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ABSTRACT 
The aim of this work is to provide more insight into the general modeling criteria for simulating 
pseudo-2D bubbling fluidized beds. For this purpose, two experimental-based problems are 
studied. First, a fluidized bed with a high-speed central jet problem is analyzed. A qualitative study 
of the first bubble indicates that the bubble shape prediction is highly sensitive to the frictional 
model adopted. The most accurate results in terms of bubble shape and detachment time are 
given by a frictional model that relates the strain-rate fluctuations with the granular temperature. 
Second, a uniformly fluidized bed problem in bubbling regime is considered. For this case, the drag 
models and boundary conditions for the particulate phase are investigated. Time-averaged solid 
phase velocity profiles are compared with the results of the literature where it is found that no-slip 
conditions (or partial slip with a high specularity coefficient) are more appropriate than slip 
conditions at the walls for these regimes. Regarding the drag force, although none of the models 
presented could match the experimental velocity predictions for low gas velocities at the lower 
region of the bed, the Di Felice model produces the most accurate results for the whole range of 
regimes considered. 
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Introduction 

Granular materials have diverse industrial 
applications. Many of these require an agitated 
regime to favor the contact with a fluid phase 
and, therefore, increase the mass and energy 
transfer rates. Fluidized bed arrangements have 
these features. They consist of a large container 
in which a bed of particles are fluidized by means 
of an air flow that is blown from below. Different 
fluidized bed regimes may be obtained by modify-
ing the air inlet flow, the particles size, the solid 
material and the container dimensions. Due to its 
multiple applications (e.g., catalytic cracking, 
grain drying, ethanol polymerization, coal gasifi-
cation) and the various regimes that may be 
obtained, the design of fluidized bed systems 
require a proper understanding of the multiphase 
flow behavior. 

For this purpose, pseudo-2D fluidized bed 
arrangements are commonly used for lab-scale 
experiments since it allows a direct observation 

of the gas-particles hydrodynamics. However, 
experimental approaches are usually costly and 
involve a well-trained laboratory staff. In this 
context, the computational fluid dynamics techni-
ques come as a nonexpensive approach to address 
fluidized bed problems and to complement the 
experimental data. The Eulerian two-fluid model 
(TFM) is one of the main approaches that has 
proven to be successful in predicting the hydro-
dynamic behavior of granular flows in fluidized 
beds (Ding and Gidaspow, 1990; Yuu et al., 2001; 
Taghipour et al., 2005; Koksal and Hamdullahpur, 
2005; Mazzei, 2008; Parmentier et al., 2008; Wang 
et al., 2008). This model is based on treating both 
phases as interpenetrating continua which leads 
to a system of averaged Navier–Stokes equations 
(Ishii, 1975; Drew, 1982; Enwald et al., 1996). 
These equations require closure models to handle 
the solid particles interaction effect on the solid 
stress tensor and the momentum exchange 
between phases. 

none defined  
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In the early years, the solid stress tensor was 
modeled by considering the granular material as a 
fluid with a constant viscosity and a particles press-
ure function added to the normal component of 
the stress tensor, which grows as the particles 
concentration increases (Bouillard et al., 1989; 
Lyczkowski et al., 1993). With the development of 
the kinetic theory of granular flow (KTGF) (Lun 
et al., 1984; Gidaspow, 1994), investigations on par-
ticulate flow modeling gained more attention from 
the community. In contrast with previous theories, 
the KTGF, which derives from the dense gas theory 
of Chapman and Cowling (1970), has a deeper 
phenomenological basis. This theory considers the 
particles as uniform spheres, and the collisions 
between them are considered instantaneous. The 
impact of these interactions on the rheological 
parameters are then related to the random motion 
of particles. This random motion is quantified by 
introducing the granular temperature concept which 
evolves following a granular energy balance equation. 

It also became clear that, when particles are in 
higher concentrations, the collisions are no longer 
instantaneous leading to rubbing and frictional 
effects. In such cases, the solid phase shear stress 
tensor is often modeled by the frictional theory 
(Schaeffer, 1987; Johnson and Jackson, 1987) which 
is mostly based on the critical state theory of soil 
mechanics (Atkinson and Bransby, 1977). In parti-
cular, the Syamlal model (Syamlal et al., 1993) and 
the Johnson–Jackson model (Johnson and Jackson, 
1987) for the particles pressure are arguably the 
most used in the literature (Passalacqua and 
Marmo, 2009; Patil et al., 2005a,b). The first one 
considers a solid pressure that scales up very quickly 
for solid volume fractions above a minimal limit at 
which friction effects occur, while the second one 
adopts an additive approach with the kinetic effects 
and takes into account the maximum packing. In 
the last years, a model based on the work of 
Srivastava and Sundaresan (2003) has become 
widely used in the literature (Benyahia, 2008; 
Passalacqua and Marmo, 2009). From a physical 
point of view, the model has a deeper phenomeno-
logical basis, since it takes the additive approach of 
Johnson and Jackson along with a modified shear 
stress model to account for the strain rate fluctu-
ation for quasi-static flow based on the work of 
Savage (1998). 

For fluidized bed applications, the drag is usually 
the only interfacial force considered and many cor-
relations for the drag force coefficient can be found 
in the literature. The Wen–Yu model (Wen and 
Yu, 1966) is applicable for low particles concen-
tration and it is based on the free falling velocity 
of a particle extended to multiple particles in 
liquid–solid suspensions based on the experimental 
work of Richardson and Zaki (1954). However, the 
Ergun model (Ergun, 1952) is developed for packed 
beds and properly describes the drag forces in high 
particles concentrations. Later on, Gidaspow 
(1994) proposed a drag model that consist on a 
switching technique between the Wen–Yu model 
(for as � 0.2) and the Ergun model (Ergun, 1952) 
(for as > 0.2). Other models, like the Syamlal– 
O’Brien model (Syamlal, 1987), the Gibilaro model 
(Gibilaro et al., 1985) and the Arastoopour model 
(Arastoopour et al., 1990) have extended the con-
cept based on the terminal velocity of Wen and 
Yu for more general cases avoiding the switching 
technique of the Gidaspow model. Further on, Di 
Felice (1994) extended the approach of Wen and 
Yu to contemplate multiple regimes by introducing 
a voidage function dependent of the particles 
Reynolds number. While the impact of each model 
have been studied for fluidized bed problems over 
the years, there is no common agreement on which 
is the most proper to replicate the experimental 
results for different bubbling regimes (Esmaili 
and Mahinpey, 2011; Du et al., 2006; Loha et al., 
2012). Moreover, the relative performance of such 
models in pseudo-2D simulations is a topic barely 
discussed in the literature. 

