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ABSTRACT 

 

A numerical assessment of a dry-sump oil system was performed by Computational Fluid 

Dynamics (CFD). Unlike conventional cars, race cars are subjected to high accelerations 

that induce oil sloshing. Hence, dry-sump oil systems are required to collect the oil 

outside of the engine prior to be pumped inside of it again. To avoid engine malfunctions, 

the dry-sump must guarantee continuously oil suction in every maneuver. To perform 

such simulations, the model was subjected to different car maneuvers extracted from data 

acquisition available from real race car. It has showed that single and combined 

maneuvers, such as acceleration, braking and turnings can induce downward, upward and 

lateral accelerations higher than 2 g during several seconds. Therefore, four different 

single maneuvers (acceleration, deceleration, turn right and turn left) as well as a set of 

contaminated maneuvers (braking and turning) were studied. Simulations were achieved 

by mean of the Volume of Fluid Method (VOF) for an air-oil system. The influence of 

the turbulence modeling was also investigated. First a forerunner design was analyzed 

and both the race car tests and CFD simulations showed that for the most extreme 

maneuvers (pure braking and combined with braking and turning right) the original 

design failed before the end of the maneuvers by air suction in the pump inlet. In 

consequence, the dry-sump was redesigned and assessed under these extreme conditions 

until to ensure stable oil aspiration. 

 

Keywords: CFD; dry-sump oil tank; multiphase flow; sloshing. 

 

INTRODUCTION 

 

The conventional cars collect and store the oil in the lower part of the engine, normally 

called oil pan or sump. The sump is attached to the bottom of the cylinder block 

underneath the crankcase where the crankshaft is located using a considerable spatial 

volume inside the hood. Sometimes baffle plates are used inside the sump to stop oil 

sloshing due to bouncing, rolling, and pitching of the vehicle. On the other hand, race cars 

are designed under the rule of saving space, reducing weight and using a layout for 

lowering the mass centre of the vehicle by reducing the car to floor height. For such 

reasons in race cars an external tank outside the engine is disposed located according to 

the free space given by the layout. Furthermore, the oil stored in this external tank, called 

dry-sump system, allows to improve the oil-air separation avoiding the foaming. The race 

cars are subjected to high acceleration and decelerations forces that commonly can reach 

values as high as 2 g or 3 g during several seconds. These forces push the oil against the 
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vertical walls compromising the normal lubrication and cooling of the engine. In 

particular the dry-sump oil systems could guarantee oil pumping in every situation. 

 

  
(a)     (b) 

 

Figure 1 (a) Picture of a race engine and; (b) schematic of a dry-sump system. 

 

Figure 1(a) shows a picture of a high-power race engine. As noted the dry-sump 

system, and particularly the external tank, requires large amount of volume. The Figure 

1(b) displays a draw of a typical dry-sump system: the oil is collected from several points 

in the sump (1) by the dry-sump oil pump and then send to the top of the oil tank (2). 

There, the air is separated from the oil by gravity or centrifugal force and oil fall down to 

the bottom of the tank (3) whereas the air leaves the tank by the top towards a breather 

tank. Finally, the oil in the tank is suctioned again by the pump and pushed into the engine 

(4). The design of the dry-sump external tank must attend not to disrupt the oil pump 

feeding, guaranteeing the engine oil pressure over the minimum value. 

In race cars, the sloshing promoted by the combination of deceleration and lateral 

turning could put off the oil from the suction fitting in the dry-sump tank. The fluid motion 

or sloshing inside tanks induced by body forces is one of the most important aspects 

concerning the design for maritime and road transport [1],[2]. Numerous authors have 

studied these phenomena by experimental [3],[4] and numerical techniques [4] focusing 

into avoid the loss of stability in the vehicles or the structural damage provoked by fluid 

motion. The most common strategies to mitigate sloshing comes from installation of 

baffles inside the tanks [6],[7]. The efficiency of these passive techniques has been widely 

reported in several applications [8],[9]. Additionally, more sophisticated ad-hoc dynamic 

systems have been designed for suppressing sloshing in particular industrial applications 

[10]. In open literature, there is not enough studies addressing with fluid motion under 

unsteady acceleration conditions in combined manoeuvre, such as those observed in race 

cars. Most of the reported studies refer to periodical or quasi-periodical conditions, by the 

exception of Modaressi et al. [8], who studied the influence of baffles in cylindrical tanks 

under quasi-uniform deceleration forces.  

