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An essential aspect of the current theory of adaptive speciation is the maintenance

of phenotypic variation and the evolution of stationary stable phenotypic diversity, a

phenomenon known as evolutionary branching. Theoretical and empirical evidence

suggest that phenotypic variation can be maintained by favoring rare phenotypes,

for example, through frequency-dependent selection. However, even when phenotypic

variation is provided, the conditions leading to evolutionary branching are not universal.

In order to lead to stable diversification, current models of adaptive speciation, such as

the Lotka-Volterra competition model, must resort to strong assumptions that range from

using unrealistic shape parameters for the competition and carrying capacity functions,

modeling separately the generation of discontinuities in niche space, to increasing

the dimensionality of phenotypic traits. Here, we introduce a stochastic version of

the Lotka-Volterra competition model. We demonstrate that environmental fluctuations

suffice to lead consistently to phenotypic diversification and evolutionary branching. Our

observations build upon previous findings identifying a role for stochastic fluctuations

on the evolution of phenotypic diversity, emphasize the difference between strong vs.

weak assumptions in the stability of the LVC model, and suggest that the conditions for

evolutionary branching are more relaxed than anticipated.

Keywords: non-local stochastic models, environmental fluctuations, evolutionary branching, diversity generation,

speciation

1. INTRODUCTION

The origins and maintenance of species diversity is one of the foundational questions in
evolutionary biology. Theory and empirical evidence suggest that a large number of factors impact
species persistence, adaptation, and phenotypic diversification; often believed to antecede the
process of speciation [1, 2]. Current theory distinguishes two essential aspects associated to the
process of adaptive speciation. The first is the origin and maintenance of phenotypic variation, and
the second, the assimilation of such variation in the form of stable discontinuities in the population
distribution of phenotypes through a process called evolutionary branching [3–5].

The classic Lotka-Volterra competition (LVC) model describes the evolutionary dynamics of
a population and has been extensively used to explore the conditions for evolutionary branching
[6, 7]. According to the LVC model, a population of organisms lives on a one-dimensional niche
space, where there is a one-to-one mapping between phenotypic traits and niche position. As a
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consequence, phenotypes are fully specified by their relative
position along the niche axis, where distance between phenotypes
reflects similarity, and therefore, accessibility to similar resources.
In order to subsist, individuals consume the resources available
in their niches, such that over time, the frequency of a given
phenotypic trait in the population is function of two main forces:
the carrying capacity of the environment, and the competition
between individuals.

The carrying capacity describes the interaction between
organisms and their environment. It is often defined as a limit
on the number of individuals that can simultaneously occupy a
given position along the niche axis (i.e., have the same phenotypic
trait). Such limit encapsulates environmental constraints on
the availability of resources and/or the efficiency conferred by
phenotypic traits to resource consumption [8]. The carrying
capacity constitutes the stabilizing component of selection [9].

The second major force that impacts the frequency of
phenotypes in a population is competition. Competition is
a function of both the density of individuals with a given
phenotypic trait and the similarity between phenotypes. The
more common and more similar the phenotypes in a population,
the stronger the degree of competition. Due to its dependence
on the fraction of individuals with a given trait, competition
contributes to the frequency-dependent component of selection.

The LVC model predicts that the maintenance and evolution
of phenotypic diversity in a population of competing individuals
is function of the relation between the stabilizing and the
frequency-dependent components of selection, that is, between
carrying capacity and competition [10]. According to the LVC
model a population can evolve toward two possible outcomes. On
the one hand, the predominance of stabilizing over frequency-
dependent selection leads to the evolution of highly similar
individuals. On the other hand, the predominance of frequency-
dependent over stabilizing selection, results in phenotypic
diversification and evolutionary branching [9, 11]; a condition
deemed essential to the process of adaptive speciation.

Because the maintenance of phenotypic diversity is a crucial
onset of evolutionary branching, understanding the conditions
that promote diversity has attracted considerable attention [5, 7,
8, 12, 13]. These and other studies showed that, although in its
basic form the LVCmodel leads to the spontaneous generation of
phenotypic diversity (i.e., it is unstable), evolutionary branching
is not a granted outcome of the model. Indeed, the frequency-
dependent component of selection must be strong in order for
diversity to persist [9]. Therefore, in order to observe branching
researchers resort to several strong assumptions, such as: the use
of unrealistic, non-Gaussian shape parameters in the competition
and carrying capacity functions [13], modeling separately the
generation of discontinuities on niche space [14], or increasing
the dimensionality of phenotypic traits [9].

