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Abstract The present work involves a comprehensive study to provide a theoretical

model of the internal magnetic field gradients, present in paramagnetic shale pores, to

explain the main relaxation features observed by nuclear magnetic resonance

transversal relaxation measurements. In the systematic analysis process of relaxation

data it is necessary to knowup towhat extent themagnetic field gradients are generated

by the logging tool and/or arise internally in the rock due to their paramagnetic

impurities content. The physical model to explain the relaxation features is based on

the calculation of field gradients in a planar pore with and without relaxatives walls.

The results reproduce the features of the relaxation parameters in pores due to para-

magnetic and tortuous walls. The mechanism that drives the relaxation process is

governed by anomalous diffusion within micro-pores. These relaxation processes

arise from the interactions between the protons, belonging to the liquid molecules and

the porewalls, whose structure is characterized by both large tortuosity and abundance

of paramagnetic impurities, giving rise to local strong time dependent magnetic field

gradients. The theoretical results are compared with those obtained experimentally to

validate the relaxation model. The experimental data were gathered from a sample

belonging to the ‘‘Vaca Muerta’’ formation of the Neuquén basin, Argentina.

1 Introduction

In natural oil porous rocks the physics of nuclear magnetic resonance (NMR)

transverse relaxation is complex and a complete theoretical model describing the

entire spin echo decay have not been thoroughly developed. Consequently, several
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Argentina

123

Appl Magn Reson

DOI 10.1007/s00723-017-0922-9

Applied
Magnetic Resonance

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00723-017-0922-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00723-017-0922-9&amp;domain=pdf


models have been proposed for spin diffusion in static magnetic fields [1].

Moreover, the complexity of the relaxation processes in shale pores yielded by both

the lithology of the structure and the physicochemical composition of the pore walls

are the main causes of the relaxation features. Namely, both the pore surface

tortuosity and their large content of paramagnetic compounds Therefore, the

standard procedures of relaxation data analysis requires of different models.

One of the most recently introduced procedures to take account of the transversal

relaxation times (T2(t)), although frequently used but not well grounded [2], is to

describe the decay profiles by modified stretched exponential (MSE), and assuming

that

MðtÞ ¼M0 exp � t

T2ðtÞ

� �

¼M0 exp � t

s0
1þ t

sc

� �b�1
" #

ffi

M0 exp � t

s0

� �
; t � sc

M0 exp � t

sD

� �b
" #

; t � sc

sD ¼ s1=b0 ðscÞðb�1Þ=b

8>>>>>><
>>>>>>:

;

ð1Þ

where M(t) is the transversal magnetization, M0 the initial equilibrium magnetiza-

tion, b is an exponent that takes account of the degree of exponential stretching, s0,
sc and sD are characteristic times. Being 1/s0 is the pore wall relaxation rate [1] give
by the product of the NMR relaxivity, q, times the ratio surface to volume, (S/V), of

the pore. The phenomenological interpretation of sc and sD arises from the long time

limit, t � sc, having the spins diffused throughout the pore volume undergoing a

random process with a correlation length given by k ¼
ffiffiffiffiffiffiffiffiffi
DsD

p
, being D the diffusion

coefficient. Similarly, the value of 1/sD represents the long time limit rate of the

diffusion and wall relaxation processes.

Another assumption is to approach the total relaxation rate as driven by two

mechanisms one being the volumetric term, given by

1

T2P
¼ q

S

V
¼ q

a
; ð2Þ

where the ratio surface to volume of the pore is known as the pore size (a = V/S),

rate that takes account of the relaxation undergone by a spin entering and leaving

the wall region during a time lapse shorter than the inter-pulse time (te); another

term affecting the relaxation being a diffusion term whose decay is described by a

simple stretched exponential (SE) or Weibullian. Additionally, to circumvent the

fact that as t ? 0 the stretched exponential rate goes to zero it is convenient to

consider only the first order term of the relaxation rate [3]. This assumption is based

on experimental facts whose limits are imposed by both the properties of the studied

sample type and the NMR spectrometer implying that t = 0 is an ideal limit, being

te the shortest time available.
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2 Previous Results