The present paper deals with the redesign of a dry-sump oil tank of a race car, 

which presented malfunction under extreme manoeuvres when the oil is pushed out of 

pump aspiration. In the analysed dry-sump system the external dimensions as well as the 

location of the inlet and outlet fittings were very restricted by the available space. 

Nevertheless, a very reliable design was achieved after assessing different prototypes 

under the most extreme manoeuvres. That was performed by means of Computational 

Fluid Dynamic (CFD).  

The paper is outlined as; first the fluid mechanics mathematical background is 

presented. Then, the mesh independence and turbulence modelling are analysed by 
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solving a simple geometry case. Following, the dry-sump tank model is introduced and 

solved for the real failure condition. Finally, the results are discussed, and the conclusion 

highlighted.  

 

MATHEMATICAL FORMULATION 

 

The mathematical background is based on the Volume of Fluid (VOF) [11] method from 

OpenFOAM-3.0.1 (Open Field Operation and Manipulation). The OpenFOAM code has 

a finite volume discretization for several types of solvers. The governing equations of the 

unsteady incompressible viscous flow are the Navier-Stokes equations plus the volume 

fraction equation [12]. The system is written as Eq. (1), (2) and (3). 

 

∇.U=0 (1) 

 
∂(ρU)

∂t
+∇.(ρUU)=-∇p+∇.τ+ρg+σκ∇γ+fb 

(2) 

 

 
∂γ

∂t
+∇.(Uγγ)=0 

(3) 

 

 

 

where U is the velocity field shared by the two fluids throughout the domain, called 

volume center velocity. 𝛾 is the liquid phase fraction (γ=1 for liquid and 𝛾 = 0 for air), 

Uγ is the velocity of the phase represented by γ, τ is the deviatoric viscous stress tensor, 

ρ is the density, p is the pressure and g is the gravitational acceleration. σ is the surface 

tension coefficient and κ is the local curvature of the free surface. The term fb represents 

the non-gravitational body forces. The maneuver forces of the car are included in this last. 

The term σκ∇γ in Eqn. 2 represents the surface tension force and was proposed by 

Brackbill [13]. The curvature k is defined as follow: 

 

κ=-∇. (
∇γ

|∇γ|
) 

(4) 

 

For Newtonian and incompressible fluids, the stress tensor t is linearly related to 

the strain rate tensor S, τ=2μS-2μ(∇.U) I 3⁄ , with I the identity tensor and 

S=0.5[∇U+(∇U)T]. Isothermal condition was assumed for the analysis. Regarding the 

turbulence model, a set of simulations with real oil properties and simplified geometry 

with a fine enough mesh was performed using RANS (standard k-epsilon) and LES 

models as well as non-turbulence modeling (laminar). These tests showed that the 

turbulent contribution may be neglected for such refined mesh. Consequently, a laminar 

model was finally assumed.  

The Multidimensional Universal Limiter with Explicit Solution (MULES) [14] 

was used to solve the volume fraction equation in Eq. (3). The PIMPLE algorithm was 

used for pressure-velocity coupling and the Geometric Algebraic Multi-Grid (GAMG) 

[16] was selected to solve the Poisson equation for the pressure. Details about the 

PIMPLE algorithm and its implementation in OpenFOAM have been gave by Gatin et. 

al.[15]. For the rest of the equations the Preconditioned Bi-Conjugate Gradient (PBICG) 

was chosen.  First order scheme was used to discretize the divergence terms and linear 

scheme for the laplacian and gradient terms. For the linear solver, the convergence criteria 
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at each time step was an absolute residual below 10-6 or a relative residual three orders 

lower than the initial. Two outer-PIMPLE iterations and two inner loop corrections were 

used.   