An aspect that has received less attention in the study of the
conditions for evolutionary branching is the role of stochastic
fluctuations. In contrast to the assumptions described above,
fluctuations are a pervasive phenomenon in ecology [15–17]. For
instance, noise can arise as a result of small population sizes ( i.e.,
demographic noise), from the interaction among individuals, or
between individuals and their environment (i.e., environmental

noise). Studies incorporating some form of stochasticity in
their analyses have reached contradictory conclusions. While
some have shown that fluctuations can promote diversification
[12, 18], alternative mathematical formulations have also shown
that fluctuations can also reduce the likelihood of evolutionary
branching [19, 20].

Here, we explore the role of environmental fluctuations on
the evolution of phenotypic diversity. We study the impact of
fluctuations on the availability of resources in niche space. We
do this by building an stochastic version of the LVC model
that introduces noise in the interaction between individuals
and their environment. We show that in the simplest form of
the LVC model, that of an asexual population, environmental
fluctuations can lead consistently to the evolution of phenotypic
diversity and to evolutionary branching. In Section 2, we
present the deterministic and stochastic variant of the LVC
model. Section 3 describes our results. Finally, in Section 4, we
discuss our observations in the context of modeling phenotypic
diversification and adaptive speciation.

2. MODEL

2.1. The (Deterministic) Lotka-Volterra
Competition Model
We start our analyses with the classic LVC model. This model
describes the evolution of the phenotypic density of a population
[φ(x, t)], by taking into account two main components. First, the
positive contribution of population growth, which is given by a
constant growth-rate (r), common to all phenotypes: r φ(x, t). A
second, negative contribution, describes the combined effect of
competition between individuals, α(x, y); and the environment’s
carrying capacity, K(x). The full dynamics of the population
density is given by the following partial integro–differential
equation, which summarizes the positive contribution of growth,
and the negative, combined contribution of competition and
carrying capacity:

∂φ(x, t)

∂t
= r φ(x, t)−

φ(x, t)

K(x)

∫

�

φ(y, t) α(x, y)dy. (1)

The competition and carrying capacity functions, are defined as
Doebeli et al. [13]:

α(x, y) = exp
[

− a|x− y|nα
]

, (2)

and:

K(x) = exp
[

− k|x|nk
]

; (3)

where a and k are the inverse of the widths of the distributions;
nα and nk are shape parameters. In the case of Gaussian
distributions: nα = nk = 2.0.

2.2. The Lotka-Volterra Competition Model
with Environmental Fluctuations
Most environmental fluctuations in the wild are caused by a
complex mixture of factors that are difficult to tease apart. Here,
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in order to take into account fluctuations encompassing such
variety of factors, we construct an stochastic variant of the LVC
model.We define a stochastic carrying capacity function [κ(x, t)],
as:

κ(x, t) = exp
[

− ξ (t) x2
]

. (4)

where the parameter k, that previously described the inverse of
the width (Equation 3), has been replaced by Gaussian white
noise with mean, µ, and variance, σξ . Formally, the stochastic
function ξ (t), is defined as:

< ξ (t) > = µ, (5)

< ξ (t)ξ (t′) > = σξ δ(t − t′), (6)

subject to the constraint ξ (t) > 0 for all t. By setting the variance
σξ = 0, and the mean µ = k, we recover the deterministic
LVC model. The final stochastic dynamics of the LVC model is
defined according to Equation (1), with a deterministic, Gaussian
competition function: α(x, y), and a stochastic carrying capacity
function defined according to Equations (4–6).

Building upon previous work [21], we were able to obtain
a solution for the evolution of the full stochastic LVC
model. Assuming no spatio-temporal correlations, the stochastic
parameter, ξ , is completely characterized by its probability
distribution P(ξ ). For simplicity, we assume that P(ξ ) follows a
Gaussian distribution with mean µ and variance σξ , defined for
ξ ≥ 0.