The correct choice for the particulate phase wall 
boundary conditions in fluidized bed applications 
is also a common topic of discussion (Hui et al., 
1984; Johnson and Jackson, 1987; Jenkins and 
Richman, 1986; Benyahia et al., 2005; Konan 
et al., 2006; Schneiderbauer et al., 2012; Soleimani 
et al., 2015; Fede et al., 2016). Among them, the 
Johnson–Jackson boundary conditions (Johnson 
and Jackson, 1987) for the solid velocity and granu-
lar energy are usually associated with rough walls 
and introduce the wall restitution and the specular-
ity coefficient as input parameters. This last para-
meter somehow measures the roughness of the 
wall affecting the amount of sliding that the 
particles experience. Benyahia et al. (2005) studied 
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various conditions for the solid phase for a 
circulating gas–solid system and concluded that 
low values of the specularity coefficient (even fully 
slip conditions) are proper to represent the patterns 
of the experimental results. However, for bubbling 
fluidized conditions, Fede et al. (2016) observed that 
the simulations performed with a fully nonslip 
boundary conditions for the solid phase at the walls 
have a satisfactory agreement with the experimental 
data. Moreover, the direct use of the Johnson– 
Jackson model involves an estimation of the specu-
larity coefficient which, in turn, is a nonmeasurable 
parameter. To avoid this issue, Li and Benyahia 
(2012) proposed a definition of the specularity as a 
function of other flow variables. In the same spirit, 
Schneiderbauer et al. (2012) proposed a different 
theory that combines sliding and nonsliding 
conditions introducing the wall friction factor and 
the tangential restitution coefficient. 

In this work, a predeveloped conservative gas- 
particle flow solver with kinetic-frictional theory 
closure (Venier et al., 2016) is used to explore vari-
ous modeling aspects for two typical pseudo-2D 
fluidized bed problems based on the experimental 
setups of Kuipers et al. (1991) and Laverman et al. 
(2008). Regarding the mentioned models, as far 
as the authors knowledge, there is no absolute 
agreement from the community about which set 
is the most proper to be used for simulating 
bubbling fluidized bed systems. Therefore, a pur-
pose of the present work is to examine the results 
given by these models in terms of time-averaged 
solid velocity and volume fraction field and provide 
more insight about optimal pseudo-2D simulations 
setup. 

The following sections are presented in the 
following order: “Eulerian two-fluid model” section 
presents the TFM with the corresponding kinetic 
and frictional closure theories. In “Results” the 
presented models are explored for two standard 
fluidized bed problems and the simulations are 
compared with the experimental results of the 
literature. Finally, in “Conclusion” the main con-
clusions of this work are outlined. 

Eulerian two-fluid model 

The TFM considers both phases as interpenetrating 
continuous media, where the mass and momentum 

conservation equations are obtained by averaging 
techniques (Enwald et al., 1996). This procedure 
introduces the volumetric phase fraction field ai 
that verifies: as þ ag ¼ 1. Here s represents the 
particulate phase and g represents the gas phase. 

Both phase continuity and momentum 
equations are presented below: 

@

@t
ðqsasÞ þ r � pðqsasusÞ ¼ 0 ð1Þ

@

@t
ðqgagÞ þ r � pðqgagugÞ ¼ 0 ð2Þ

@

@t
ðqsasusÞ þr � ðqsasususÞ ¼

� asrp � rpsþr � ðasssÞ þ qsasgþKsgðug � usÞ

ð3Þ
@

@t
ðqgagugÞ þ r � ðqgagugugÞ ¼

� agrpþr � ðagsgÞ þ qgaggþ Ksgðus � ugÞ

ð4Þ

where the shear stress tensors are modeled as: 

ss ¼ ls rus þruT
s

� �
þ ks �

2
3
ls

� �

r � usð ÞI ð5Þ

sg ¼ lg rug þruT
g

h i
�

2
3
lg r � ug
� �

I ð6Þ

Here ui is the phase velocity, g the gravitational 
acceleration, Ksg the drag coefficient, ρi the phase 
density, μi the phase dynamic viscosity, p the 
shared pressure, ps the particle pressure field, and 
λi the phase bulk viscosity. 

Drag models 

In the present multiphase model, the exchange of 
momentum between phases is given by the drag 
force exclusively. Other forces, such as the lift 
and virtual mass, are neglected. Many correlations 
for the drag coefficient have been developed over 
the years. In particular, the Ergun equation (Ergun, 
1952) is commonly applied to predict the pressure 
drop in packed beds of particles. However, for flui-
dized conditions, this simple formula is no longer 
applicable. The first attempts to establish a general 
drag law for more diluted conditions were done by 
Richardson and Zaki (1954). They investigated the 
sedimentation of spherical particles in a liquid– 
solid suspension to obtain an expression for the 
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relative velocity as a function of the voidage frac-
tion. The results of their experiments have been 
extensively used to develop several correlations 
for the drag coefficient. In particular, the Wen– 
Yu drag model (Wen and Yu, 1966) uses this 
information and extended the drag force applied 
on a single particle to a system of particles. This 
correlation relies on the hypothesis that the flow 
is dominated by viscous forces. In the same spirit, 
Syamlal (1987) proposed a model extending the 
single-particle approach to multi-particles systems, 
but introducing a relative velocity correlation 
which is function of the particle Reynolds number 
and the voidage fraction following the experi-
mental results of Richardson and Zaki. This model 
considers that the Archimedes number (relating 
the gravitational and viscous forces) is the same 
for a single particle and for a system of particles. 
However, Gidaspow (1994) proposed a switching 
technique at ag ¼ 0.8 between the Wen–Yu 
coefficient for diluted regimes and the Ergun corre-
lation for packed conditions, to contemplate the 
various states of particle concentrations. The 
coefficient obtained by this approach has the dis-
advantage of being discontinuous at the point of 
switching. The Gibilaro model (Gibilaro et al., 
1985) is another example of a drag law designed 
to extend the applicability of a fixed bed correlation 
(i.e., the Ergun equation). In fact, this predictive 
expression can be seen as a modified version of 
the Ergun model with a different friction factor 
that only depends on the particles Reynolds num-
ber and adjusted to match the experimental data. 
Later on, Arastoopour et al. (1990) made slight 
modifications on the expression of Gibilaro in 
how the drag force is affected by the void fraction. 
More recently, Di Felice (1994) followed the gen-
eral structure of the Wen–Yu model modifying 
the expression to account for intermediate flow 
regimes with a function based on a data fitting of 
experimental results. 