 

Validation Test 

 

A simple numerical test was proposed in order to assess the turbulence models and the 

grid refinement. A 2D partially-filled cavity was simulated considering three uniform 

meshes, and two turbulence models along with a laminar case. The widely used Reynolds 

averaged Navier-Stokes (RANS) k-ℇ model [17] and the Large Eddy Simulation (LES) 

model [18] were chosen. For LES, a 3D mesh with periodic conditions was required. Both 

models are very used to simulate complex real geometry problems. The k-ℇ model is 

based on the average of the whole length turbulent scales. On the other hand, LES 

simulates the large eddies, that can be represented by the grid, and models those scales 

that are smaller than the grid cells (subgrid scales). 

The test geometry is displayed in Figure 2. A square cavity is split by a vertical 

partition wall, separating the square in two regions. This simple model has some similarity 

with the real dry-sump tank. Moreover, the side length of the square (h), represents the 

longitudinal dimension of the real tank (h = 0.25m). The partition wall has a length of 

h/4. In the initial time, the domain is filled of oil up to the middle of the partition wall 

height (h/8). The model was perturbed with an external constant acceleration of 1g 

suddenly applied to the liquid towards the negative x direction. That represents a lateral 

acceleration of the domain towards the positive x direction.  

 

 
 

Figure 2. Test geometry. 

 

The problem was simulated by 2.5s, which was enough time to get the final 

distribution of oil at both sides of the partition wall. At this time the liquid in both volumes 

has reached an almost motionlessness condition and there are not fluid overcoming the 

vertical wall. The coarse grid (Mesh 1) was 50 × 50 cells and it was refined by ×2, ×4 and 

×8 for the Mesh 2, Mesh 3 and Mesh 4, respectively. All meshes have uniform structured 

cells (hexahedrons). For LES cases, a 3D cavity of 0.25 m × 0.25 m × 0.1 m was used, 

and the z direction was discretized with the same cell size than for the other directions. 

Moreover, periodic boundary conditions were applied. 

Table 1 shows the percentage of oil remaining in the right compartment at the end 

of simulation. As noted, after the maneuver more than a half of the initial oil moved into 

the left side. The laminar results were quite similar for all meshes except for the coarser 
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one. On the other hand, the k- ɛ model showed high dependency with the mesh, whereas 

for LES model it was a little. In all cases, a good agreement between the three turbulence 

approaches was reached for the finest mesh. 

 

Table 1. Percentage of oil remaining in the right side at the end of simulation. 

 

Grid Laminar k-ɛ LES 

Mesh 1 47.86 49.73 -a 

Mesh 2 44.82 47.04 44.40 

Mesh 3 44.74 46.42 44.74 

Mesh 4 44.20 45.83 44.13 

a Mesh too coarse for LES modeling. 

 

The maximum difference between the coarsest and the finest meshes was lower 

than 4%. This means that even the coarser meshes can capture the main structures that 

dominates the problem. As expected, the smallest structures, such as droplets or fine 

ligaments, are only captured by the finest meshes but they do not noticeable change the 

macroscopic results. The turbulence modeling is not required to solve the problem. The 

RANS model shows a solution more diffusive and the flow presents more resistance to 

detach the tip of the partition wall. 

The fact that the laminar case result was similar to the turbulence cases indicates 

that turbulent structures, which affect the effective viscosity, do not dominate over the 

inertial forces. This conclusion is in line with several papers in which free-surface 

problems at high Reynolds numbers were also solved with laminar models. Several 

researchers [19] [4], [20], [21] successfully simulated complex problems without using 

turbulence models finding good agreement with experimental or analytical results. Lee et 

al. [22] arrived at the same conclusion in Liquefied natural gas transport problems. More 

recently, Liu et al. [23] compared the solutions from laminar and several turbulence 

models finding that the first was in better agreement with experimental data.  