P(ξ ) =
e
−(ξ−µ)2/(2σ 2

ξ )

σξ

√
π/2 (1+ erf[µ/(σξ

√
2)])

. (7)

If we marginalize Equation (3) using the probability distribution
P(ξ ) on both sides, we obtain the following evolution equation:

∂φ(x, t)

∂t
= r φ(x, t)−

φ(x, t)

Ŵ(x)

∫

�

φ(y, t) α(x, y)dy. (8)

Where Ŵ(x) is defined as:

Ŵ(x) = exp

(

−µx2 −
σ 2

ξ x
4

2

)

1+ erf
(

µ

σξ

√
2

)

1+ erf

(

µ+ σ 2
ξ x

2

σξ

√
2

) . (9)

The stationary distribution is the solution of:

rŴ(x) =
∫

�

φ(y) α(x, y)dy. (10)

All simulations were carried out using the software
Mathematica [22].

3. RESULTS

3.1. Phenotypic Diversity is Not a Universal
Outcome of the Deterministic LVC Model
As discussed above, the deterministic, Gaussian LVC model does
not always lead to evolutionary branching. In fact, when the

effect of competition predominates over the effect of the carrying
capacity (k > a), the population evolves toward a regime of
stabilizing selection, with a consequent reduction in phenotypic
diversity. In contrast, when the stabilizing component is stronger
than the frequency-dependent component of selection (a > k),
the resulting stationary distribution is unstable, and depends on
the shape parameters of the carrying capacity and competition
functions (nk and nα).

In the most frequently studied case, that of a Gaussian
distribution (nα = nk = 2.0), a carrying capacity of large
width (small k), ensures the maintenance of phenotypic diversity.
However, under this conditions the model does not lead to
branching (Figure 1B). In contrast, by assuming non-Gaussian
shape parameters (e.g., nα = nk = 4.0), the model leads
to evolutionary branching (Figure 1C) [13]; and diversity can
persists even for values of a smaller than k, leading to branching
approximately at 4a = k [9].

Thus, the deterministic LVC model shows that in order for
diversification to lead to evolutionary branching, the frequency-
dependent component of selection must predominate over the
stabilizing component (i.e., a > k). Under these circumstances,
the model can lead to branching only if the shape parameters
of the carrying capacity and competition functions are larger
than 2 (e.g., quartic). We emphasize, however, that under
the more plausible biological scenario of a Gaussian function
(nα = nk = 2.0), phenotypic diversity persist only
if a > k; whereas evolutionary branching never happens
(Figure 1B).

3.2. Environmental Fluctuations Induce
Evolutionary Branching
Wewanted to explore the role of stochasticity in the maintenance
of phenotypic diversity and the conditions that lead to
evolutionary branching. Because of their pervasiveness in nature,
we decided to explore fluctuations arising from the interaction
between individuals and their environment. Fluctuations arising
from the interaction between individuals and their environment
can impact the ability of a species to exploit resources, either
because phenotypes may fluctuate in their efficiency of resource
acquisition/consumption, or because the availability of resources
may on itself be subject to fluctuations.

As described above, we constructed an stochastic version of
the LVC model by introducing environmental fluctuations as
Gaussian random noise in the width of the carrying capacity
function (Equations 4–6). The strength of fluctuations in this
model can be tuned by the deviation parameter σξ . Larger values
of σξ translate into stronger fluctuations, while by setting σξ = 0,
we recover the deterministic version of the model. The model
assumes no spatio-temporal correlations.

In order to explore the effect of fluctuations on the dynamics
of the model, we use as initial conditions a bell-shaped

phenotypic distribution: φ(x, 0) = c0 e−x2/σ 2
0 ; with c0 = 0.5,

σ0 = 0.4, and Gaussian shape parameters (i.e., nα = nk = 2.0).
In agreement with a regime of frequency-dependent selection
(Figure 1A), we set competition and carrying capacity functions
parameters as: a = 2 and µ = 1. Recall that under these
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FIGURE 1 | Deterministic vs. stochastic evolutionary dynamics of the Lotka-Volterra competition model. The evolutionary dynamics of the LVC model

under a regime of frequency-dependent selection (i.e., a > k); with either deterministic (B,C), or stochastic (D,E) environmental conditions. Under these conditions,

the model leads to two possible evolutionary outcomes, which depend on the relation between the shape parameters of the competition and carrying capacity