The aforementioned models are among the most 
frequently used for fluidization conditions in the 
literature. Figure 1 shows the drag coefficient as 
a function of the particles concentration, maintain-
ing the rest of the parameters fixed. For this gra-
phic, typical bubbling fluidization conditions are 
considered with densities of ρs ¼ 2500 and ρg ¼ 1.2 
kg/m3 for the solid phase and the gas phase 

respectively, a particles uniform diameter of 
dp ¼ 280� 10� 3 mm and a constant relative velo-
city fixed at jus � ug j ¼ 1 m=s. Although this last 
parameter will hardly be constant over time and 
space, it helps to provide an estimation of the rela-
tive behavior of the drag models considered. Most 
of the models predict similar results, however it 
can be observed that the Syamlal–O’Brien model 
predicts higher values of the drag force, while the 
Arastoopour model predicts the lowest drag for 
low to intermediate particles concentration for 
the given problem conditions. 

Gibilaro model (Gibilaro et al., 1985) 

Ksg ¼
17:3
Rep
þ 0:336

� �
asqg jug � usj

dp
a� 1:8

g ð7Þ

Rep ¼
agqgdpjug � usj

2lg
ð8Þ

Gidaspow model (Gidaspow, 1994) 

Ksg ¼
150 lga

2
s

d2
pa

2
g
þ 1:75 qgas

dpag
jug � usj as > 0:2

0:75 Cdasqg jug � usj

dp
a� 2:65

g as � 0:2

8
<

:

ð9Þ

Cd ¼
24
Rep
ð1þ 0:15Re0:687

p Þ Rep < 1000
0:44 Rep � 1000

�

ð10Þ

Figure 1. Drag coefficient Ksg as function of the particles con-
centration for each model at bubbling fluidization conditions.  
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Rep ¼
qgdpjug � usj

lg
ð11Þ

Syamlal–O’Brien model (Syamlal, 1987) 

Ksg ¼ 0:75
Ceasagqgjug � usj

dpv2
rs

ð12Þ

vrs¼ 0:5
h

A � 0:06Rep

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:06RepÞ
2
þ 0:12Repð2B � AÞþA2

q i ð13Þ

Ce¼ 0:63þ
4:8
ffiffiffiffiffi
Rep
vrs

q

2

6
4

3

7
5;A¼ a4:14

g ;

B¼
C2a

1:28
g ;ag � 0:85

aC1
g ;ag > 0:85

(
ð14Þ

where C1 and C2 are usually set at 2.65 and 0.8, 
respectively. 

Arastoopour model (Arastoopour et al., 1990) 

Ksg ¼
17:3
Rep
þ 0:336

� �
asqgjug � usj

dp
a� 2:8

g ð15Þ

Di Felice model (Di Felice, 1994) 

Ksg ¼ 0:75
Ceasqg jug � usj

dp
a� v

g ð16Þ

v ¼ P � Q exp
� ð1:5 � logðRepÞÞ

2

2

" #

ð17Þ

where P and Q are usually set at 3.7 and 0.65 
respectively. 

Kinetic-collisional particles interaction 

The mathematical closure of the TFM is given 
by the frictional and kinetic-collisional theories 
through the definition of the rheological para-
meters of the granular phase. This relies on the 
various states of particles concentration. The 
kinetic-collisional regime is modeled by the KTGF 
(Lun et al., 1984; Gidaspow, 1994), which occurs at 
low concentration where only binary collisions 
between particles are possible. This theory is based 
on the kinetic theory for dense gases (Chapman 
and Cowling, 1970). The solid phase viscosity and 

particles pressure are modeled through the 
granular temperature θ. This field follows an 
energy balance equation given by: 

3
2
@

@t
ðqsashÞþr� ðqsasushÞ

� �

¼

ss � psIð Þ :rusþr�pðjsrhÞ � csþ Jvþ Js

ð18Þ

where γs the dissipation of granular energy due 
to collisions, κs is the conductivity of granular 
temperature, Js the granular energy production 
due to slip between phases, and Jv the dissipation 
due to viscous damping. 

Most of the remaining parameters are modeled 
according to the works of Gidaspow (1994), Lun 
et al. (1984), and Sinclair and Jackson (1989): 

ps;ktgf ¼ qsashþ 2qsa
2
s g0ð1þ eÞh ð19Þ

ks ¼
4
3
qsa

2
s dpg0ð1þ eÞ

h

p

� �1=2

ð20Þ

cs ¼ 3ð1 � e2Þa2
s qsg0h

4
dp

ffiffiffi
h

p

r

� r � pus

" #

ð21Þ

Jv ¼ � 3Ksgh ð22Þ

Js ¼ Ksg 3h �
Ksgdpðug � usÞ

2

4asqs
ffiffiffiffiffiffi
hp
p

" #

ð23Þ

g0 ¼
1

1 � as
as;max

� �1=3 ð24Þ

In particular, the KTGF solid viscosity and 
granular conductivity can be defined based on 
the following models: 

Syamlal model (Syamlal et al., 1993) 

ls;ktgf ¼
4
5
a2

s qsdpg0ð1þ eÞ
ffiffiffi
h

p

r

þ
asdpqs

ffiffiffiffiffiffi
ph
p

6ð3 � eÞ
1þ

2
5
ð1þ eÞð3e � 1Þasg0

� �

ð25Þ

js ¼ 2a2
s qsdpg0ð1þ eÞ

ffiffiffi
h

p

r

þ
9
8
ffiffiffiffiffiffi
hp
p qsdpg0

1
2þ

e
2

� �2
ð2e � 1Þa2

s
49
16 �

33
16 e

� �

þ
15
32

ffiffiffiffiffiffi
hp
p asqsdp

49
16 �

33
16 e

� �

ð26Þ
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Gidaspow model (Gidaspow, 1994) 

ls;ktgf ¼
4
5
a2

s qsdpg0ð1þ eÞ
ffiffiffi
h

p

r

þ
2 5

ffiffi
p
p

96 qsdp
ffiffiffi
h
p

ð1þ eÞg0
1þ

4
5
ð1þ eÞasg0

� � ð27Þ

js ¼ 2a2
s qsdpg0ð1þ eÞ

ffiffiffi
h

p

r

þ
9
8
ffiffiffiffiffiffi
hp
p

qsdpg0
1
2
þ

e
2

� �

a2
s

þ
15
16

ffiffiffiffiffiffi
hp
p

asqsdp þ
25
64

ffiffiffiffiffiffi
hp
p qsdp

ð1þ eÞg0

ð28Þ

Hrenya–Sinclair model (Hrenya and Sinclair, 1997) 

