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Abstract

The electrophoretic mobility of spherical soft particles in concentrated colloidal suspensions is numerically calculated. The particle is modeled
as a hard core coated with an ion-penetrable membrane bearing a uniform distribution of fixed charges, while the high particle concentration is
taken into account by means of a cell model. The network simulation method used makes it possible to solve the problem without any restrictions
on the values of the parameters such as particle concentration, membrane thickness, fixed charge density in the membrane, viscous drag in
the membrane, number and valence of ionic species, electrolyte concentration, etc. The theoretical model used is similar to the one presented
by Ohshima [H. Ohshima, J. Colloid Interface Sci. 225 (2000) 233], except for the use of the Shilov–Zharkikh, rather than the Levine–Neale,
boundary condition for the electric potential, and the inclusion in the force balance equation of an additional term corresponding to the force
exerted by the liquid on the core of the moving particle [J.J. López-García, C. Grosse, J. Horno, J. Colloid Interface Sci. 265 (2003) 327]. The
obtained results only coincide with existing analytical expressions for low particle concentrations, low particle charge, and when the electrolyte
concentration is high, the membrane is thick, and its resistance to the fluid flow is high. This suggests that most interpretations of the electrophoretic
mobility of soft particles in concentrated suspensions require numerical calculations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The theoretical model of suspended hard spherical particles
and the associated boundary conditions [1,2] have been ex-
tended in recent years to more realistic physical situations, e.g.,
spherical particles with anomalous surface conductivity [3–5],
spheroidal particles [6–9], spherical particles in concentrated
suspensions [10,11], “soft” particles (hard particles coated with
an ion-permeable membrane) [12–17], etc. Soft particles are
particularly important in the study of many biological prob-
lems. For example, the peripheral zone of a human erythrocyte
contains a charged glycoprotein layer and its surface structure
can be estimated by electrophoresis. Several authors have de-
veloped theoretical models and have analyzed the behavior of
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dilute colloidal suspensions of soft particles. It is well known,
nevertheless, that in most situations of practical interest involv-
ing biological systems, the suspensions are concentrated.

To our knowledge, only two studies of the electrokinetic
properties of soft colloidal particles in concentrated suspen-
sions [18,19] were published to date. However, the first presents
semianalytical solutions with a range of validity that is lim-
ited to cases when the core radius tends to zero or when
λ(b − a) � 1. Here b is the outer membrane radius, a is the
core radius, and λ2 is the ratio between the frictional coeffi-
cient of the membrane and the viscosity of the fluid. As for the
second, it deals with a more complicated model that includes a
charged core (actually, the considered parameter is the core po-
tential). Unfortunately, the calculation corresponds to the case
of a vanishing permittivity of the core, as is implied in Eq. (19)
in [19] (see, for example, Eq. (4.23) in [20] or our Eq. (31)).

In this work we use the network simulation method [21]
to obtain the electrophoretic mobility in concentrated colloidal
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suspensions of hard spherical particles coated with an ion-
penetrable membrane bearing fixed charges, immersed in a gen-
eral electrolyte solution. The network approach makes it possi-
ble to solve the problem without any restrictions on the values
of the parameters such as thickness of the membrane, number
of ionic species, fixed charge density in the membrane, etc.

Our model consists in a combination of a cell model, used
to take into account the high particle concentration, and of a
soft particle model, used to represent the charged ion-permeable
membrane surrounding the hard core. For the cell model, the
boundary conditions are fairly well established [11,18,22–25]
except for the condition on the electric potential. The earlier
works used the Levine–Neale condition [26] that was partly
superseded in more recent works by the condition of Shilov–
Zharkikh [27]. We prefer the latter on theoretical grounds [28],
but also use the former for comparison.

As for the particle model, there are two possible representa-
tions of the fixed charge density of the polymer layer surround-
ing the particle: a continuous function that decreases monoto-
nously with the distance to the core [15] or a constant value that
drops to zero at a distance equal to the layer thickness [16,17].
The first approach has the advantage of generality (the shape of
the density function can be modified by means of an additional
parameter) and of avoiding the use of a boundary condition at
the outer layer limit (which remains actually undefined). On the
contrary, the second approach has the advantage of representing
the system with the minimum number of parameters: the charge
density of the polymer layer and its thickness. In this work we
use this second model because it has the crucial advantage that
the total charge of the polymer layer is completely contained
within the unit cell volume.