Measurements of NMR transversal relaxation in shale rocks from the Vaca Muerta

basin (Neuquén, Argentina) show decay profiles characterized by two simultaneous

mechanisms a volumetric term and stretched exponential [3], where the total

relaxation rate may be written as

1

T2ðtÞ
¼ 1

T2P
þ 1

T2D
¼ q

S

V

� �
pore

þb
D

12
c2G2

� �b

t3b�1
e

¼ q
a
þ b

D

12
c2G2

� �b

t3b�1
e ;

ð3Þ

where T2P and T2D are the relaxation times due to interchange spin interactions with

the pore wall and diffusion, respectively. In Eq. (3) S and V are the surface and pore

volume, q the relaxivity, D the diffusion coefficient, G the z component of the

magnetic field gradient (MFG), b an arbitrary exponent and te the time elapsed

between magnetization refocusing radio frequency pulses (p) in a Carr-Purcell-

Meiboom-Gill (CPMG) sequence [4, 5], and c the proton gyromagnetic ratio.

The sources of such a decay behavior are the anomalous diffusion processes

taking place within the pore volume subject to internal magnetic field gradients due

to both magnetic impurities and tortuosity of the pore walls.

The relaxation results show clearly the existence of diffusion taking place in

presence of internal magnetic field gradients, even more taking into account that the

measurements were performed with the sample immersed in a homogenous external

magnetic field. Figure 1 shows the T2 relaxation data for different inter-pulse time,

te, previously reported [3], which unmistakably shows the diffusion processes.

Also the NMR relaxation data show that the sample possess three pore sets,

characterized by their size as small (S), medium (M) and large (L), respectively.

Table 1 shows the results including the exponent (b), pore size (a), MFG (G), and

pore abundance (A).

3 The Physical Model

The observed transversal relaxation decays are described by the contribution of a

volumetric term and a stretched exponential. This is because the complex spreading

of proton relaxation processes in the pores are subject to large internal time

dependent magnetic field gradients. Some elements that contribute to this

complexity are:

1. The surface of the pores is too large due to its surface tortuosity.

2. The diffusion within the pore surface is different from that in the bulk.

3. Qualitatively, the molecules residence time at the surface is greater than in the

bulk (at equal effective volumes).

4. In Eq. (3) the power dependence of the relaxation at short values of both t and te
is typical of molecules undergoing Levy walk diffusion [10, 11]. Where
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0\ b\ 1 is the characteristic exponent of molecules undergoing a sub

diffusive dynamics, while for ordinary diffusion b = 1.

To explain the transverse relaxation phenomena, a physical model including two

simultaneous mechanisms such as diffusion in the presence of internal magnetic

field gradient, G, and the interchange interaction with the surface of the pore, is

needed. This model should explain the main features of the experimental results

because directly reflects the complexity of the pore wall region. An approximate

model is to assume that the pore wall is formed by tortuous and intricate channels

with flat edges where the liquid molecules diffuse, as shown in Fig. 2.

Therefore, the contribution of both pore wall tortuosity and paramagnetic

impurities at the walls affects the internal MFG, G, and consequently the relaxation.

Since it is impossible to provide a mathematical model of the pore wall, it is

necessary to calculate G with a pore wall model to explain the experimental results

and their features.
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Fig. 1 T2 decays for different te of the preserved sample fluids in the shale

Table 1 Experimental parameters obtain from relaxation data

i bi ai (lm) Gi (Tm
-1) Ai (%)

S 0.637 2.57 31.76 17.55

M 0.561 9.51 5.561 53.85

L 0.515 20.13 1.481 28.6
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4 The Internal Magnetic Field Gradient

The pore model used to evaluate the local MFG is a planar pore with size a, with

paramagnetic impurities localized at the pore walls. This model assumes the magnetic

susceptibility described by a rectangular well function spatially depending of the

y coordinate, such that the discontinuity takes place at the pore walls, Fig. 3. In general

the pore walls are paramagnetic while the pore fluid is slightly diamagnetic, namely

vfluid ¼ cst\0 and vrock ¼ cst[ 0: ð4Þ
Additionally, it is assumed that the pore walls are sufficiently far from each other

so as there is no influence on each other. Whereas in the absence of radio frequency

