
The Dominance Flow Shop Scheduling
Problem 1

Daniel A. Rossit a Óscar C. Vásquez b Fernando Tohmé c

Mariano Frutos a Mart́ın D. Safe d

a Engineering Department, Universidad Nacional del Sur - CONICET, Bah́ıa
Blanca, Argentina

b Industrial Engineering Department, Universidad de Santiago de Chile, Santiago,
Chile

c Economics Department, Universidad Nacional del Sur - CONICET, Bah́ıa
Blanca, Argentina

d Mathematics Department, Universidad Nacional del Sur, Bah́ıa Blanca,
Argentina

Abstract

We introduce a new line of analysis of Flow Shop scheduling problems, for the case of
two jobs and assuming that processing times are unknown. The goal is to determine
the domination relations between permutation and non-permutation schedules. We
analyze the structural and dominance properties that ensue in this setting, based
on the critical paths of schedules.

Keywords: Scheduling, Non-permutation Flow Shop, Makespan, Critical Path.

1 Introduction

The research on Flow Shop scheduling was pioneered by Johnson in 1954 [4],
who posed what is currently known as the classical Flow Shop problem, which
amounts to schedule the processing of a set N of n jobs j = 1, . . . , n on a set

1 E-mail addresses: daniel.rossit@uns.edu.ar (D.A. Rossit), oscar.vasquez@usach.cl
(Ó.C. Vásquez), ftohme@criba.edu.ar (F. Tohmé), mfrutos@uns.edu.ar (M. Frutos),
msafe@uns.edu.ar (M.D. Safe).

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 69 (2018) 21–28

1571-0653/© 2018 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

https://doi.org/10.1016/j.endm.2018.07.004

http://www.elsevier.com/locate/endm
https://doi.org/10.1016/j.endm.2018.07.004
https://doi.org/10.1016/j.endm.2018.07.004
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.endm.2018.07.004&domain=pdf

M ofm machines i = 1, . . . ,m. All the jobs are assumed to have the same pro-
cessing sequence, M1, . . . ,Mm and the operations are non-preemptive. Jobs
are ready to start at the beginning of the programming and the processing
times pij are positive and known. If jobs are processed in the same order on
each machine, the problem is called Permutation Flow Shop (PFS), whereas,
if they are not processed in the same order, the problem is deemed Non-
Permutation Flow Shop (NPFS). Restricting the problem to the PFS setting
implies that the cardinality of the set of feasible solutions is n!, while if NPFS
schedules are allowed, the cardinality of feasible solutions grows up to n!m.
In his original contribution, Johnson detailed probably the most important
result on PFS and NPFS problems with the makespan objective, stating that
in the optimal solution “the first two machines have the same job ordering,
as well as the last two machines”. This result was generalized by Conway et
al. [3] (Theorems 5–1 and 5–2).

Since then, many contributions to the comparison between the PFS and
NPFS approaches have been published. So, for instance, Potts et al. [6] worked
on the Flow Shop with missing operations (or zero processing times), and
showed that for a family of instances the best permutation schedule is worse
than 1/2

√
m times the best NPFS solution. Choi et al. [2], studied the F |pij =

pj/si|Cmax instance, where si is the processing speed of the machine i. Choi et
al. proved that for m ≥ 4 PFS schedules are optimal if there exists a maximal
machine, i.e. sk < s1 = · · · = sm for some machine Mk. More recently,
Panwalkar and Koulamas [5] addressed the ordered Flow Shop problem, this
time considering that the processing times meet certain conditions such that
for any generic machine, denoted t, the processing times can be ordered in
a decreasing order, i.e., pti > ptl, among other considerations. Furthermore,
these authors proved that PFS is optimal if the pijs are increasing on the
succesive machines, for every fixed job j (see Lemma 1 therein). For a more
extensive review on the NPFS literature visit [7].

All these works study the PFS and NPFS problems seeking conditions en-
suring that PFS schedules are optimal (and therefore, dominant). A common
feature of these papers is the imposition of strong conditions on pij. This
conditioning allows to study ordering rules ensuring optimal solutions. Al-
though there are real cases in which this type of conditioning applies, there
are other real cases that can not be modelled in this way. In order to tackle
this shortcoming, we approach the problem lifting all the conditions on the
pijs. Furthermore, we model the processing times as being independent of the
parametrization used for each specific problem. This approach allows us to
work with graphic descriptions and with the structure of the critical paths of

D.A. Rossit et al. / Electronic Notes in Discrete Mathematics 69 (2018) 21–2822

PFS and NPFS schedules. Using these structures we can find NPFS schedules
that are dominated by PFS schedules regardless the value of pij. We show
that this is the case by means of a combinatorial analysis of the problem.