2. Theory

2.1. Description of the problem

Consider a concentrated suspension of charged spherical soft
particles moving with an electrophoretic velocity ve under the
action of a DC electric field of strength E in a liquid containing
a general electrolyte. We assume that the particle core of radius
a is coated with an ion-penetrable layer of polyelectrolyte with
thickness d . The particle has, therefore, an inner radius a and
an outer radius b = a + d , Fig. 1a. We use a cell model [18]
in which each particle is surrounded by a concentric spherical
shell of electrolyte solution, having an outer radius c, such that
the particle/cell volume ratio in the unit cell is equal to the parti-
cle volume fraction φ throughout the entire dispersion (Fig. 1b),

(1)φ =
(

b

c

)3

.

The polyelectrolyte shell is uniformly charged with a total
charge Q, and a volume charge density ρfix. On the other hand,
the ionic solution is formed by m ionic species with charge
numbers zi (i = 1, . . . ,m), diffusion coefficients Di , and bulk
molar concentrations c∞

i . Finally, the permittivity of the core is
εin and that of the electrolyte solution is εex. For sake of sim-
plicity we consider that the permittivity of the polyelectrolyte
(a)

(b)

Fig. 1. Schematic representation of a spherical soft particle (a) and of a concen-
trated suspension using a cell model (b). a is the radius of the hard core, b the
outer radius of the polyelectrolyte layer, and c the radius of the unit cell, Eq. (1).
Note that, in view of this expression, c is larger than the average half distance R

between neighboring particles (c3/R3 = 3
√

2/π in the usual compact sphere
packing representation used in the figure).

layer and the ion diffusion coefficients inside that layer have
the same values as in the electrolyte solution. The equations
governing the dynamics of this system are well known [16]:

(a) Nernst–Planck equations for the ionic fluxes:

(2)�vi(�r) = −Di∇ ln
[
ci(�r)

] − zieDi

kT
∇ψ(�r) + �v(�r).

(b) Continuity equations for each ionic species:

(3)∇ · [ci(�r)�vi(�r)
] = 0.

(c) Poisson equation:

(4)∇2ψ(�r) =
⎧⎨
⎩

− eNA
∑m

i=1 zici (�r)
εex

− ρfix

εex
, a � r � b,

− eNA
∑m

i=1 zici (�r)
εex

, b < r � c.

(d) Navier–Stokes equation for a viscous fluid:

−η∇2�v(�r) + ∇P(�r) + eNA

[
m∑

zici(�r)
]
∇ψ(�r)
i=1
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(5)+ ρf
[�v(�r) · ∇]�v(�r) =

{−γ �v(�r), a � r � b,

0, b < r � c.

(e) Continuity equation for an incompressible fluid:

(6)∇ · �v(�r) = 0,

where �vi(�r) and ci(�r) are, respectively, the velocity and the
concentration (in mol/m3) of the ionic species i. The electric
potential is represented by means of the symbol ψ(�r); �v(�r) is
the fluid velocity, and P(�r) is the pressure. The constant e rep-
resents the elementary charge, while k, NA, η, ρf, and T are,
respectively, the Boltzmann constant, the Avogadro number, the
fluid viscosity coefficient, the mass density of the fluid, and the
absolute temperature of the system. Finally, γ is a parameter
that represents the frictional coefficient exerted on the liquid
flow by the polymer segments in the polyelectrolyte shell.

2.2. Linearization of the equations

In the absence of an applied electric field, there are no net
forces acting on the particles and ions in the system, so that
�v(�r) and �vi(�r) (i = 1,2, . . . ,m) are all equal to zero, which
transforms Eqs. (2), (4), and (5) into:

(7)∇c0
i (r) + zie

kT
c0
i (r)∇ψ0(r) = 0,

(8)∇2ψ0(r) =
⎧⎨
⎩− eNA

∑m
i=1 zic

0
i (r)

εex
− ρfix

εex
, a � r � b,

− eNA
∑m

i=1 zic
0
i (r)

εex
, b < r � c,

(9)∇P 0(r) + eNA

[
m∑

i=1

zic
0
i (r)

]
∇ψ0(r) = 0,

where ψ0(r), P 0(r), and c0
i (r) are, respectively, the electric

potential, the pressure and the concentration of the ionic species
i in the absence of an applied electric field, i.e., when the system
is in equilibrium (upper index “0”).