(rf) the magnetic fields are static and within a non conducting medium, to obtain the

magnetic field gradient in the z direction, the general equations to be solved are

B ¼ l0ð1þ vÞH
r�H ¼ 0

r2A ¼ �B� rvðrÞ
ð1þ vÞ ;

ð5Þ

Liquid molecule 
moving in a tortuous 
pore wall channel 

Liquid molecule 

Bulk liquid 

Surface layer 
zone

Fig. 2 Motion of a water molecule inside a pore

Fig. 3 Susceptibility function in a planar pore
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with H ¼ H0k̂ and B ¼ r� A. Where H is the magnetic field, B the magnetic

induction and A the magnetic potential vector.

Therefore, taking into account that v = v(y), in this particular planar pore

r2A ¼ �B� rv
ð1þ vÞ ¼ �l0H0k̂ �rv ¼ H0

ov
oy

î: ð6Þ

Additionally, r � A ¼ 0, since the potential vector satisfies the Lorentz condition

for stationary fields in non conductive media [6], condition fully satisfied in these

shale pores since the fluid content is mostly oil and the shale resistivity is large

compared to typical oil sand stones. Therefore, in the absence of rf from Eqs. (5)

and (6)

�H0

ov
oy

î ¼ r2A ¼ r2Axîþr2Ayĵþr2Azk̂; ð7Þ

and

�H0

ov
oy

î ¼ r2Axî: ð8Þ

Prior to find a solution of Eq. (8), let us analyze the physical origin of the

potential vector sources. From the Biot and Savart law it follows that

dA ¼ lI
4pr

dl; ð9Þ

where dl is current I differential trajectory vector, and r the distance from the current

to the point. Considering that H ¼ H0k̂, the external field that induces a polarization

current segment I dl ¼ �I dl î, thus

dA ¼ �I dl î: ð10Þ
The classical electromagnetic model of the rock assumes that the relevant current

sources of the potential vector are localized on the pore surface while those inside

the rock do not contribute to the relaxation. Two particular cases are possible for

sedimentary rocks, one where the paramagnetic impurities are infinitely diluted on

the pore surface and the other one with a reasonable concentration such that there is

a distribution of magnetization currents on the pore surface. In the first case the local

field arises from point sources generates a potential vector described by Eq. (9). The

second one requires to solve Eq. (8), which according to the susceptibility function

(Eq. 4) results

r2Ap ¼ �H0 Dv dðy� yaÞ; ð11Þ

where Axðx; y; zÞ 	 Ap is the x component of the potential vector which gives rise to

the local magnetic field due to paramagnetic impurities, Dv ¼ vroca � vfluido, and the

(-) sign corresponds to Eq. (11) valid from the fluid to the rock at the left side pore

wall while the (?) corresponds to the pore wall at the right side. For a single linear

current singularity at every (y0, z0) point, with infinitely length along the x direction,

the solution of Eq. (11) is
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Ap ¼
H0Dv
4p

ln ðy� y0Þ2 þ ðz� z0Þ2
h i

: ð12Þ

The pore surface is viewed as a sheet of magnetization currents requiring

integration of Eq. (12) over the source variable z0 with upper and lower limits given

by

z0l � z0 � z0u ffi
ffiffiffiffiffiffiffiffiffi
DT1

p
ffi 10�4 m ffi 100 lm

z0l ¼ �z0u;
ð13Þ

where D ffi 2� 10�9 m2 s�1 is the oil measured diffusion coefficient [3], and the

solution is

Ap ¼
H0Dv
4p

ðz0u � zÞ ln ðy� y0Þ2 þ ðz0u � zÞ2
h i

þ 2 y� y0j j tan�1 ðz� z0uÞ
y� y0j j

� ��

þ ðz� z0lÞ ln ðy� y0Þ2 þ ðz0l � zÞ2
h i

� 2 y� y0j j tan�1 ðz0l � zÞ
y� y0j j

� �
� 2ðz0u � z0lÞ:

ð14Þ
In the above equation y0 takes two possible values 0 or a referred to either the left

or the right pore wall, respectively. Furthermore, for simplicity, let us analyze the

y0 = 0 case. Therefore,

Ap ¼
H0Dv
4p

z0u � z
� �

ln y2 þ z0u � z
� �2h i

þ 2y tan�1 z0u � z

y

� ��

þ z� z0l
� �

ln y2 þ z0l � z
� �2h i

� 2y tan�1 z0l � z
� �

y

� �
� 2 z0u � z0l

� �� ð15Þ

Equation from which the magnetic field due to paramagnetic impurities can be

calculated, thus

BP ¼ r� Ap ¼ �k̂
oAp

oy
þ ĵ

oAp

oz
: ð16Þ

Taking into account only first order secular interactions affecting the transversal

relaxation, the z component of the gradient of BP must be considered, namely

rBP;z ¼ � oAp

oy
¼ �H0Dv

2p
tan�1 z0u � z

y

� �
þ tan�1 z0u þ z

y

� �� �
; ð17Þ

where it has been replaced z0l by �z0u. It is important to point out that the range to

consider for y in Eq. (17) is Dte 
 y
 a, since any resonant nucleus at distances

0
 y\Dte has already relaxed after te. Since both y and z are such that z � z0u, and
0\y � z0u, Eq. (17) may be approached at lowest order by

rBP;z � �H0Dv
1

2
� y

pz0u

� �
: ð18Þ
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5 Magnetic Field Gradient

The average MFG G sensed by a spin that diffuses, during the time between rf

pulses, te, is given by the average of rBP;z with the free diffusion propagator

Pðy0; y; tÞ [7], being the conditional probability that a particle initially at, t = 0, the

position y0 reaches the position y at time t, given by

Pðy0; y; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
4pDt

p exp �ðy� y0Þ2

4Dt

" #
: ð19Þ

Thus, the average gradient at the position y is

GðyÞ ¼ 1

a

Za

0

rBp;zðyÞPðy0; y; tÞdy0: ð20Þ

Integrating over the initial position variable y0, G(y) becomes

GðyÞ ¼ � H0Dv

a
ffiffiffiffiffiffiffiffiffiffi
4pDt

p
Za

0

1

2
� y

pz0u

� �
exp �ðy� y0Þ2

4Dt

" #
dy0

¼� H0Dv
a

1

4
� u

2pu0

� �
erfðguÞ þ erf(gð1� uÞÞf g;

ð21Þ

where the following dimensionless variable and parameter have been introduced

u 	 y

a
; 0\u\1

0:5
 g ¼ affiffiffiffiffiffiffiffi
4Dt

p 
 15;
ð22Þ

therefore,

GðuÞ ¼ � G0

1

4
� u

2pu0

� �
erfðguÞ þ erfðg½1� u�Þf g

G0 ¼
H0Dv
a

; u0 	 z0u
a
;

ð23Þ

the coefficient G0 in Eq. (23) is phenomenologically assumed in the literature as the

magnetic MFG inside a pore of size a generated by the static field H0; also that the

erf function possesses the following properties

erfð�xÞ ¼ � erfðxÞ

erfðxÞ ffi 2ffiffiffi
p

p x� x3

3
þ x5

10
� x7

42
þ � � �

� �
;

ð24Þ

and taking into account the range of both g and u (Eq. 23) in Eq. (24) it is possible

to expand the solution for small values of the argument, thus
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erfðguÞ þ erf g½1� u�ð Þ ffi 2ffiffiffi
p

p gu� g3u3

3
þ gð1� uÞ � g3

3
ð1� uÞ3

� �

ffi 2gffiffiffi
p

p 1þ g2uð1� uÞ
	 


;

ð25Þ

and

GðuÞ ffi � G0

gffiffiffi
p

p 1

2
� u

pu0

� �
1þ g2uð1� uÞ

	 


�� G0

g
2

ffiffiffi
p

p 1þ g2uð1� uÞ
	 


; for u0 � u:

ð26Þ

Considering the symmetry of the pore, the contribution to G from the pore wall at

a it requires to exchange

y ! a� y ) u ! 1� u; ð27Þ

in G(u) and its result added to that of Eq. (23), resulting

GðuÞ ¼ �G0gðuÞ erfðguÞ þ erf g½1� u�ð Þf g

G0 ¼
H0Dv
a

; g1ðuÞ ¼
1

2
� u

pu0

� �
; u0 	 z0u

a
:

ð28Þ

Figure 4 shows different profile corresponding to G(u) with g = 5 and for

different possible values of u0 = 1, 5, 10, 15, respectively.