In order to compare the solutions from the different meshes, the Figure 3 shows 

the oil interface for the meshes 2, 3 and 4 for the laminar and turbulent models at t=0.2s 

and t=0.3s respectively. At 0.2s, only primary structures are observed. A large wave is 

just overcoming the partition wall from the right to the left side and the oil in the left side 

is growing ups over the left wall. It can be concluded that the laminar and LES results 

agree very well for the three meshes. On the other hand, for the RANS model the shape 

of the waves crossing the partition wall differs significantly and the waves seem to be 

delayed with respect to the others. This would be caused by an over-estimation of the 

turbulent diffusion. Despite of this, the amount of oil crossing the wall at the end of 

simulation is similar for all cases.   
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(a) 

 

 
(b) 

 

Figure 3. Mesh convergence and turbulence models assessing: (a) Oil interface at  

t = 0.2s, (b) Oil interface for the laminar case and meshes 2, 3 and 4 at t = 0.3s. 

 

The inability of the coarser meshes to capture the secondary break-up structures 

does not affect the overall flow pattern. The Fig 3-b shows the results obtained for the 

three finest meshes and the laminar case just after the sloshing impact to the left wall (t = 

0.3s). Despite that Meshes 2 and 3 do not capture the detachment of drops observed with 

Mesh 4, the primary oil distribution is quite similar.  

On the strength of the results that have been already obtained for laminar cases, it 

is suitable to solve the dry-sump tank model under the same assumption. The Mesh 2 did 

not present large differences respect to the finest mesh. Due to that and the fact that the 

capture of secondary break-up structures is irrelevant for the involved problem, meshing 

parameters similar to Mesh 2 were adopted for the dry-sump tank. 

 

DRY-SUMP MODEL DETAILS 

 

The original design is shown in Figure 4(a). The dry-sump tank is located with the inlet 

aimed to the front of the car. That is, the tank accelerates towards the left during car 

acceleration maneuvers and accelerates towards the right during car deceleration 

maneuvers. The coordinate system in the graph indicates the direction of the forces during 

the four basic maneuvers.  

The oil coming from the engine enters through the helical inlet in the top left side 

and fills the left compartment (volume 1). The air coming with the entering oil is vented 
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through the central tube placed in the center of the spiral. Then, the oil flows from the left 

compartment to the right one (volume 2) passing through three flap valves placed at the 

vertical wall dividing the two compartments. The flaps work as follow: they remain 

partially opened under null acceleration by means of a spring mechanism allowing the 

free passage of oil, they open more during the acceleration of the car (towards the left) 

and close during deceleration maneuvers of the car. Finally, the turning maneuvers have 

negligible effect over the flap valves. The purpose of these valves is to avoid the passage 

of oil from the right to the left during deceleration maneuvers.  

As shown in Figure 4(a), the bottom part of the Volume 2 is divided in two by 

means of a vertical baffle, which also has a flap valve. The oil suction fitting is placed at 

one side of the vertical baffle and the valve aims to retain the oil inside this side under 

lateral maneuvers. Moreover, a perforated horizontal baffle is used to avoid the oil foam 

to reach to the suction fitting in the lowest part of the tank, where a filter (not included in 

the model) is located before the outlet. Finally, the vertical tube housed in the Volume 2, 

is only for oil level measurement.   

 

 
(a) 

 

 
(b) 

 

Figure 4 (a) Original design of the oil tank and; (b) a fitted friction curve. 

 

The geometries of the original and the enhanced designs were discretized using 

hybrid meshes. A maximum cell size of 2.5 mm was adopted from the simple geometry 
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test. Local refinement was required around the flat valves and the surfaces. The models 

were discretized with approximately 10 million of tetrahedral cells, which is large enough 

for the problem at hand. 