The Nernst–Planck equations (7) can be easily solved, lead-
ing to the well-known Boltzmann distribution for the ionic con-
centrations:

(10)c0
i (r) = c∞

i exp

[
−zieψ

0(r)

kT

]
.

The integration constants c∞
i coincide with the bulk concen-

tration values if the potential value ψ0(c) is chosen in such a
way as to assure that the total charge inside the unit cell van-
ishes.

We now consider that a uniform DC electric field E is ap-
plied to the system. The meaning of E is that of the volume
average of the microscopic electric field taken over the volume
of the suspension. This way of doing does not coincide with
Ohshima [18], who expresses his results in terms of an exter-
nal field Eex. Both field values can be defined considering that
the space between the electrodes of a parallel plate condenser
is filled with two slabs in series: one made of the suspension
and the other of the electrolyte solution. Then, the potential
drop across the suspension divided by its thickness is equal
to E whereas the potential drop across the electrolyte solu-
tion divided by its thickness is equal to Eex. While the physical
problem can be correctly described using either of these two
fields, our choice has the obvious advantage of being directly
related to a measured quantity.

Under the action of the applied field, all the variables are
perturbed around their equilibrium values, so that the ionic con-
centrations, the electric potential, and the pressure distributions
can be expressed as a sum of their equilibrium values plus a
perturbation term:

(11)ci(�r) = c0
i (r) + δci(�r),

(12)ψ(�r) = ψ0(r) + δψ(�r),
(13)P(�r) = P 0(r) + δP (�r).

Under the assumption, fulfilled in most experimental deter-
minations, that the applied field strength is sufficiently small so
that all the induced ion concentration changes are small as com-
pared to their equilibrium values, all the field-induced quantities
of the problem are linear in E. This makes it possible to lin-
earize the equation system by keeping only terms that are linear
in the perturbations.

The resulting system can be further simplified combining
the Nernst–Planck and Poisson equations in order to eliminate
�vi(�r) and taking the curl of the Navier–Stokes equation in order
to eliminate the pressure change. Choosing a reference system
with origin centered on the particle and polar axis in the direc-
tion of the applied field, the different variables can be written
as explicit functions of the spherical coordinates:

(14)�vi(�r) = vir (r) cos θ êr + viθ (r) sin θ êθ ,

(15)�v(�r) = vr(r) cos θ êr + vθ (r) sin θ êθ ,

(16)�Ω(�r) = Ω(r) sin θ êϕ,

(17)δci(�r) = δci(r) cos θ,

(18)δψ(�r) = δψ(r) cos θ.

where êr , êθ , and êϕ are the unit vectors and

(19)�Ω(�r) = ∇ × �v(�r)
is the vorticity. This transforms the equation system into:

1

r2

d

dr

{
r2 d

dr

[
δci(r)

c0
i (r)

+ zieδψ(r)

kT

]}

− 2

r2

[
δci(r)

c0
i (r)

+ zieδψ(r)

kT

]

− zie

kT

dψ0(r)

dr

d

dr

[
δci(r)

c0
i (r)

+ zieδψ(r)

kT

]

(20)= −zie

kT

dψ0(r)

dr

vr(r)

Di

,

(21)
1

r2

d

dr

[
r2 dδψ(r)

dr

]
− 2δψ(r)

r2
= −eNA

∑m
i=1 ziδci(r)

εex
,

(22)Ω(r) = vr(r) + vθ (r)

r
+ dvθ (r)

dr
,

d2Ω(r)

2
+ 2 dΩ(r) − 2Ω(r)

2
dr r dr r
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− eNA

ηr

dψ0(r)

dr

m∑
i=1

{
zic

0
i (r)

[
δci(r)

c0
i (r)

+ zieδψ(r)

kT

]}

(23)=
{ γ

η
Ω(r), a � r � b,

0, b < r � c,

(24)
2[vr(r) + vθ (r)]

r
+ dvr(r)

dr
= 0.

