also included in the HROM tests. However, in the latter case the
solution is written in its reduced form, that is, the generalised DOFs associated to the basis
Ψ for the temperature are written. It should be observed that the obtained speedups are not
so high if one takes into account that the largest number of sampled elements is 700. This
is because the projection of the temperature field from the local to the global domain is not
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Figure 9: Relative error obtained for each test computed in the Frobenius norm. In the best
case, the error obtained for the HROM is 2.8%, whilst the error with ROM is 1.28%.

reduced. Therefore, the expected speedup will be bounded by the time taken by this projection
which can be considered as part of the sequential portion of the algorithm. Reducing the time
taken by the projection of the temperature field from the local to the global domain will be
subject of future work.
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(a) Times for the different HROM tests. The reference
time is the time taken by the HF model.
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(b) Speedup for the different HROM tests.

Figure 10: Times and speedup obtained for the different HROM tests.

In order to assess the quality of the solution obtained with the HROM model with the pa-
rameters of Test 7, the obtained profiles for the melt pool shape and depth and the temperature
field are shown in Figs. 11a-c. As it can be seen, the temperature field is well approximated as
well as the melt pool depth. However, we cannot say the same for the melt pool shape, which
is well approximated by the HROM on the front but not on the back. Nonetheless, it should be
observed that in the area corresponding to the back of the melt pool, the temperature field is
almost constant. Therefore, small errors in the temperature field computed by the HROM will
lead to large differences in the captured shape of the melt pool. However, these errors do not
influence the quality of the solution obtained with the HROM from a qualitative point-of-view
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as it can be recognised from the results shown in Figs. 12a-f.
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(a) Temperature field along the line (x, y = 0, z = 0.2).
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(b) Melt pool shape.
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Figure 11: Comparison between the HROM and the HF models at the time instant 0.00416s of
the obtained profiles for the melt pool shape and depth and the temperature field. The results
for the HROM model correspond to those obtained for Test 7.
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(a) FEM HD 0.0002s (b) HROM 0.0002s

(c) FEM HD 0.0022s (d) HROM 0.0022s

(e) FEM HD 0.00416s (f) HROM 0.00416s

Figure 12: Temperature field for the local domain at different time instants for the HF model
and the HROM with the parameters of Test 7.
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5 Conclusions and future work

A material Global-Local model for describing the evolution of material phase changes of non-
linear problems characterised by highly concentrated moving sources was proposed. This model
was successfully applied to the simulation of a Selective Laser Melting Additive Manufacturing
problem. The obtained results were comparable to those found in the literature. Following, in
order to tackle the computational cost of solving the non-linear thermal phase change problem
of the local domain, a HROM based on a variant of the ECSW method was introduced. The
behaviour of the HROM was studied by solving a SLM problem, where the on-line performance
was tested for the same problem used for training. It was observed that the developed HROM
is stable from the point-of-view that as the number of sampled elements is increased, the error
decreases. The obtained results approximated the temperature field with a 2.8% of error in the
Frobenius norm. The melt pool depth was also well approximated. However, the back of the
melt pool shape differed from the one obtained with the HF model. This was attributed to the
fact that the temperature field is almost tangent in that area, translating the small error in the
temperature field in a large difference in the melt pool shape.

On one hand, future work needs to be done on the high fidelity Global-Local model. In
this work in order to study the material coupling between the global and local domains, it
was assumed that the temperature field was the solution to a non-linear phase change problem
defined only on the local moving domain. The material Global-Local proposed here needs to
be extended to the Global-Local model presented in [6] where linear problems are handled but
where the coupling of the temperature field between the global and local domains is considered.
Another topic is the development of a stabilisation technique specifically conceived for SLM
problems.

On the other hand, issues concerning the HROM are subject of future study. One of those
issues is the development of good snapshots collection strategies which lead to good on-line
behaviour for problems different from those used in the training phase. Another important
matter is to study the reduction of the projection of the temperature field from the local to the
global domain in order to enable to obtain higher speedups.
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