A constant flow rate of 2 l/s pure oil was imposed at the inlet and the outlet, while 

a reference pressure was defined in the air discharge outlet in the helical zone. For these 

reasons, the results should be valid only after the air reaches the suction fitting outlet. The 

walls were defined as no-slip condition for the velocity and zero-gradient for the pressure 

and the phase fraction. A preliminary simulation (without accelerations) was run to 

achieve suitable initial conditions before to impose the maneuver. To do that, the dry-

sump tank was initially filled with 3.5 l with a constant oil level, which is right for non-

accelerated situations. Then, 0.5 s of simulation were required to get a developed flow in 

the helical inlet. After that, the transient simulation of the maneuver was started. 

The force conditions were fitted from friction curves obtained from real data 

acquisition during track tests in which the original dry-sump system showed malfunction 

under extreme maneuvers and the engine stopped automatically. Figure 4(b) shows the 

evolution of the longitudinal and lateral forces during a combined brake and left-turning 

maneuver and the linear interpolations assumed for the simulation. According with the 

results of simulations, this maneuver was found to be the most extreme condition and was 

modeled by a constant lateral force of 1 g (right force for the fluid) joined with a constant 

deceleration of 1 g during the first 2 s followed by a linear reduction up to reach 0 g in 

the next 1.5 s.  

During the brake and left-turning maneuver the four flap valves were assumed 

completely closed, consequently the condition is truly very severe. Really both volumes 

are not completely isolated because the original design has a small gap between the top 

of the vertical baffle and the tank wall. However, due to the high position and size of the 

gap, oil flow is not expected to occur at least in a significant amount. The setting 

parameters as well as the characteristic grid size were chosen based on the validation test 

results. 

 

RESULTS AND DISCUSSION 

 

The former design was solved until air was aspirated by the suction fitting. In the real car, 

this situation occurred only 2 s before to initiate the brake left-turning maneuver. Due to 

that, a successful design would be achieved if oil fills the suction region along all the 

maneuver. Despite of that, it is important to quantify not only the oil phase fraction in 

there but also the remaining oil inventory in the Volume 2, which mainly feeds the suction 

fitting.  

Figure 5(a) shows results for the brake and left turning maneuver. To have a 

quantitative description of the oil inventory three volumes were considered as in Figure 

5(a). The Volume 1 in the left, the Volume 2 in the right and filter in the bottom 

representing the suction zone. In Figure 5(a), the three inventories are drawn. Note that 

the suction zone inventory is largely smaller than the others two and has a different scale 

in the graphic.  

The former design quickly failed because the suction zone was abruptly emptied 

after 0.9 s. Figure 5(b) shows the oil distribution for this time. Before of the first second 

of simulation there is still one liter of oil inside Volume 2, but it is pushed towards the 

vertical baffle and it accumulated over the horizontal perforated baffle. Despite the larger 

the orifices, the flow through them could not adequately feed the suction zone.   

Accordantly, the oil inventory in the suction zone fell rapidly. Even though this perforated 
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plate was removed, the available oil inventory in Volume 2 would be enough to maintain 

the maneuver for one more second but it would be not enough to the complete the 

maneuver. That is because the closer valves impede the oil to pass from Volume 1 to 2. 

In such condition, a large amount of the total tank capacity remains unless.  

 

 
(a) 

 

 
(b) 

 

Figure 5. (a) Inventory of oil in each volume and; (b) oil interface distribution at 0.9 s. 

 

The race track data indicates that the car stopped by low oil pressure 3 seconds 

after of initiated the maneuver. The difference of time between the real and the simulated 

fails could be partially explained by the fact that some oil is still remaining in the oil pump 

and the ducts. Therefore, the measurement in oil pressure drop is delayed. As concluded, 

the isolation of the three volumes during this maneuver, promoted mainly by the flap 

valves and the baffles leads to the linear evolution of the oil inventory shown in Figure 

5(b).   