2.3. Boundary conditions

The following boundary conditions over the outer surface
of the unit cell (r = c), at the membrane-electrolyte solution
interface (r = b), and at the particle core (r = a), must be satis-
fied by each variable of interest. Most of these conditions have
been extensively used in preceding works involving cell-models
and/or soft particle models. We shall just write down these con-
ditions. In contrast, we shall briefly discuss those conditions
that differ from previous calculations.

2.3.1. Electric potential
At r = c, the equilibrium potential must satisfy the condition

of electroneutrality of the whole unit cell. Therefore, in view of
the Gauss law:

(25)
dψ0(r)

dr

∣∣∣∣
r=c−

= 0.

At r = a, the gradient of the equilibrium potential is deter-
mined by the net charge of the core. In this work we consider
that the core is uncharged, so that:

(26)
dψ0(r)

dr

∣∣∣∣
r=a+

= 0.

The volume average of the electric field calculated over the
unit cell must be equal to the macroscopic field in the suspen-
sion:∫

Vc
∇ψ(�r) dV

Vc
=

∫
Sc

ψ(c)êr dS

Vc

= −2π
∫ π

0 δψ(c) cos2 θc2 sin θ dθ

4πc3/3

(27)= δψ(c)

c
= −E,

where Vc is the volume of the unit cell and Sc is its surface.
This is the Shilov–Zharkikh [27] boundary condition used in
[11,25], which does not coincide with the condition of Levine–
Neale [26]:

(28)
dδψ(r)

dr

∣∣∣∣
r=c−

= −Eex

that was used by Ohshima [18] and also in [19,22–24]. Note
that Eq. (28) is expressed in terms of Eex rather than E.

At the membrane-electrolyte solution interface, the bound-
ary conditions are the continuity of the electric potential and the
continuity of the normal component of the displacement vector:

(29)δψ(b−) = δψ(b+),
(30)
dδψ(r)

dr

∣∣∣∣
r=b−

= dδψ(r)

dr

∣∣∣∣
r=b+

.

Finally, the boundary condition at the surface of the core is
obtained from the continuity of the electric potential and that
of the normal component of the displacement vector, together
with the condition that the field inside the core is uniform and
that δψ(0) must be zero by symmetry:

(31)
dδψ(r)

dr

∣∣∣∣
r=a+

= εin

εex

δψ(a+)

a
.

2.3.2. Fluid velocity
Since the reference system is centered on the particle, the

velocity of the liquid phase at the outer surface of the unit cell
must be equal to minus the electrophoretic velocity ve of the
particle:

(32)vr(c
−) = −ve.

This boundary condition, used in [11,18,22,23,25], is common
to both the Kuwabara [29] and Happel [30] cell models, which
differ in the second boundary condition as noted later.

At the membrane-electrolyte solution interface, the bound-
ary conditions are the continuity of the radial and the tangential
components of the velocity

(33)vr(b
−) = vr(b

+),

(34)vθ (b
−) = vθ (b

+).

In view of the fluid incompressibility, Eq. (24), condition (34)
is equivalent to the continuity of the first derivative of the radial
component of the fluid velocity:

(35)
dvr(r)

dr

∣∣∣∣
r=b−

= dvr(r)

dr

∣∣∣∣
r=b+

.

At the surface of the core, the velocity of the fluid must van-
ish due to its viscosity (adherence condition):

(36)vr(a
+) = 0,

(37)vθ (a
+) = 0.

Using the incompressibility condition (24), expression (37)
transforms to:

(38)
dvr(r)

dr

∣∣∣∣
r=a+

= 0.

2.3.3. Ionic concentrations
At the outer surface of the unit cell, the perturbations of the

ionic concentrations must vanish:

(39)δci(c
−) = 0.

This condition used in [11,18,19,23,25], is related to the re-
quirement that the perturbation of the concentration at the mid
point between two particles aligned with the field must be zero
by symmetry. In some works [24] a different condition is used:

(40)
dδci

dr

∣∣∣∣
r=c−

= 0.
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We prefer the former, because it does not exclude the diffusive
ion flow across the unit cell boundary.