6 Diffusion Between Planes with Relaxatives Boundary Conditions

The boundary conditions imposed in a pore by relaxatives walls upon the diffusion

propagator are described

Fig. 4 MFG in a planar pore, with non relaxatives walls
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Dn̂ � rPþMP½ �y¼0;a¼ 0; ð29Þ

where n̂ is the normal direction to the surface. The solution expanded in eigen-

functions [8, 9] is given by

Pðy0; y; tÞ ¼
1

a

X1
n¼0

1þ sin 2anð Þ
2an

� ��1

cos
any0
a

� �
cos

any
a

� �
exp � a2nDt

a2

� �(

þ
X1
m¼0

1� sin 2bmð Þ
2bm

� ��1

sin
bmy0
a

� �
sin

bmy
a

� �
exp � b2mDt

a2

� �)
:

ð30Þ

And the eigenvalues of the solutions an and bm are the solutions of the equations

an tan an ¼
Ma

D
	 k

bm cot bm ¼�Ma

D
	 �k:

ð31Þ

It must be remarked that the solution of Eq. (30) involves products of

exponentials and harmonic functions, and those with the largest probability are the

ones possessing the smallest eigen values, namely the smallest values of M. Taking

into account the units of the magnitudes a and D (Eq. 31), M in units of k is

M ¼ D

a
k

5� 10�4k
M
 0:5k:
ð32Þ

Figures 5 and 6 show the graphic solutions, given at the points of intersection, of

Eq. (33) and Figs. 7 and 8 the eigenvalues solutions vs. k. Figure 6 also shows the

positive eigenvalues bm, since otherwise the probability would grow indefinitely

with time.

Fig. 5 tan an and kan
-1 vs. an
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The continuous lines in graphs represent a polynomial interpolation of the

solution points. Although the interpolation does not have any physical meaning, it

provides a suitable way to obtain intermediate solution points.

From the solutions it is clear that for an average values of a � 10 lm and with

the time scales involved in the experiment

5� 10�3 
 Dt

a

 10: ð33Þ

Then is reasonable an eigen value a0 � 0:01 or smaller, implying that k � 0:01,
which implies that the diffusion relaxivity M, (Eq. 32), possesses at least the same

order of magnitude than the measured NMR experimental relaxivity

Fig. 6 cotbm and -kbm
-1 vs. bm

Fig. 7 an solution vs. k
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q ffi 3:3� 10�4 ms�1. Therefore, Eq. (30) may be well approached by the addition

of two zero order terms

Pðy0; y; tÞ ¼
1

a
1þ sinð2a0Þ

2a0

� ��1

cos
a0y0
a

� �
cos

a0y
a

� �
exp � a20Dt

a2

� �(

þ 1� sinð2b0Þ
2b0

� ��1

sin
b0y0
a

� �
sin

b0y
a

� �
exp � b20Dt

a2

� �) ð34Þ

Thus, taking into account that for k = 0.01, a0 = 0.09854 and b0 = 1.58024,

Eq. (34) may be further approached by

P y0; y; t; k ¼ 0:01ð Þ ffi 1

2a
1� a20

2

ðy20 þ y2Þ
a2

� �
exp � a20Dt

a2

� �
ð35Þ

and from Eqs. (20) and (35) yields

GðyÞ ffi � H0Dv
2a

exp � a20Dt
a2

� �
1

2
� y

pz0u

� �
1� a20

2

y2

a2
þ 1

3

� �� �

GðuÞ ffi � G0

2

1

2
� u

pu0

� �
1� a20

2
u2 þ 1

3

� �� �
exp � a20

4g2

� �
:

ð36Þ

Even more, considering the order of magnitude of a20 and the exponent in

Eq. (36), then

GðuÞ ffi G0

2

1

2
� u

pu0

� �
a20
2
u2 � 1

� �
1� a20

4g2

� �
: ð37Þ

GðuÞ ffi G0

2
g2ðuÞ 1� a20

4g2

� �
: ð38Þ

Fig. 8 bn solution vs. k
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At first glance, from both results Eqs. (28) and (37) show that the MFG described

by Eq. (37) possesses maximum amplitude an order of magnitude smaller than that

of Eq. (28), which is mainly dominated by the first bracket of Eq. (37). Figure 9

shows the profile corresponding to G(u) with g = 5 and u0 = 1 and Fig. 10 those for

values of u0 = 10, 15, respectively.

Notice that both results from Eqs. (28) and (37) yield through the g parameter

(Eq. 20) the time dependence of the internal MFG.

Additionally, it could have been argued that restricted diffusion processes may be

relevant [7], if this is so, the diffusion coefficient which was previously assumed as

time independent, must be replaced by

D ¼ D0 1� 0:3144
S

V

� � ffiffiffiffiffiffiffi
D0t

p� �
; ð39Þ

Fig. 9 MFG in a planar pore, with relaxatives walls

Fig. 10 MFG in a planar pore with relaxatives walls
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where D0 is the fluid free diffusion coefficient, S the pore surface, and V its volume.

Considering both the planar pore symmetry and dimensions for which their lateral

planes lengths are much larger than the distance a between the pore walls

S

V
ffi 2

a
; ð40Þ

therefore, Eq. (39) becomes

D ffi D0 1� 0:6288

ffiffiffiffiffiffiffi
D0t

p

a

� �
; t � te; ð41Þ

and the parameter g becomes

g ¼ affiffiffiffiffiffiffiffi
4Dt

p ¼ affiffiffiffiffiffiffiffiffiffi
4D0t

p 1� 0:0393

ffiffiffiffiffiffiffiffiffiffi
4D0t

p

a

� ��1
2

¼ g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0 � 0:0393

p ; g0 ¼
affiffiffiffiffiffiffiffiffiffi
4D0t

p :

ð42Þ

Notice that only for the lowest values of g, (Eq. 20), Eq. (42) may be relevant,

namely the second term in the bracket represents approximately the 0.8% of the

whole value, while for larger values of g the approach g ffi g0 is valid. Therefore, to
simplify the results D may be assumed either the fluid free diffusion coefficient or

the measured one to be included in the above equations.

7 Total Average MFG

The average MFG across the pore length and time is given by

Gz ¼
1

Ta

ZT

0

Za

0

GzðyÞdydt ¼
1

T

ZT

0

Z1

0

GzðuÞdudt; ð43Þ

where the MFG from Eqs. (28) and (36) are introduced as integrands in Eq. (43).

Thus, for a pore with non relaxatives walls (Eq. 28)

G 	Gz ¼
1

T

ZT

0

GZdt ¼ �G0

T

ZT

0

1

2
� ðe�g2 � 1Þ

ffiffiffiffiffiffiffiffi
p�3

p

u0g

" #
dt

g ¼ affiffiffiffiffiffiffiffi
4Dt

p ¼ rffiffi
t

p ; r ¼ a

2
ffiffiffiffi
D

p

¼ � G0

T

ZT

0

1

2
�

ffiffiffiffiffiffiffiffi
p�3

p

u0r
e�

r2
t � 1

� � ffiffi
t

p
" #

dt;

ð44Þ

and

G ¼ �G0

1

2
þ

ffiffiffiffiffiffiffiffi
p�3

p

u
0

2

3
2

ffiffiffi
p

p
g2T erfðgTÞ � 1ð Þ � e�g2T

1

gT
� 2gT

� �
þ 1

gT

� �( )
: ð45Þ

Taking T as the largest time during the experiment, gT � 0:5 then
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G ffi� G0