Nonetheless the malfunction of the dry-sump tank under the brake and left-

turning, the tank showed a good degassing performance at the helix entrance without 

evidence of significant amount of air in the lower part of the tank. On the other hand, the 

capability of the perforated baffle foam breaker is far to be simulated with the current 

multiphase model.  
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The re-design of the tank must guarantee that air does not fill the suction zone 

during at least two seconds, while the entering oil supply this volume. Considering that 

neither the capacity and the overall shape of the tank could be increased, nor the position 

of the suction fitting could be put down or move to the front side, the only available 

possibility was to modify the inner baffles.   

Attending to these constrains, two new designs were proposed. Figure 6(a) shows 

the first one, in which all baffles were removed (case 2). The Figure 6(b) shows the second 

one, which is similar to the former but putting a horizontal short blind baffle (case 3). The 

case 2 looks for having a complete communication between the two regions and to know 

the tank behavior without internals. On the other hand, the incorporation of the horizontal 

baffle in case 3 should be two functions: first to retain the oil close to the suction zone 

during the first time. Second, to allow the entering flow to easily pass from volume 1 to 

volume 2 independently of the maneuver span. The baffle is placed just below to the 

initial oil level with two purposes, in the short term (t<0.5s) should retain the initial 

sloshing induced by a deceleration maneuver. Next, in longer times (t>2s), it should 

guarantee that the entering flow spill over the baffle and takes the suction zone. The 

absence of mobile components, such as the flap valves, reduces the possibility of a fail 

by blockage of components.  

 

 
(a)    (b) 

 

Figure 6. Proposed redesign models (a) without internals (case 2) and; (b) with a 

horizontal blind baffle (case 3). 

 

This idea of mitigating the sloshing was also analyzed by other researchers, e.g. 

Akyildiz et al.[24] experimentally studied the effect of short horizontal baffles to break 

sloshing in square cavities and Zhou et al. [25] experimentally and numerically studied 

the effect of introduce baffles in cylindrical tanks. In both researchers a good efficiency 

to break the sloshing and avoid its consequences was found.  

Figure 7(a) shows the inventory at the volumes 1 and 2 for both designs together 

with the original design (case 1). Of course, for cases 2 and 3 there is not real division 

between the volumes. The case without baffles (case 2) failed similar than the original 

design. This is due to the stream of oil ascending freely over the left wall in the Volume 

1 takes oil directly from the suction zone.  Therefore, the oil inventory in volume 2 falls 

abruptly. After 0.45s, the volume 2 lost more than 70 % of its initial inventory, whereas 

the original model only had lost 18 %. Case 3 also shows a fast reduction on the oil 

inventory in volume 2, although the curve is less abrupt.  
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(a) 

 

 
(b) 

 

Figure 7. Oil inventory of case 1, 2 and 3 for (a) overall volume monitors and; (b) filter. 

 

Figure 7(b) shows the oil inventory in the suction zone. The case 2 fails earlier 

than the original design, although the oil inventory is recovery after one second. However, 

due to the fact that volume 2 is empty, the oil supply is no longer guarantee. This bad 

behavior is due to the inability for retaining the oil located close to the filter producing an 

inventory depletion of region 2, which is not recovered during the first seconds.  

Figure 8 compares the oil distribution for the three models and three times. The 

cases 1, 2 and 3 are showed in the top, middle and bottom of the figure, respectively.  

Regarding the case 2, after the oil fills the region 1 (t = 0.2s approximately), a sloshing in 

the opposite direction is observed. Although at t = 0.4 s this sloshing provides to the 

region 2, it is insufficient. Despite of this re-flow, at t = 0.4s the suction fitting begins to 

inhale air as in Figure 7(b). From the results showed, it could be thought that the design 

could be acceptable if the initial emptying is avoided.  

The case 3 results are showed in Figure 7 at bottom. It is observed how the lower 

zone of volume 1 remains quiescent and prevents the frontal sloshing. At the first time  

(t = 0.2 s) the imposed force causes a portion of the oil moves over the baffle towards the 

upper part of volume 1. However, the oil inventory around the suction zone is guaranteed. 