At the membrane-electrolyte solution interface, the ionic
concentrations must be continuous:

(41)δci(b
−) = δci(b

+).

Furthermore, the radial component of the ion velocities must
be continuous:

(42)vir (b
−) = vir (b

+)

which, combined with the linearized Nernst–Planck equations
and Eq. (33), leads to

d

dr

[
δci(r)

c0
i (r)

− zieδψ(r)

kT

]∣∣∣∣
r=b−

(43)= d

dr

[
δci(r)

c0
i (r)

− zieδψ(r)

kT

]∣∣∣∣
r=b+

.

Finally, the boundary condition over the core is determined
by the requirement that ions cannot penetrate into it

(44)vir (a
+) = 0

which, combined with Nernst–Planck equations and Eq. (36),
leads to

(45)
d

dr

[
δci(r)

c0
i (r)

− zieδψ(r)

kT

]∣∣∣∣
r=a+

= 0.

2.3.4. Vorticity
At the outer surface of the unit cell, the vorticity must vanish:

(46)Ω(c−) = 0.

This is the second Kuwabara boundary condition, used in [11,
18,19,22–25], which does not coincide with the second Happel
condition, also used in [24], that considers that the shear stress
of the fluid is zero:

η

[
1

r

∂vr cos θ

∂θ
+ r

∂

∂r

(
vθ sin θ

r

)]∣∣∣∣∣
r=c−

(47)= −η
sin θ

c

[
vr(c

−) + vθ (c
−)

] = 0.

Again, we chose Eq. (46) rather than Eq. (47) on theoretical
grounds (the Happel model does not reduce to the Smolu-
chowski result [22,26]).

At the membrane-electrolyte solution interface the tangen-
tial stress in the fluid must be continuous:

(48)
(
τ · êr

) × êr

∣∣
r=b− = (

τ · êr

) × êr

∣∣
r=b+ ,

where τ is the hydrodynamic stress tensor. This equation leads
to the continuity of τrθ :

η

[
dvθ (r)

dr
+ 1

2

dvr(r)

dr

]
sin θ

∣∣∣∣
r=b−

(49)= η

[
dvθ (r)

dr
+ 1

2

dvr(r)

dr

]
sin θ

∣∣∣∣
r=b+

which shows, together with Eq. (35), that the derivative of the
tangential component of the velocity is continuous. Combining
this result with Eqs. (22), (33), and (34), leads to the continuity
of the vorticity:

(50)Ω(b−) = Ω(b+).

A second condition can be obtained evaluating the tangential
component of the linearized Navier–Stokes equation at r = b−:

η

b

d

dr

[
rΩ(r)

]∣∣∣∣
r=b−

+ δP (b−)

b

(51)+ eNA

m∑
i=1

zic
0
i (b

−)
δψ(b)

b
− γ vθ (b) = 0

and at r = b+:

η

b

d

dr

[
rΩ(r)

]∣∣∣∣
r=b+

+ δP (b+)

b

(52)+ eNA

m∑
i=1

zic
0
i (b

+)
δψ(b)

b
= 0.

Taking into account Eqs. (29) and (50), together with the conti-
nuity of the pressure [14] and the relation of the equilibrium
ionic concentrations inside and outside of the membrane at
r = b, leads to the condition:

dΩ(r)

dr

∣∣∣∣
r=b−

− γ

η
vθ (b) + eNA

η

m∑
i=1

zic
0
i (b)

δψ(b)

b

(53)= dΩ(r)

dr

∣∣∣∣
r=b+

.

According to the second law of Newton, the net force acting
on the particle (the electric force acting on the fixed charges in
the membrane �Fe plus the mechanical force �Fm acting on the
particle) must vanish in the steady state, i.e.,

(54)�Fe + �Fm = 0.

The mechanical force is made of two terms that correspond to
the force exerted by the fluid on the membrane and on the sur-
face of the core:

(55)�Fm =
∫
Vm

γ �v(�r) dV +
∫
Sp

τ · d �S,

where Vm is the volume of the membrane and Sp the surface
of the core. As already noted in [16], the second addend in
the right hand side of this equation is omitted in the theory of
Ohshima, where it is assumed that the viscous force is only due
to the integral over the volume occupied by the polyelectrolyte,
as is the case for spherical polyelectrolytes.