2 Problem Definition

We focus on Flow Shop problems with n = 2 jobs and m machines, with
unknown processing times. Notice that by specifying m, a problem instance
I is also specified. To the best of our knowledge, this is a novel setting for the
comparison between PFS and NPFS schedules. It requires the development
of new tools to make our solutions independent of the exact values of the
processing times.

Fig. 1. Gantt and graph representations of the optimal schedules of the PFS problem
(top-bottom, left) and the NPFS problem (top-bottom, right) for an instance I with
n = 2 jobs and m = 4 machines. For this instance, the makespan value of optimal
schedules of the PFS and NPFS are 14 and 12, respectively.

To build the intuition for our results, consider Figure 1, in which we
present two Gantt diagrams and their corresponding graph-theoretical rep-
resentations. The former correspond to a numerical example in which the
processing times are in fact known, with n = 2 jobs and m = 4 machines. On
the left we present the PFS optimal solution, with a makespan of 14, while on
the right side we show the optimal NPFS solution yielding a makespan of 12.
The pictures in the bottom panels of Figure 1 show the graphs of the optimal
schedules, obtained according to the following definition:

Definition 1 Graph representation. Consider Gσ(V,A, P), where V the
set of vertices, A is a class of solid and dashed edges and P the class of labels

D.A. Rossit et al. / Electronic Notes in Discrete Mathematics 69 (2018) 21–28 23

of the edges. Gσ(V,A, P) is the graph representation of a feasible schedule σ,
if solid edges in A represent the processing states of the machines while dashed
edges represent precedence constraints on jobs. Both types of edges connect the
vertices in V , indicating changes in machine status, either from idle to busy
or from busy to idle. P is the set of processing times weighting the solid edges
while the dashed edges have empty weights.

A graph representation can be defined both for PFS and NPFS schedules.
The type of σ determines which is the case. The main difference between a
feasible PFS schedule and a feasible NPFS schedule is that the latter has, on
at least one machine, a different sequence than in the previous machines. To
make this idea precise we need the following definition:

Definition 2 Switching Machine.

A machine Mk is said a switching machine if it reverses the order in which
jobs are processed in the previous machine.

Note that machines M1, M2 and Mm cannot be switching machines in
any optimal solution due to the theorems of Conway et al.[3]. Hence, in any
optimal solution, there are at most m− 3 switching machines.

A feasible schedule σ without switching machines is PFS while if it includes
some, it corresponds to the NPFS case. The class of switching machines in
a feasible schedule is denoted Sσ ⊆ M . For convenience, we denote with the
capital Greek letter, Σa, the set of feasible schedules with exactly a switching
machines; i.e., σ ∈ Σa if and only if |Sσ| = a. Let σ∗

0 := argminσ∈Σ0
F (σ)

where F (σ) denotes the makespan of σ.

In Figure 1 the bottom panels depict the graph representations of the Gantt
diagrams in the top panels. The NPFS graph corresponds to a schedule in Σ1,
i.e., having a single switching machine (machine M3).

In general, the graph representation of scheduling problems allows to char-
acterize the makespan (see [1]). In our work, we characterize the makespan
defining a particular critical path, which may not be unique.

Definition 3 Flow Shop Critical Path. Given a feasible σ, a path in
Gσ(V,A, P) is said critical if it includes at least one operation on each ma-
chine, and supports the makespan of the graph.

The solid edges of PFS and NPFS graphs in Figure 1 are labeled by opera-
tions. These labels allow to describe the critical paths in terms of operations.
Even if the processing times are unknown, we do not assume that they are all
equal. Thus, each operation has its own different label. It is easy to see that
there are different possible paths from the first node on the first machine to

D.A. Rossit et al. / Electronic Notes in Discrete Mathematics 69 (2018) 21–2824

the last node on the last machine. In the case that the processing times are
known, the longest of those paths is the critical path and its length in terms
of the processing times is the makespan of the schedule. Thus, for instance,
we can see in Figure 1 that the critical paths of the PFS graph are different
from those of the NPFS graph.

3 Main Results

In this section, we consider a given instance I and study the structural and
dominance properties in both problems F |n = 2|Cmax and F |pmru, n =
2|Cmax, assuming an arbitrary number of machines m ≥ 4.