1

2
þ

ffiffiffiffiffiffiffiffi
p�3

p

u0
2

3
4g2T gT � 1ð Þ þ 2gT

 �( )

ffi� G0

1

2
þ 4

3

ffiffiffiffiffiffiffiffi
p�3

p

u0
gT 1� 2gT½ �

( )

ffi� G0

1

2
þ 4

3

ffiffiffiffiffiffiffiffi
p�3

p

u0
affiffiffiffiffiffiffiffiffi
4DT

p 1� affiffiffiffiffiffiffiffiffi
4DT

p
� �( )

:

ð46Þ

Considering a pore with relaxatives walls (Eq. 36), Eq. (43) yield

G 	Gz ¼ �G0

4T
1� a20

2

� �
1� 1

pu0

� �ZT

0

exp � a20Dt
a2

� �
dt

ffi G0

4

a2

a20DT
1� exp � a20DT

a2

� �� �

� H0Dv
4a

1� 1

2

a20DT
a2

þ � � �
� �

;

ð47Þ

where a20=2 has been neglected and u0 � 1 was assumed. It is important to notice

that T in Eq. (47) is no longer a variable but rather a parameter the represents the

time along which G has been averaged.

8 Conclusions

Notice that the results of Eqs. (28) and (38) from their dependence of the parameter

g, (Eq. 20), yield both their time and pore size dependence of the internal magnetic

field gradients. Also it is clear from Eq. (46) that G/G0 is a polynomial function of a,

while Eq. (47) is a polynomial in terms of a-1. This feature reveals that the pore

walls should be considered relaxatives. Figure 11 shows a graph of the experimental

values of aG vs. a-1, which is proportional to G/G0 (the a values taken from

Table 1), the red line in the plot corresponds to a fit of the data by means of a third

order polynomial.

Equation (47) describes the behavior of the MFG, G, as function of both the pore

size, a, and the averaging time, T. Considering the values of the different parameters

involved, a0 and D, and taking the averaging time T as the time between rf pulses, te,

the exponent of second term in the bracket of Eq. (47) ranges approximately from

4.8 9 10-6 to 2.9 9 10-2, therefore, for short times G behaves almost as a constant

independent of te, while for large values it decays with te, as given by Eq. (47).

Figure 12 shows the profiles of G(te, a) in units of G0 vs. te, for every one of the

measured pore sizes, a. The te values are the same as those of Fig. 1.

The theoretical results show that for the smallest pore size G rapidly decrease as

te gets longer indicating that the diffusion effects drive strong relaxation processes

while for the largest pore size G decreases slower, Fig. 12. These effects explain the

measured T2(te) previously reported [3].
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Although, the physical model is a simple approximation of the wall tortuosity and

the distribution of paramagnetic impurities it is enough to explain the relaxation

features. Additionally provides a base to calculate the MFG in a planar pore with

and without relaxatives walls. The results explain the previously reported

transversal relaxation measurements. These processes arise from the interactions

between the protons, belonging to the liquid molecules, and the pore walls whose

structure is characterized by both large tortuosity and abundance of paramagnetic

impurities, giving rise to local strong time dependent magnetic field gradients.

Fig. 11 Pore size times average field gradient aG(a) vs. a-1

Fig. 12 MFG as a function of te and a vs. te in units of G0
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Appendix: Orders of Magnitude of Variables and Constants

D � 2� 10�9 m2s�1

a ffi 2:5� 10�6 m; small pore sizes

25� 10�6 m; large pore sizes

�
:

ð48Þ

u 	 y

a
; 0\u\1

g ¼ affiffiffiffiffiffiffiffi
4Dt

p :
ð49Þ

0:1� 10�3 s
 t
 0:5 s time range

0:1� 10�3 s
 te 
 10� 10�3 s

8� 10�13 m2 
 4Dt 
 4� 10�9 m2

0:04
 g 
 28

1:3� 10�5m ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D3T2L

p

 z0u 


ffiffiffiffiffiffiffiffiffiffiffiffiffi
D0:5 s

p
ffi 3:2� 10�5 m

) 0:1
 u0 
 15

ð50Þ
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