Using Eqs. (15), (22), (24), (36), and (37) and the tangen-
tial component of the linearized Navier–Stokes equation, trans-
forms Eq. (55) into:

Fm = 4π

3
γ b3vr(b) + 4π

3
a2

[
ηa

dΩ(r)

dr

∣∣∣∣
r=a

− ηΩ(a)

(56)+ eNA

m∑
i=1

zic
0
i (a)δψ(a)

]
.



656 J.J. López-García et al. / Journal of Colloid and Interface Science 301 (2006) 651–659
Table 1

a = 10−7 m d = 10−8 m D1 = D2 = 2 × 10−9 m2/s
z1 = −z2 = 1 εex/ε0 = 78.5 εin/ε0 = 2
T = 298 K η = 8.9 × 10−4 poise ρfix = 106 C/m3

c∞
1 = c∞

2 = 1 mol/m3 κa = 10.39 λa = 1

On the other hand, the electrical force corresponds to the
force exerted on the particle by the volume charge in the mem-
brane:

Fe = −ρfix

b∫
a

π∫
0

[
dδψ(r)

dr
cos2 θ + δψ(r)

r
sin2 θ

]

× 2πr2 sin θ dr dθ

(57)= −4π

3
ρfix[b2δψ(b) − a2δψ(a)

]
so that the boundary condition (54) for the vorticity over the
core of the particle is, finally:

−ρfix[b2δψ(b) − a2δψ(a)
] + γ b3vr(b)

+ a2

[
ηa

dΩ(r)

dr

∣∣∣∣
r=a

− ηΩ(a) + eNA

m∑
i=1

zic
0
i (a)δψ(a)

]

(58)= 0.

3. Results and discussion

The first step in the numerical procedure consists in the
transformation of the equation system using dimensionless vari-
ables. An electrical circuit with the same governing differential
equations is then designed. This is done dividing the unit cell
into N compartments or volume elements, small enough for the
spatial variations of all the variables to be linear within each
compartment. Finally, an electric simulation program is used to
obtain the values of the desired quantities, mainly currents and
potentials at different positions of the circuit. The whole pro-
cedure, the discretized equations and the resulting circuit are
presented in [16].

In what follows, we present the obtained numerical results
for the dimensionless electrophoretic mobility, defined as

(59)ũe = 3eη

2εexkT

ve

E

calculated for different situations. In view of the great number
of parameters characterizing the system, it is not possible to an-
alyze all the dependencies. We therefore considered as a start-
ing point the system characterized by the parameters appearing
in Table 1, and studied the dependencies with the electrolyte
concentration, the membrane drag coefficient, the fixed charge
density, and the volume fraction. When possible, we also com-
pared our results with previous works.

Fig. 2 shows the dependence of the electrophoretic mobility
on the electrolyte concentration (actually κa) for two limiting
values of the drag coefficient (λa = 0 and 100) and for differ-
ent values of the volume fraction φ. This figure is similar to
Fig. 5 in [16]: the upper (λa = 0, φ = 0) and one before the
lower (λa = 100, φ = 0) curves of that figure are also present
Fig. 2. Dependence of the electrophoretic mobility on the electrolyte concen-
tration calculated for λa = 0 (continuous lines) and λa = 100 (dashed lines),
and for different values of the volume fraction φ. The remaining parameters
are given in Table 1. The line segments on the ordinate axis represent limiting
values corresponding to a salt-free medium according to [31], Eq. (61).

in Fig. 2. The main difference between these figures arises at
very low electrolyte concentrations: for κa → 0 and φ = 0 the
mobility curve strongly increases up to the limit given by the
Stokes law in an insulating liquid, Eqs. (112) and (113) in [16]:

(60)ũe =
⎧⎨
⎩

e(b3−a3)ρfix

3εexkT a
, λa = 0,

e(b3−a3)ρfix

3εexkT b
, λa → ∞.