ls;ktgf ¼
4
5
a2

s qsdpg0ð1þ eÞ
ffiffiffi
h

p

r

þ
1

15
ffiffiffiffiffiffi
hp
p qsdpg0ð1þ eÞð32 e � 1

2Þa
2
s

ð32 �
e
2Þ

þ
1
6
ffiffiffiffiffiffi
hp
p qsdpas

1
2

1þkfp
R

� �
þ 3

4 e � 1
4

� �

ð32 �
e
2Þð1þ

kfp
R Þ

þ
10
96

ffiffiffiffiffiffi
hp
p qsdp

ð1þ eÞg0ð
3
2 �

e
2Þð1þ

kfp
R Þ

ð29Þ

js ¼ 2a2
s qsdpg0ð1þ eÞ

ffiffiffi
h

p

r

þ
9
8
ffiffiffiffiffiffi
hp
p qsdpg0

1
2þ

e
2

� �2
ð2e � 1Þa2

s
49
16 �

33
16 e

� �

þ
15
16

ffiffiffiffiffiffi
hp
p asqsdp

e2
2þ

1
4eþ1

4þkfp
R

� �

49
16 �

33
16 e

� �
ð1þ kfp

R Þ

þ
25
64

ffiffiffiffiffiffi
hp
p qsdp

ð1þ eÞ 49
16 �

33
16 e

� �
ð1þ kfp

R Þg0

ð30Þ

Figures 2 and 3 show the granular viscosity and 
granular conductivity as a function of the solid 
volume fraction, respectively. Both fields are com-
puted for the same fluidization conditions of 
Figure 1, considering also a constant granular 
temperature of θ ¼ 5 � 10−4 m2/s2 and a restitution 
coeficient of e ¼ 0.8. All models predict similar 
values at high concentrations, but the Syamlal 
and Hrenya–Sinclair models have a sudden 
decrease in both granular parameters at very 
low concentrations. Regarding the granular con-
ductivity, the Gidapsow model clearly predicts 

the higher values for the whole scope of particle 
concentrations. 

Frictional particles interaction 

At high concentrations, the particles are continu-
ously in contact and the relative movement with 
each other produces rubbing and friction. In these 
conditions, the KTGF hypothesis (instantaneous 
and binary collisions) are not verified and another 
approach is needed to model the rheological 
parameters. 

The first attempts to model this situation are 
based on treating the powder compound as a yield-
ing plastic, where the frictional stress is given by 
the Coulomb law. In many cases, this condition 

Figure 2. Solid viscosity μs,ktgf as function of the particles con-
centration for each model at bubbling fluidization conditions.  

Figure 3. Granular conductivity κs,ktgf as function of the 
particles concentration for each model at bubbling fluidization 
conditions.  
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is verified by the granular materials, where con-
tinuous deformation occur with no change on the 
volume (Tardos, 1997; Srivastava and Sundaresan, 
2003). The following variants are commonly 
adopted (see Figure 4): 

Model I 
Johnson and Jackson (1987) proposed a model for 
the frictional normal stresses given by: 

ps;fric ¼ Fr
ðas � as;minÞ

g

ðas;max � asÞ
P ð31Þ

where Fr ¼ 0.05, η ¼ 2, and P ¼ 5. Also, as,min is 
the minimal solid volume fraction at which 
frictional effects occur. 

This model also considers that the frictional and 
collisional effects are additive. Therefore: 

ps ¼ ps;ktgf þ ps;fric ð32Þ
ls ¼ ls;ktgf þ ls;fric ð33Þ

where μs,fric is considered to be proportional to the 
frictional pressure (according to the Coulomb law) 
and to the sine of the angle of internal friction: 

ls;fric ¼ 0:5 ps;fric sinð/Þ ð34Þ

Model II 
Syamlal et al. (1993) proposed a model that isolate 
the contribution of both KTGF and frictional 
effects to the solids stress tensor: 

ðps;lsÞ ¼
ðps;ktgf ;ls;ktgfÞ; if as < as;min
ðps;fric;ls;fricÞ; if as � as;min

�

ð35Þ

where the modeling of μs,fric is based on the work of 
Schaeffer (1987) who follows a more rigorous 
approach to establish the dissipative mechanism 
of granular flows. For this model, the frictional 
viscosity is defined as: 

ls;fric ¼ 0:5 ps;fric ðI2DÞ
� 1=2 sinð/Þ ð36Þ

where ðI2DÞ
� 1=2 is the second-order deviatoric 

shear stress tensor. 
For this model, Syamlal et al. assumed an 

arbitrary function for the solid pressure to allow 
a certain degree compressibility given by: 

ps;fric ¼ 1025ðas � as;minÞ
10

ð37Þ

Model III 
This models makes use of the additive approach to 
define the rheological parameters, the Johnson and 
Jackson frictional model given by Eq. (31) and the 
model of Schaeffer for the solid viscosity given by 
Eq. (36). 

Model IV 
This model follows the work of Srivastava and 
Sundaresan (2003), which is similar to Model III 
but for the definition of the solid viscosity. The 
strain rate is modified according to the work of 
Savage (1998), who observed that shear stress in 
the granular assembly is lowered by the existence 
of fluctuations associated with the formation of 
shear layers even in quasi-static flow conditions, 
and that these layers length are around the same 
order of dp. To contemplate this effect, an extra 
term is added to the shear stress modeling of 
Schaeffer Eq. (36) such that: 

ls;fric ¼ 0:5 ps;fric I2D þ
h

d2
p

 !� 1=2

sinð/Þ ð38Þ

which is similar to the model adopted by Passalac-
qua and Marmo (2009). Here I2D is the second 
invariant of the deviatoric rate strain tensor. 

Three different approaches have been presented 
to compute the solid pressure. The first one corre-
sponds to the KTGF model given by Lun et al. 
(1984) in Eq. (19) without considering frictional 
contributions. Another one is given by Eq. (37) 
with a switching approach Eq. (35) (Syamlal– 
Rogers–O’Brien model) between frictional and 
kinetic-collisional effects at certain solids 

Figure 4. Frictional pressure ps,fric as function of the particles 
concentration for each model at bubbling fluidization conditions.  
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concentration (usually as,min ¼ 0.61). Finally, an 
additive approach given by Eq. (32) where both 
frictional and kinetic-collisional effects are simul-
taneously considered (Johnson–Jackson model) 
above certain concentration (see Eq. (31) with 
as,min ¼ 0.5). All these models are presented on 
Figure 4 as a function of the solids concentration, 
where it is observed that the isolated use of KTGF 
solid pressure leads to relative low normal stress 
predictions at high concentrations. At these con-
ditions, the Johnson–Jackson pressure smoothly 
grows as the volume fraction is near the packing 
limit, at which the solids pressure becomes infinity. 
The Syamlal–Rogers–O’Brien model presents an 
expected discontinuous behavior due to the 
switching approach at as,min, above which the solids 
pressure grows at a higher rate than the Johnson– 
Jackson model but, since it does not account for 
maximum packing, it ends up surpassed by the 
Johnson–Jackson pressure prediction near the 
maximum packing at as ¼ 0.65. This figure only 
refers to the solids normal stresses considered. In 
practice, it is used in conjunction with the solid 
shear stress model. Some selected combination of 
these models (as they usually appear in the litera-
ture) lead to the different alternatives presented 
in the previous paragraphs (Models I to IV). 