The upper zone of volume 1 accumulates oil coming from the entrance and the volume 2. 
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The last occurs until reaching the balance between the body forces and mass inventory at 

t = 0.3 s. At t = 0.4 s the oil begins to return from volume 1 to volume 2. The results show 

a stable and maintained flow all the time. At the end of the transient the flow is stable but 

the safety margin is low. For this reason, the case 3 is better than the original, but it must 

be improved more.  

 

 
     (a)         (b)            (c) 

 

Figure 8. Oil interface distribution for case 1 (top), case 2(middle) and case 3 (bottom) 

at (a) t = 0.2 s, (b) t = 0.3 s and (c) t = 0.4 s. 

 

After 1 s, the oil distribution in the tank shows a slow emptying of the region 2. 

This proves that the mass flow from region 1 is proper. Despite the mass inventory in 

region 2 is lower than the original case, the redesign maintains a constant value and kept 

the oil in the sump region. 

From the presented results, it can be concluded that the only design able to support 

the extremes maneuver for more than 2 seconds was the case 3. The simulation was 

stopped at 2 seconds because the car acceleration starts to reduce after that time and 

consequently the oil-air interface begins to recover the horizontal shape. The other two 

designs could not maintain the oil-air interface far away from the suction zone for more 

than one second. Even though the case 3 reaches an almost steady interface position, it 

can be noted that the volume of oil close to the suction fitting remains scarce. In 

accordance, it is advisable to fill the tank with more oil than the original 3.5 liters.  
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(a)   (b)   (c) 

 

Figure 9. Oil free surface for Case 4 at (a) t = 0.2 s, (b) t = 1.0 s and; (c) t = 2.0 s. 

 

The lower zone of volume 1 in case 3 remains quiescent and the oil located there 

does not contribute in any benefit to the design. Hence, a fraction of the tank could be 

removed to increase the oil level without increase the total amount of oil. Figure 9 shows 

results of the final Case 4, which was achieved by cutting a part of volume 1. This 

modification reduces in 0.5 liters the volume 1 capacity but increases the oil level in 21 

mm approximately. Note that the steady solution is reached after t=1.0 s. 

Figure 10(a) shows the comparison between cases 3 and 4. As noted, to reduce 

the volume 1 has a positive impact both in the suction zone as well as in the volume 2 

inventories. Figure 10(b) shows an almost constant condition is achieved after t = 1 s. In 

Figure 11 a stable flow stream is established between the inlet and the suction zone. 

Hence, it can be concluded that the extreme braking maneuver could be longer than 2 s 

ensuring right oil suction all the time. 

 

 
(a) 
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(b) 

 

Figure 10. Oil inventory for Case 3 and 4 for (a) overall volume monitors and;  

(b) filter. 

 

 
 

Figure 11 Oil stream-lines. 

 

CONCLUSION 

 

The numerical assessment of a dry-sump oil tank was performed by means of 

computational fluid dynamics (CFD). The volume of fluid (VOF) method was 

implemented to track the oil level interface along the most severe maneuver recorded in 

a race track. An original tank design was assessed, and the real failure behavior was also 

found by simulate a combined maneuver of deceleration with left turning. Two drawbacks 

were identified in the original tank: first, the oil around the suction zone moves far away 

during the first instants. Second, a direct oil stream from the inlet to the suction fitting is 

not guarantee. 

The use of baffles and flap valves could be advantageous in some situations but 

also induces the isolation of the suction fitting in most of the situations. In addition, the 

foam breaker (horizontal perforated baffle) accumulates a large portion of the inventory 

over this. Therefore, a set of design modifications were proposed and numerically 

assessed until to reach a suitable design. The final design solves both problems by 

removing the baffles and flap valves, leaving only a horizontal short baffle. This allows 

an easy communication between the two regions, as well as retains the oil in the suction 
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zone during the first second. The final design proved be able for an unlimited time. An 

additional advantage of the final design is in the absence of mobile parts. This avoid fails 

induced by valve blockage.   
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