For small but finite values of φ, however, the mobility val-
ues reach a plateau at much larger values of κa. This happens
due to the electroneutrality condition in the unit cell: a fur-
ther decrement of the electrolyte concentration at constant φ

weakly changes the ion surrounding of the particle. Therefore,
the electrophoretic mobility values should tend to their corre-
sponding salt-free limit, when the particle is surrounded by the
counterions and there are no co-ions in the system. The line
segments crossing the ordinate axis correspond to these limit-
ing values according to the Ohshima expression (Eqs. (35) and
(36) in [31]):

(61)ũe =
{

b
a

ln
( 1

φ

)
, λa = 0,

ln
( 1

φ

)
, λa → ∞.

It should be noted that these expressions are valid when the
charge of the particle is relatively high:

(62)Q >
4πεexbkT

e
ln

(
1

φ

)
.

This condition is very well satisfied in all the considered cases.
The second condition: φ 	 1, is also well satisfied in all cases
except for the highest volume fraction, φ = 0.1.

The dependence of the electrophoretic mobility on the
charge of the particle, calculated for κa = 10.39, two values
of the product λa (λa = 1 and 100), and different values of
the volume fraction φ, is presented in Fig. 3. In all cases, the
membrane thickness is d = 10−8 m, so that the two curves cor-
responding to φ = 0 coincide with the fourth line in Fig. 6 and
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Fig. 3. Dependence of the electrophoretic mobility on the charge of the particle
Q calculated for λa = 1 (continuous lines) and λa = 100 (dashed lines), and
different values of the volume fraction φ. The remaining parameters are given
in Table 1.

with the third continuous line in Fig. 7 of [16]. The dependence
of the different curves on the charge of the particle is qualita-
tively similar to the dependence of the electrophoretic mobility
of hard particles on the ζ potential [32]. However, the charge
of the particle was used as independent variable in Fig. 3 be-
cause the ζ potential is not a well defined magnitude for soft
particles [33].

In this figure, the set of continuous curves corresponds to
λa = 1 while the dashed curves correspond to λa = 100. As ex-
pected, the electrophoretic mobility always decreases with in-
creasing drag coefficient value. It also generally decreases with
the volume fraction φ, but there appears to be an exception to
this behavior for low values of λa and medium values Q. While
an analysis of the electric potential, ion concentration, and fluid
velocity profiles across the unit cell seem to be necessary to
properly explain this behavior, two comments are in order. First:
for very high values of the particle charge, higher than the max-
imum shown in Fig. 3, all the mobility values monotonously
decrease with increasing volume fraction. Second: the non-
monotonous dependence of the electrophoretic mobility on the
volume fraction does not appear if the Levine–Neale boundary
condition is used. However, it is important to keep in mind that
the mobility values obtained using the two considered bound-
ary conditions are not directly comparable (see comments of
Fig. 4).

A comparison with the results obtained by Ohshima [18] is
not immediate due to two main reasons:

1. The boundary condition for the electric potential used in
[18] is that of Levin–Neale [26] and the mobility is cal-
Fig. 4. Dependence of the electrophoretic mobility on the product λa calculated
for different values of the volume fraction φ. Numerical results obtained using
the Shilov–Zharkikh (continuous lines) and the Levine–Neale (dashed lines)
boundary conditions. The remaining data are given in Table 1.

culated as ve/Eex. In contrast, we use the condition of
Shilov–Zharkikh [27] and calculate the mobility as ve/E.
Therefore, the two mobility values are not directly compa-
rable, except for φ → 0. Because of this, we were forced
to recalculate our results using the Levine–Neale boundary
condition.

2. The analytical expressions presented in [18] were deduced
assuming that the following conditions are simultaneously
met:

(63)λa � 1, λd � 1, κa � 1, κd � 1.

The most restrictive requirement is the last one, which lim-
its any comparison to particles with thick polyelectrolyte
layers.

Fig. 4 shows the influence of the electric potential bound-
ary condition and of the definition used for the electrophoretic
mobility, on numerical values of ue calculated as a function of
λa for different values of the volume fraction φ. The continu-
ous curves were obtained using the Shilov–Zharkikh boundary
condition, while the Levine–Neale condition was used to cal-
culate the dashed curves. For both sets, the numerical results
corresponding to λa → 0 tend to a constant mobility value that
is higher than for λa → ∞ because, in the first limit, the vis-
cous drag acts only on the core while, in the second, it acts on
the external surface of the polyelectrolyte layer.