functions (nα and nk ). The maintenance of phenotypic diversity and evolutionary branching, are illustrated by a unimodal and bimodal phenotypic distributions,

respectively. (A) Initial, bell-shaped distribution of phenotypic diversity, φ(x, t = 0). (B,C) Under deterministic conditions, evolutionary branching is not a granted

outcome of the LVC model. (B) In the case of Gaussian functions (nα = nk = 2.0), the model predicts the maintenance of phenotypic diversity. (C) When the carrying

capacity and competition functions are quartic (nα = nk= 4.0), stabilizing selection remains if: k > a. However, if k < a, frequency-dependent selection leads to

branching. (D,E) Stochastic fluctuations lead to branching even in the Gaussian case. (D) Under stochastic conditions, even Gaussian competition and carrying

capacity functions (nα = nk = 2.0), lead to evolutionary branching. (E) As in the deterministic case, when the carrying capacity and competition functions are quartic

(nα = nk= 4.0), the model leads to branching. Both axes are in arbitrary units.

conditions, the model does not lead to evolutionary branching
(see for instance [13]).

As illustrated in Figure 1D, we observe that the introduction
of environmental fluctuations translates into phenotypic
diversity and evolutionary branching. Under the model
parameters tested here, the effect of environmental fluctuations
on branching seem independent of increments in the
shape parameters (Figure 1E). Indeed, the evolution of
the marginalized model, defined by Equations (8, 9) and
obtained from numerical simulations, shows that phenotypic
diversification emerges early during the evolutionary dynamics
of a population experiencing environmental fluctuations
(Figure 2A). Numeric simulations of Equation (1), using the
stochastic carrying capacity described in Equations (4–6), lead to
the same result (Figure 2B).

In order to study the sensitivity of our previous result to
the degree of noise in the model, we performed numerical
simulations using the previous parameters and different values
of σξ , ranging from 0.15 to 0.85. The final solutions for the
evolution of the full stochastic equation show complex behaviors
(Figure 3). We observe the emergence of branching at values of
σξ as small as 0.35.

As exemplified in Figure 2, our main result shows how the
introduction of environmental fluctuations in the deterministic
LVC model leads to strong levels of phenotypic diversity, and
to evolutionary branching. This result confirms that even in
the absence of strong assumptions used by previous models,
environmental fluctuations relax the conditions for evolutionary
branching.

4. DISCUSSION

The Lotka-Volterra competition model has been extensively used
to study the interplay between species interactions, phenotypic
diversity and the onset of evolutionary branching [9, 10, 12, 13,
19, 23, 24]. A well-known result of this model is the existence
of a link between the interactions of individuals and their
environment (i.e., carrying capacity), vs. the interaction between
individuals with other individuals (e.g., competition). Such a
link can lead to either a regime of stabilizing selection, where
a population evolves highly similar individuals; or to a regime
of frequency-dependent selection, which leads to phenotypic
diversification and evolutionary branching. According to this
result, however, phenotypic diversity only evolves under strong
levels of frequency-dependent selection and requires strong
assumptions, such as modifying the shape parameters of the
carrying capacity and competition functions to larger, unrealistic
values [9, 13].

Here, we introduced an stochastic version of the LVC model.
The model shows that environmental fluctuations can alleviate
the strong assumptions required for evolutionary branching
in the deterministic LVC model. Notably, and in contrast to
previous studies using the deterministic LVC model, preliminary
explorations of the stochastic model presented here, seem to
render the conditions for branching independent of assumptions
in the shape parameters of the carrying capacity and competition
functions.

Instead of focusing on a particular source of noise, we sought
to model fluctuations as the result of a complex mixture of
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FIGURE 2 | Dynamics of the Lotka-Volterra Competition models studied in this work. Panels show the temporal dynamics, obtained by numerical simulations,

of a population using the marginalized model (A), defined by Equations (8–9); and the stochastic model (B), defined by Equations (1, 4–6). As initial conditions we used

a bell–shaped distribution of phenotypes (φ(x, 0) = c0 exp(−x2/σ2
0 ), with c0 = 0.5, σ0 = 0.4), Gaussian shape parameters for the competition and carrying capacity

function (nα = nk = 2.0); and a regime of frequency-dependent selection. Parameters were: r = 1, a = 2, µ = 1, and σξ = 1. Both axes are in arbitrary units.