Wall boundary conditions 

In fluidized bed systems under the TFM technique, 
the correct adoption of boundary conditions at the 
walls for the solid phase is an open topic of dis-
cussion nowadays (Benyahia et al., 2005; Soleimani 
et al., 2015; Fede et al., 2016). Since the real nature 
of the granular phase is a set of individual particles, 
it is expected that the roughness of the wall affects 
the amount of sliding that the particulate phase 
experience in contact with the wall. Unlike a fluid 
phase, where a no-slip condition at the wall is nat-
urally assumed, the wall boundary conditions for 
the granular phase may be more complex. One of 
the most popular approaches is to consider a mixed 
boundary condition for the solid phase velocity and 
granular temperature at the walls following the 
work of Johnson and Jackson (1987): 

@us;w

@x
¼

p

6
as;w

as;max
uqsg0

ffiffiffiffiffiffiffiffi
3hw
p

ls
us;w ð39Þ

@hw

@x
¼ �

p

6
as;w

as;max
u

q2
s

js
g0

ffiffiffiffiffiffiffiffi
3hw
p

ls
jus;wj

2

þ
p

4
as;w

as;max
ð1 � e2

wÞ
qs
js

g0

ffiffiffiffiffiffiffiffi

3h3
w

q ð40Þ

where φ is the specularity coefficient and ew is the 
restitution coefficient between wall and particles. 
The specularity coefficient varies from 0, which 
corresponds to a smooth wall (fully slip condition), 
to 1 which correspond to a rough wall. In practice, 
this is a nonmeasurable parameter and it is usually 
specified through a data fitting of experimental 
results. In this context, Li and Benyahia (2012) pro-
posed an expression for the specularity coefficient 
which consist of a function of other measurable 
parameters (frictional coefficient, slip velocity 
and wall restitution coefficient) generalizing its 
applicability to multiple flow conditions. The 
model uses the Johnson and Jackson formulas 
(Eqs. (39) and (40)), where the specularity is now 
defined as: 

u ¼ 1 �
dp

4jus;wj

@jus;wj

@x

� �

u0 ð41Þ

u0 ¼
�

7
ffiffiffiffi
6p
p
ðu00Þ

2

8k ; if r � 4k
7
ffiffiffiffi
6p
p

u00

2
7

k
r
ffiffiffiffi
6p
p ; otherwise

8
<

:
ð42Þ

u00 ¼ � 0:0012596þ 0:1064551k � 0:04281476k2

þ 0:0097594k3 � 0:0012508258k4

þ 0:0000836983k5 � 0:00000226955k6

ð43Þ

r ¼
jus;wj
ffiffiffiffiffi
3h
p ; k ¼

7
2
lð1þ ewÞ ð44Þ

where μ is the frictional coefficient between the 
particles material and the wall. 

Another approach is presented by Schneider-
bauer et al. (2012), which combines sliding and 
nonsliding conditions at the walls to derive the 
following expressions: 

@us;w

@x
¼ N l erf

ffiffiffi
3
2

r
r
l0

 !

ð45Þ
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@hw

@x
¼N

ffiffiffiffiffi
3h
p

ffiffiffi
2
p

r
l2

l2
0
ð1þ ew � l0Þexpð�

3r2

2l2
0
Þr2

"

þ
l
ffiffiffiffiffi
6p
p

l2
0
ð7lð1þ ewÞ � 4l0ð1þ lÞ

� 3ll2
0ð1þ ewÞÞexpð�

3r2

2l2
0
Þ

þ
1
ffiffiffiffiffi
6p
p ð2ðew � 1Þ þ 3l2ð1þ e2ÞÞ

�

ð46Þ

N ¼
ffiffiffiffiffi
p

24

r
qsasg0ð1þ ewÞh

as;max
ð47Þ

l0 ¼
7
2
ð1þ ewÞ

ð1þ b0Þ
l ð48Þ

where b0 is the tangential restitution coefficient. 

Numerical method 

The presented model is solved using the finite 
volume method (Jasak, 1996; Ferziger and Peric, 
2012). The coupling algorithm uses a combination 
of SIMPLE (Patankar and Spalding, 1972) and 
PISO (Issa, 1986) and it is fully implemented in 
the OpenFOAM

® 
platform (Weller et al., 1998) 

based on the general structure of the twoPhase-
EulerFoam solver (OpenFOAM

® 
v2.2.0, April 

2013. https://openfoam.org/release/2-2-0/) and the 
work of Passalacqua and Fox (2011). The coupling 
between phases is given through the partial 
elimination algorithm (Spalding, 1980; Oliveira 
and Issa, 2003) and a conservative formulation of 
the momentum equations is adopted. A detailed 
description of the code and its validation is found 
in the work of Venier et al. (2016) 

Results 

The drag, frictional and KTGF models previously 
presented are tested on two fluidized bed problems. 
The first test is based on an experiment performed 
by Kuipers et al. (1991) of a pseudo-2D bubbling 
fluidized bed with a central jet of gas at high speed. 
The interest here is to accurately predict the correct 
shape and detachment time of the first bubble. 
These results are known to be sensitive to the fric-
tional model adopted (Passalacqua and Marmo, 
2009), therefore various models will be tested and 
the results will be compared to the experimental 
results of the literature. For the second case, a 

pseudo-2D bubbling fluidized bed is considered 
following the experimental setting of Laverman 
et al. (2008). For this problem, different drag mod-
els are explored along with different wall boundary 
conditions by analyzing time-averaged solid velo-
city profiles on a large time span. Unlike the pre-
vious problem, the transient states are not the 
main focus of interest. Instead, the solid particles 
distribution, velocity, and overall bed expansion 
is analyzed on a statistical steady state. The purpose 
of this section is to determine optimal modeling 
setups to accurately predict the overall hydrodyn-
amics of pseudo-2D fluidized bed problems incor-
porating also the modeling criteria derived from 
the single bubble analysis of the first problem. 

Bubbling fluidized bed with a central jet 

This test is based on the experimental setup of 
Kuipers et al. (1991). The problem is schematized 
in Figure 5 and a simulation sequence of the bubble 
growth is shown in Figure 6. The modeling and 
numerical parameters are presented on Table 1. 
In particular, the drag coefficient is computed by 
the Gidaspow model. An estimation of the mini-
mum fluidization velocity may be performed to 
determine if the model is applicable for the present 
problem conditions. This estimation is based on a 

Figure 5. Single bubble rise scheme.  
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balance between the buoyancy and the drag forces 
given by: 

ðqs � qgÞa
mf
s amf

g g ¼ Ksgumf ð49Þ

where the superscript mf indicates the initial 
condition for the current field. 