Theorem 3.1 The length of the critical path of Gσ(V,A, P) is m+ 1 + |Sσ|.
Proof. We consider an arbitrary instance I. For a feasible schedule σ with
|Sσ| = 0, we take a critical path, defined by a set of m + 1 horizontal edges
in Gσ(V,A, P): two edges correspond to the first and last operations in the
schedule σ. The other m − 1 edges are operations defined by each pair of
machines Mk and Mk+1, k ∈ {1, . . . ,m− 1}.

For a feasible schedule σ with |Sσ| ≥ 1, we prove the claim by induction.
Consider the graph representation Gσ(A, V, P) with |Sσ| = 1 and separate
it into two sub-graphs such that the job of last operation performed in one
sub-graph is the same job of the first operation in the other sub-graph. A
switching machine, Mk, defines this split into two sub-graphs. Each sub-
graph is free of switching machines, and they include k − 1 and m − k + 1
machines, respectively. We take then the critical paths from the first and
second sub-graphs, of respective lengths (k−1)+1 and (m−k+1)+1. Then,
the overall critical path of the graph representation Gσ(V,A, P) is equal to
the sum of the critical paths of its subgraphs, and the length is m + 2 which
verifies m+ 1 + |Sσ| for |Sσ| = 1.

Now consider a feasible schedule σ with |Sσ| = � ≤ m − 3 and its graph
representation Gσ(V,A, P) and assume that the claim is true for any schedule
with � − 1 switching machines. Let us separate it into two sub-graphs such
that, on one hand, the job of the last operation performed in one sub-graph is
the same job of the first operation in the other sub-graph. On the other hand,
we define the split in such way that the second subgraph does not include a
switching machine. We can assume, without loss of generality, that the k-th
machine, Mk, defines the split into two sub-graphs. Since the class of the
remaining switching machines has cardinality � − 1, the critical path in the
first sub-graph has (k − 1) + 1 + � − 1 edges while the critical path of the

D.A. Rossit et al. / Electronic Notes in Discrete Mathematics 69 (2018) 21–28 25

second has (m−k+1)+1 (recall that it does not contain a switching machine
and it includes (m − k + 1) machines). Thus, the critical path of the graph
representation Gσ(V,A, P) has m+ �+ 1 edges. �

According to Theorem 3.1, each possible NPFS critical path has more
operations than each possible PFS critical path. Let us call a the number of
those extra operations. Given that the total number of operations required
in an instance I is constant, it can be inferred that with increasing values
of a a NPFS critical path may end up including all the operations in a PFS
critical path. Then, all the operations in the NPFS critical path impact on the
makespan of the schedule with a switching machines, according to Definition
3. Then, that critical path has a makespan at least as large as the one of
the longest PFS critical path, since it includes all the operations of the latter
and some more. Only if some operations have zero processing times it might
happen that the makespan of both critical paths coincide. Otherwise, the
PFS makespan would be better than the makespan of the NPFS schedule.
We capture this notion as follows:

Definition 4 Dominance. A feasible NPFS schedule σ with |Sσ| > 0 is
dominated by permutation if F (σ) ≥ F (σ∗

0), where F (σ) and F (σ∗
0) represent

the makespans of σ and σ∗
0 respectively.

Proposition 1 Given an instance I, if the number of machines m is odd,
each critical path of Gπ(V,A, P) with |Sπ| = m− 3 includes all the operations
from some critical path of Gσ∗

0 (V,A, P).

Proof. Consider a schedule π with |Sπ| = m− 3. Since we assume two jobs,
the universe of possible operations has size 2m. According to Theorem 3.1, in
the critical path in Gπ(V,A, P), the number of operations included is m+1+
m− 3 = 2m− 2. That means that Gπ(V,A, P) has all the possible operations
except two of them. On the other hand, consider the schedule σ∗

0. Again by
Theorem 3.1, the critical path in Gσ∗

0 (V,A, P) has m+1 operations (since the
set of its switching machines is empty). If we show that the two operations
that are not included in the critical path of Gπ(V,A, P) are not included in the
critical path Gσ∗

0 (V,A, P), it follows that the former includes all the operations
of the latter plus some more. Then, the makespan of schedule σ∗

0 is shorter
than that of π.