FIGURE 3 | Effect of noise on the stochastic dynamics of the Lotka-Volterra Competition model. Panels show the final phenotypic distributions (φ(x)) of

independent stochastic simulations carried out under increasing levels of noise [σξ ]. From panels (A–F), the values of σξ are: 0.85, 0.65, 0.55, 0.45, 0.35, 0.15,

respectively. In all cases, the initial condition is a bell–shaped distribution of phenotypes: φ(x, 0) = c0 exp(−x2/σ2
0 ), with c0 = 0.5, σ0 = 0.4. We used Gaussian shape

parameters: nα = nk = 2.0; and a regime of frequency-dependent selection. Parameters were: r = 1, a = 2, and µ = 1. Each simulation was performed for 104 time

steps. Both axes are in arbitrary units.
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environmental factors.We introduced fluctuations as white noise
in the carrying capacity function, which encodes constraints on
the interaction between individuals and their environment. More
specifically, one can think of the carrying capacity as a constraint
on two properties of an individual’s niche [8]. First, niche
position, which describes the resource for which the phenotype
optimizes efficient consumption. And second, niche width, which
captures the change in the efficiency of resource consumption as
a function of phenotype divergence. Our model focused on this
second property of the interaction between individuals and their
environment.

Previous studies exploring the role of fluctuations in
the evolution of phenotypic diversity distinguished between
demographic and environmental sources of noise. It is well-
known that strong competition can result on demographic
(i.e., population size) fluctuations [25], which can lead to the
extinction of newly evolved phenotypes. Consistent with this
intuition, demographic noise can delay evolutionary branching,
by driving a population to cycles of diversification and extinction
[19, 26].

In contrast to the effect of demographic fluctuations,
environmental fluctuations have shown contradictory results
[12, 26, 27]. In agreement with our result, a lottery model
of a fluctuating fitness optimum showed that fluctuations can
facilitate branching [27]. Sasaki and Ellner [27] constructed a
model based on a deterministic dynamics and showed that small
departures from an homogeneous resource level can lead to
strong changes in population diversity. In the work presented
here, we reached the same conclusion by exploring the role of
temporal fluctuations through a stochastic integro–differential
equation.

Under conditions of strong fluctuations, and when
individuals respond to the environment in a correlated
manner, environmental noise have also been observed to delay
evolutionary branching [12]. Because in our model we did not
study correlations in the response to fluctuations, we can not
compare it directly to the model in Johansson and Ripa [12].
We note, however, that the types of fluctuations introduced
in Johansson and Ripa [12], affect the entire population
fitness, whereas fluctuations in our model affect explicitly the
environmental component of the LVC model (see Equation A6
in Supplementary Material of [12]). Mechanistically, our model
introduces fluctuations in the width of the carrying capacity

function. Overall, the simulation results we observed, seem to
arise naturally from the marginalization of the effective carrying
capacity (Equation 9). The probability distribution involved in
such marginalization encapsulates distributions with small ( i.e,
Dirac-delta), to large deviations (e.g., quartic). Consequently,
variation in the width parameter of the carrying capacity can
affect the kurtosis of the phenotypic distribution for a short
interval, thereby mimicking the effect of increasing the shape
parameter, which is known to lead to evolutionary branching
[13, 28]. Here, we note that in addition to the carrying capacity,
alternative formulations of the competition function may have
an independent effect on the evolution of phenotypic diversity.
The effects of alternative kernel functions have been studied
in the absence of noise [29]. In the results presented here,

however, and because of arguments on the spatial distribution of
individuals [30], we used a constant, Gaussian kernel.

As observed in this and other studies, the resulting effect of
environmental noise depends on its mathematical formulation,
as well as on correlations in the response to fluctuations.
A comparative analysis of existing models incorporating
fluctuations and temporal correlations, alternative mathematical
formulations of noise, as well as a deeper exploration of the
parameters of the stochastic LVC model, will be needed to fully
understand the effect of fluctuations on phenotypic diversity.
Overall, our work highlights the role of fluctuations as an
alternative to the strong assumptions used in previous studies;
and adds to themounting evidence suggesting that the conditions
for evolutionary branching are more relaxed than anticipated.
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