Thus, replacing Eq. (9) in Eq. (49), it yields that 
the minimum fluidization velocity for this problem 
is umf ≈ 0.22 m/s which is 12% higher than the 
fluidization velocity reported experimentally by 
Kuipers et al. (umf

exp � 0:25 m=s). These differences 
are considered acceptable for the purpose of the 
present analysis which is mainly based on explor-
ing the impact of different KTGF and frictional 
models on the bubble shape and detachment. 

Figure 7 shows a comparison between 
experiment and simulation in terms of contour 
lines of time-averaged solid volume fraction after 
40 seconds of physical time. There is a clear simili-
tude on the overall particles distribution, with 

slight differences near the walls and in the middle 
region. This may be attributed to a lack of aver-
aging time in comparison to the experiment. 
Nevertheless, the performance of the solver is 
satisfactory in terms of bed expansion and overall 
particles distribution. 

A mesh convergence analysis is performed to 
determine an optimal mesh size. Figures 8 and 9 
show a single bubble growth at two different states 
of time for four different two-dimensional mesh 
refinements: 224 � 400 cells (1x), 112 � 200 cells 
(2x), 56 � 100 cells (4x), and 28 � 50 cells (8x). 
While all the refinements preserve the bubble 
shape, it is observed that the interphase for the 
4x and 8x grids are highly diffusive. However, 
the 1x produce a slightly sharper interphase than 
the 2x grid, however the computational cost 
increase significantly. Therefore, the 2x mesh will 
be selected for further simulations. 

Early works have shown differences between 2D 
and 3D simulations, which are mainly attributed to 
the effect of the front and back walls on the hydro-
dynamic behavior of pseudo-2D fluidized beds 
(Caicedo et al., 2002; Feng and Yu, 2010; Li et al., 
2010a; Hernández-Jiménez et al., 2016). However, 
for the present problem conditions (i.e., inlet gas 
velocity, particles diameter, bed width, etc.) the 
2D simulation produce a bubble shape similar to 
the 3D simulation, as presented in Figure 10. For 
the 3D simulation, 12 cells have been used to 
discretize the domain in the direction of the bed 
width, with a higher refinement near the front 
and back walls to capture the effect of the shear 
stress on the solids phase. 

KTGF models 
Figure 11 shows results for different solids viscosity 
and conductivity KTGF models (with no frictional 
modeling): Syamlal model (Eqs. (25) and (26)), 

Figure 6. Bubble growth sequence.  

Table 1. Numerical parameters corresponding to Kuipers et al. 
experiment. 

Description Value  

Gas density 1.225 kg/m3 

Gas viscosity 2.192 � 10−5Pa s 
Solid density 2660 kg/m3 

Particles diameter 500 μm 
Restitution coefficient 0.95 
Width (W) 0.57 m 
Height (H) 1 m 
Bed initial height (hb) 0.5 m 
Jet inlet width (wJET) 0.015 m 
Initial packing 0.598 
Time step 1.0 � 10−5 s 
Time discretization Second-order implicit 
Convective term scheme Limited central difference 
Number of PISO iterations 5 
Number of outer iterations 10 
Drag model Gidaspow 
Wall boundary condition Johnson–Jackson 
Fluidization velocity (UIN) 0.25 m/s 
Jet inlet velocity (UJET) 10 m/s 
Outlet pressure 0 Pa   
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Figure 7. Time-averaged solid volume fraction contour lines: Experimental results from Kuipers et al. (left) and simulation results 
from this work (right).  

Figure 8. Bubble growth for different mesh sizes at t ¼ 0.1s. (a) 8x, (b) 4x, (c) 2x, (d) 1x, and (e) contour lines for as ¼ 0.2.  
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Gidaspow model (Eqs. (27) and (28)), and Hrenya– 
Sinclair model (Eqs. (29) and (30)). 

The results show that the shape of the bubble is 
not sensitive to the KTGF models adopted. This is 
expected since the bubble shape is mostly governed 
by the phase stress around the bubble, which is at 

near packing conditions. At such high concentra-
tions, the different KTGF models tend to the same 
values of viscosity and granular conductivity. This 
agrees with the observations of Patil et al. (2005a) 
who states that the compaction around the bubble 
is not influenced by the particle-particle interaction 
due to collisional effects. However, when frictional 
effects are considered, the shape of the bubble 

Figure 9. Bubble growth for different mesh sizes at t ¼ 0.2s. (a) 8x, (b) 4x, (c) 2x, (d) 1x, and (e) contour lines for as ¼ 0.2.  

Figure 10. 2D and 3D simulations comparison.  

Figure 11. Bubble at detachment time for different KTGF 
models: (a) Syamlal model, (b) Gidaspow model, and 
(c) Hrenya-Sinclair model.  
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becomes dependent of the stress model adopted 
(Patil et al., 2005a; Passalacqua and Marmo, 2009). 

Frictional models 
Figure 12 shows a qualitative comparison between 
four different frictional models along with experi-
mental photographs at different states of time. It 
is clear that the Models I and II fails to predict 
the correct bubble shape, producing a more 
stretched and pointy bubble than the experiment. 
Models III and IV preserve the round shape of 

the bubble, but Model III have a longer detachment 
time in comparison to the experiment (see 
Table 2). The same pattern is observed for Model 
IV but with a much closer agreement in terms of 
detachment time and bubble shape. Although there 

Figure 12. Bubble growth at different instants and frictional models: (a) Model I, (b) Model II, (c) Model III, and (d) Model IV.  

Table 2. Bubble detachment time for different frictional 
models. 

Experiment Model I Model II Model III Model IV  

0.170 s 0.180 s 0.233 s 0.235 s 0.179 s   
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are still some discrepancies in the time of detach-
ment, this model clearly predicts the closest results 
to the experiment. This level of accuracy of the 
model may be attributed to the fact that, while 
the viscosity reaches very high values as the strain 
rate tends to zero for the Model III, the rheology 
given by Model IV becomes dependent of the 
granular temperature (Eq. (38)). This behavior have 
a more solid phenomenological foundation as pre-
sented by Savage (1998). The results also agrees with 
the observations of Passalacqua and Marmo (2009) 
for a bubbling fluidized bed with a central jet but 
under different experimental conditions. 

Experiment of Laverman et al. (2008) 

This test is based on the experimental setup of 
Laverman et al. (2008) and schematized in 
Figure 13. The modeling and numerical parameters 
are presented in Table 3. Figure 14 shows a 
sequence of simulation starting from a resting state 
using Syamlal–O’Brien model for the drag force 
and Syamlal model for the granular viscosity and 
conductivity and Model IV for the frictional 
effects. 