To see this point let us assume, without loss of generality, that the first
operation of schedule π and that of schedule σ∗

0 are the same, and then, since
the number of switching machines, m−3, is even (and thus the last sub-graph
in the graph representation features the same order as in the first one), the last

D.A. Rossit et al. / Electronic Notes in Discrete Mathematics 69 (2018) 21–2826

operation must also the same for both of them. In addition, we have the same
job ordering in the first two machines and in the last two machines, according
to [3]. This implies, since the first machine carries out the same operation
in both graphs, that the critical path of Gπ(V,A, P) has the same two first
operations as Gσ∗

0 (V,A, P) plus one more, but not all the four possibilities
on the two machines. Then, the operation that is not included in the critical
path of Gπ(V,A, P) (which by the previous argument includes three of the four
operations) is also not included in the critical path of Gσ∗

0 (V,A, P). A similar
analysis can be carried out for the last two machines. Then, we can assert that
the critical path of Gπ(V,A, P) includes the same operations included in the
critical path of Gσ∗

0 (V,A, P), while the operations discarded from the critical
path of Gπ(V,A, P) are also discarded from the critical path of Gσ∗

0 (V,A, P).�

From Proposition 1, we immediately have the following:

Proposition 2 Given an instance I, if the number of machines m is odd, a
feasible schedule σ with |S| = m− 3 is dominated by permutation.

Proposition 3 Given an instance I, if the number of machines m is even,
each critical path of Gπ(V,A, P) with |Sπ| = m − 3 has all the operations,
except at most one operation, of those in some critical path of Gσ∗

0 (V,A, P).

Proof. The proof is similar to that of Proposition 1. Consider a feasible
schedule π with |Sπ| = m − 3, where the total number of operations is 2m.
According to Theorem 3.1, the critical path of Gπ(V,A, P) has 2m − 2 op-
erations. Without loss of generality, we assume that the first operation in
schedule π and in schedule σ0 is the same, and then, by Theorem 3.1, they
have the same job ordering in the first two machines . Sincem is even and thus
|Sπ| = m−1 is odd, schedules π and σ∗

0 do not have the same job orderings on
the last two machines. On these last machines the critical path of Gπ(V,A, P)
takes 2m − 4 operations from a total of 2m − 3 operations. Therefore, the
critical path of Gπ(V,A, P) has at most one operation that differs from those
in the critical path of Gσ∗

0 (V,A, P). On the rest of the machines, the critical
path of Gπ(V,A, P) includes all the possible operations. Thus, the critical
path of Gπ(V,A, P) has at most one operation that differs from those in the
critical path of Gσ∗

0 (V,A, P). �

Consider pmax and pmin as the maximum and minimum of pij, respectively.

Proposition 4 Given an instance I, if the number of machines m is even
and pmax ≤ (m − 3)pmin, a feasible schedule π, with |Sπ| = m − 3, is not
optimal.

D.A. Rossit et al. / Electronic Notes in Discrete Mathematics 69 (2018) 21–28 27

Proof. Recall that π has m− 3 more operations than any PFS critical path,
according to Theorem 3.1. Thus, from Proposition 3 a PFS critical path has
at most one operation not included in any NPFS critical path. The worst case
is when the missing operation from the PFS critical path is pmax and the m−3
extra operations from the NPFS are pmin. Then, if the pmax is less or equal
than m − 3 times pmin, the makespan of the NPFS critical path is larger or
equal to the makespan of the PFS critical path. In any other case PFS yields
a better makespan than NPFS. �

4 Final Remaks

In this work we analyzed a variant of the Flow Shop problem in a two-jobs set-
ting, independently of the processing times on machines. We identified NPFS
solutions that are dominated by PFS schedules. This assessment is based on
the consideration of structural and dominance properties of the critical paths
of PFS and NPFS schedules. Extending this analysis to three or more jobs is
matter of further work.

References

[1] P. Brucker. Scheduling algorithms. Springer, Berlin, fifth edition, 2007.

[2] B.-C. Choi, S.-H. Yoon, and S.-J. Chung. Minimizing maximum completion
time in a proportionate flow shop with one machine of different speed. European
Journal of Operational Research, 176(2):964–974, 2007.

[3] R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of scheduling. Addison-
Wesley, Reading, Mass., 1967.

[4] S. M. Johnson. Optimal two-and three-stage production schedules with setup
times included. Naval Research Logistics Quarterly, 1(1):61–68, 1954.

[5] S. Panwalkar and C. Koulamas. On the dominance of permutation schedules for
some ordered and proportionate flow shop problems. Computers & Industrial
Engineering, 107:105–108, 2017.

[6] C. Potts, D. Shmoys, and D. Williamson. Permutation vs. non-permutation flow
shop schedules. Operations Research Letters, 10(5):281–284, 1991.

[7] D. Rossit, F. Tohmé, and M. Frutos. The non-permutation flow-shop scheduling
problem: a literature review. Omega, 77:143–153, 2018.

D.A. Rossit et al. / Electronic Notes in Discrete Mathematics 69 (2018) 21–2828

	Introduction
	Problem Definition
	Main Results
	Final Remaks
	References