A mesh convergence analysis is performed and 
the results of time-averaged vertical velocity at 
0.3 m from the distributor are shown in 
Figure 15. It is clear that the 8x mesh overpredicts 
the amplitude of the velocity, while the 1x and 2x 
mesh results are in close agreement. Therefore, 
the 2x mesh is selected for the following simula-
tions to minimize the computational requirements. 

Figure 16 shows a comparison of results for 2D 
and a 3D simulations. Here, the time-averaged 
solid vertical velocity at y ¼ 0.3 m and a vertical 
profile of time-averaged solid volume fraction are 
presented for both aproaches. The results show 

Figure 13. Bubbling fluidized bed scheme.  

Table 3. Numerical parameters corresponding to Laverman 
et al. experiment. 

Description Value  

Gas density 1.2 kg/m3 

Gas viscosity 2.2 � 10−5Pa s 
Solid density 2500 kg/m3 

Particles diameter 500 μm 
Restitution coefficient 0.95 
Width (W) 0.3 m 
Height (H) 0.7 m 
Bed initial height (hb) 0.3 m 
Initial packing 0.6 
Time step 1.0 � 10−4 s 
Time discretization Second-order implicit 
Convective term scheme Limited central difference 
Number of PISO iterations 5 
Number of outer iterations 10 
KTGF models Syamlal 
Frictional model Model IV 
Inlet velocity (UIN) 2.5 Uf 

Minimal fluidization velocity (Uf) 0.18 m/s 
Outlet pressure 0 Pa   

Figure 14. Fluidization sequence.  
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strong similarities which suggest that the 2D simu-
lations are addecuate enough for the present prob-
lem conditions (i.e., the front and back walls have a 
low impact on the hydrodynamics of the problem). 
These observation differ from the ones of Li et al. 
(2010a) for the same experiment, which may be 
attributed to the computational implementation 
of the TFM in both numerical codes (Syamlal 
et al., 1993; Weller et al., 1998). 

Figure 17 shows two distinctive behaviors of the 
particulate phase from applying slip conditions 
(perfectly smooth wall where the particles in 
contact slide without resistance) and no-slip con-
ditions (rough wall where particles cannot slide 

in contact to the surface). The slip condition 
produce two counter-rotating vertical stretched 
vortices along the bed height with particles moving 
upward at high velocity in the middle zone and 
moving downward in contact to the walls. 
However, the no-slip condition presents two round 
vortices in the upper zone while the lower part is a 
zone presents a slow recirculating flow. Unlike the 
case with the slip condition, this behavior partially 
agrees with the experimental observation of 
Laverman et al. where a few difference may be 
appreciated near the walls where the particulate 
phase clearly continue its downward movement 
up to the bottom of the bed. Figure 18 shows the 
effect of considering different specularity coeffi-
cients by applying the Johnson-Jackson boundary 
conditions where it is clear that adopting slip or 
low values of the specularity coefficients lead to 
inaccurate results in terms of the time-averaged 
solid velocity fields. 

Drag models 
An estimation of the minimum fluidization 
velocity is performed for each of the drag models 
presented following the force balance given by 
Eq. (49). The results are presented on Table 4, 
where it is clear that the Syamlal–O’Brien model 
highly overpredicts the umf. This prohibits the use 
of the model for more detailed studies without a 
proper adjustment of the model parameters 
(Syamlal and O’Brien, 1987; Zimmermann and 

Figure 15. Time-averaged vertical velocity profile for different 
mesh refinements at 0.3 m from the bottom.  

Figure 16. 2D vs 3D simulation comparison for the time averaged solid volume fraction on a vertical line (left) and time averaged 
solid vertical velocity at y ¼ 0.3 m (right).  
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Taghipour, 2005; Esmaili and Mahinpey, 2011). 
The same is extended to the Gibilaro model which 
fails to predict the umf with an error of ∼25%. The 
remaining models have a close agreement with the 
experimental results, with the small exception of 
the Di Felice model which will be adjusted in a 
similar manner as the Syamlal–O’Brien model. 
Since the nonadjusted Di Felice model is not far 
from the umf measured experimentally, it will also 
be considered in the following analysis. 

For the Syamlal–O’Brien model, based on the 
experimental umf, the balance equation given by 
Eq. (49) may be solved along with a continuity con-
dition for the coefficient B at ag ¼ 0.85. This gives a 
new set of coefficients C1 ¼ 11.183 and C2 ¼ 0.2. How-
ever, the Di Felice model is adjusted through a slight 
modificiation of P and Q to produce the correct velocity 
of minimum fluidization (P ¼ 4 and Q ¼ 0.582). 

Figure 19 shows time-averaged vertical solid 
velocity profile and volume fraction at 0.3 and 

Figure 17. Solid phase velocity field vectors for (a) experiment, (b) no-slip condition, and (c) slip condition.  

Figure 18. Time-averaged vertical velocity profile for different wall boundary conditions at (a) 0.1 m and (b) 0.3 m from the bottom.  

Table 4. Minimum fluidization velocity prediction for each drag model considered. 
Drag models Experiment Gidaspow Gibilaro Syamlal–O’Brien Arastoopour Di Felice  

umf (m/s)  0.18  0.1902  0.2411  0.6850  0.1901  0.2137   
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0.1 m from the bottom. Figure 20 shows vertical 
time-averaged solid volume fraction and total 
pressure for different drag models. At 0.1 m from 
the distributor, some of the models tends to over-
predict the maximum and minimum solids velocity 
(i.e., Gidaspow and Arastoopour models), while 
others, like the Di Felice model, accurately predicts 
the experimental results. This is emphasized at 
0.3 m where the Di Felice model (both with and 
without the parameters adjustment) present a 
higher agreement with the experiment than the 
rest of the models. In fact, the Gidaspow and 
Arastoopour models tend to underpredict the 
maximum and minimum solids velocity, while 
the Syamlal–O’Brien (with the parameters 

adjustment) tends to overpredict them. These dif-
ferences are also observed on the bed expansion 
prediction (as depicted in Figure 20), where the 
Syamlal–O’Brien model produce the higher expan-
sion. This behavior verifies the observations of 
Esmaili and Mahinpey (2011) and Vejahati et al. 
(2009), who showed that the Di Felice model pro-
duce very accurate results in terms of bed expan-
sion, while the adjusted Syamlal–O’Brien 
produces an incorrect bed expansion which is 
clearly higher than the experimental predictions. 
In their work, they show that these differences 
increase as the inlet gas velocity becomes higher. 
This is observed in Figure 21 where solids velocity 
profiles at different gas inlet conditions are 

Figure 19. Time-averaged solid vertical velocity (a) and volume fraction (b) at 0.3 m, and solid vertical velocity (c) and volume 
fraction (d) at 0.1 m for different drag models.  
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presented. Here, it is observed that both Di Felice 
models predict accurate velocity profiles while, in 
most cases, the Syamlal–O’Brien model overpre-
dicts the solids velocity. Although the Di Felice 
models seems to be the most robust approach, it 
should be noticed that the velocity profile at the 
lower part of the bed with a gas velocity close to 
the minimum fluidization velocity cannot be cap-
tured with any of the drag models considered. 

Wall boundary conditions 
The selection of the correct wall boundary 
condition for the solid phase velocity for the 
multiple fluidization regimes is an open topic of 
discussion in the community (Benyahia et al., 
2005; Li and Benyahia, 2012; Schneiderbauer 
et al., 2012; Fede et al., 2016). As was previously 
shown, the no-slip wall boundary conditions and 
the Johnson–Jackson conditions with a high specu-
larity coefficient roughly predicts the general 
hydrodynamic behavior with good accuracy. In 
general, the Johnson–Jackson boundary conditions 
have more physical substance for addressing the 
behavior of the particles partially sliding against 
the walls. This model introduces the specularity 
coefficient which somehow indicates the roughness 
of the wall. As shown in the literature, the general 
flow behavior is highly sensitive to this parameter 
(Benyahia et al., 2005; Li et al., 2010a). Unfortu-
nately, this is a nonmeasurable parameter which 
forces an apriori experimental practice to define 

it for the particular problem conditions. Several 
authors proposed alternative methods which 
bypasses this issue (Jenkins and Louge, 1997; Li 
and Benyahia, 2012; Schneiderbauer et al., 2012). 
In this work, two of them (see Eqs. (41)–(44) and 
(45)–(48)) are tested along with the no-slip bound-
ary conditions with the adjusted Di Felice drag 
model. A comparison in terms of the time- 
averaged solid velocity profile is presented on 
Figure 22. The results suggest that using the Li– 
Benyahia model (Li and Benyahia, 2012) is 
addecuate to estimate the correct specularity with 
a friction coefficient μ ¼ 0.36, predicting a velocity 
profile with the same agreement as the no-slip 
boundary conditions when compared to the 
experimental results. For the model proposed by 
Schneiderbauer et al., a tangential restitution 
b0 ¼ 0 and the same frictional coefficient as for 
the Li–Benyahia model are adopted. For these set 
of parameters and conditions, this model seems 
to overestimate the maximum and minimum solids 
velocity with respect to the other models. In all 
cases, a deeper analysis is needed to comprehend 
the discrepancies with the experimental results, 
specially in the region near the walls where the 
downward velocity is overestimated with all the 
models presented. 

All the results of this work should be considered 
dependent of the computational code adopted (i.e., 
OpenFOAM

®
) and further validations need to be 

presented to ensure the capability of the code in 

Figure 20. Time-averaged vertical profiles of volume fraction (a) and absolute pressure (b) for different drag models.  
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Figure 21. Time-averaged solid vertical velocity for: (a) UIN ¼ 1.5 Uf at 0.1 m, (b) UIN ¼ 1.5 Uf at 0.3 m, (c) UIN ¼ 2.5 Uf at 0.1 m, 
(d) UIN ¼ 2.5 Uf at 0.3 m, (e) UIN ¼ 3.5 Uf at 0.1 m, (f) UIN ¼ 3.5 Uf at 0.3 m.  
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predicting the correct solution for all possible flui-
dization regimes. In this aspect, Herzog et al. 
(2012) remarked some deficiencies in the code to 
produce the correct hydrodynamic behavior. How-
ever, in the last years, OpenFOAM

® 
has proven to 

be a robust and efficient computational tool to 
address gas-particles systems (Passalacqua and 
Fox, 2011; Liu and Hinrichsen, 2014; Venier 
et al., 2016). This work intend to add another proof 
of accuracy of the code in this subject. 

Conclusion 

In this work, an open-source gas-particle flow sol-
ver was used to simulate two standard pseudo-2D 
bubbling fluidized bed problems. Different grid 
refinements were considered to determine an opti-
mal mesh that balances the computational costs 
and the accuracy of the results for further studies. 

Several modeling aspects with known sensitivity 
on the final results were analyzed. For the fluidized 
bed with a central jet problem, different KTGF and 
frictional models were tested. It was found that the 
adoption of different solid viscosity and granular 
conductivity models for the kinetic-collisional 
regime have a small impact on the results. This 
was expected since most of the evolution occurs 
at near-packing conditions. The bubble growth 
and detachment phenomenon is mostly dominated 
by the particulate phase compaction around the 
bubble where the solid stress is mostly dictated 
by the frictional models. In this sense, the higher 
agreement with the experimental results in terms 

of bubble shape and time of detachment is given 
by the Model IV. This is somehow expected since 
it is the most physically contemplative out of the 
four models considered. For the uniformly flui-
dized bed problem, different boundary conditions 
for the solid phase and drag models were con-
sidered. Regarding the drag modeling, a prelimi-
nary study of the minimal fluidization velocity 
was performed. This was based on an approxi-
mated balance between buoyancy and drag forces 
which indicated that the Syamlal–O’Brien and the 
Gibilaro model should not be adopted without a 
parameters adjustment. Moreover, for different 
fluidization conditions, the Di Felice model with 
and without adjustment predicted the most accu-
rate results in terms of time-averaged velocity pro-
files for the whole range of fluidization conditions. 
This may be attributed to the fact that this model is 
more contemplative, focusing on a data fitting 
function for the intermediate regimes which are 
largely influential in bubbling fluidization. Even 
when the models were successful to predict the 
velocities on the top of the bed, the results at the 
lower region, which are close to the minimum 
fluidization velocity, could not be fitted to experi-
mental results at the same time. This implies that 
the drag models studied are still not able to cope 
all the bubbling fluidization regimes. Regarding 
the wall boundary conditions, the no-slip condition 
adoption for the particulate phase seems to be 
more adequate than the slip condition in bubbling 
regimes. A deeper analysis on granular-based wall 
boundary conditions was made by addressing three 

Figure 22. Time-averaged vertical velocity profile for different particle wall boundary conditions at (a) 0.1 m and (b) 0.3 m from the 
bottom with the adjusted Di Felice drag model.  
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different models. In this context, the Li and 
Benyahia model predicts accurate velocity profiles 
without incurring into further analysis to deter-
mine the specularity coefficient (as for the standard 
Johnson–Jackson conditions). 

This analysis sought to provide more insight 
into the overall criteria for computational model-
ing of bubbling regimes on pseudo-2D fluidized 
bed. In most cases, a set of models with good 
agreement with the experimental results could be 
determined. However, it is the authors belief that, 
given the wide range of techniques and correlations 
to model the drag force, the frictional effects and 
the wall boundary conditions for different fluidiza-
tion regimes, a preliminary modeling study to 
address new problem conditions cannot be 
avoided. 
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