As expected, both calculations overlap for φ = 0 and the dif-
ference between results obtained using the two boundary con-
ditions increases with φ. It is interesting to note that there is a
crossover between these curves: the highest mobility is obtained
using the Shilov–Zharkikh condition when λa is low while, for
high λa, the Levine–Neale condition leads to the highest mo-
bility. This behavior is related to the definition of the mobility
as the electrophoretic velocity ve divided by the macroscopic
field E, in the case of the Shilov–Zharkikh condition, or the ex-
ternal field Eex, when the Levine–Neale condition is used [18].
These two fields are related by the continuity of the electric cur-
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Fig. 5. As for Fig. 4, but calculated for φ = 0.2 and for the indicated values of
the charge of the particle Q.

rent density [1]:

(64)KsE = KexEex,

where Ks and Kex represent the conductivities of the suspen-
sion and of the electrolyte solution, respectively. This suggests
that the observed crossover of the mobility curves arises be-
cause the conductivity of the suspension is higher than that
of the electrolyte solution for low values of λa, while Ks
becomes lower than Kex when the drag coefficient increases
(λa → ∞).

This interpretation is confirmed in Fig. 5, which shows
the results obtained for a single concentration φ = 0.2 and
three values of the charge of the particle: Q = 1.39 × 10−16,
1.39 × 10−15, and 1.39 × 10−14 C. As can be seen, for the low-
est charge value, the conductivity of the suspension appears
to be lower than that of the electrolyte solution, irrespective
of the λa value, so that the Shilov–Zharkikh line lies entirely
below the Levine–Neale curve. The opposite occurs for the
highest Q value, for which the conductivity of the suspension
appears to be higher than that of the electrolyte solution in the
whole λa range. This qualitative behavior of the two numerical
solutions and its relationship to the conductivity of the sus-
pension can also be observed for hard particles (Figs. 3 and 4
in [11]).

A comparison between our numerical calculations and the
analytical results (Eq. (4.26) in [18]) is presented in Fig. 6. In
view of the fourth condition in Eq. (63), particles with thick
double layer d = a had to be considered. The dotted curves
correspond to the analytical expression of Ohshima, the contin-
uous curves to numerical calculation using the Shilov–Zharkikh
boundary condition, and the dashed curves to calculations using
the condition of Levine–Neale. The upper curves were calcu-
lated for φ = 0, so that the two numerical results overlap (these
curves coincide with the lowest curves in Fig. 8 in [16]). As
can be seen, for φ = 0, the agreement between the numeri-
cal and analytical results is excellent for high values of λa,
but rapidly deteriorates for decreasing values of this parame-
ter. For λa → 0 the analytical results diverge since, in view of
the boundary condition used, the viscous drag is only due to
Fig. 6. Dependence of the electrophoretic mobility on the product λa calculated
for different values of the volume fraction φ. Numerical results obtained using
the Shilov–Zharkikh (continuous lines) and the Levine–Neale (dashed lines)
boundary conditions, and analytical results of Ohshima [18] (dotted lines). The
remaining parameters are given in Table 1, except for the value d = a used in
view of the fourth condition in Eq. (63).

the polyelectrolyte layer and vanishes, therefore, in this limit.
It should be noted, however that according to the first require-
ment of Eq. (63), the analytical expression should not be used
for low values of λa.

When the volume fraction is increased, the agreement be-
tween theoretical and numerical results becomes much worse
than for φ = 0, even in the limit λa → ∞. Actually, the two
numerical curves are much closer to one another than to the
theoretical curve. A possible reason for this behavior is, again,
the boundary condition used in the theoretical model [18], that
omits the viscous drag on the core of the particle. When the
particle concentration increases, more fluid is forced to flow in-
side the polyelectrolyte layer, increasing the consequences of
this omission.

This limiting behavior is further analyzed in Fig. 7, where
the numerical results are compared to the theoretical predic-
tions as a function of the volume fraction for three values of the
charge of the particle. Also included is a theoretical curve corre-
sponding to the definition ve/E for the electrophoretic mobility,
which was obtained combining Eq. (4.26) in [18] with a theoret-
ical expression for the quotient Ks/Kex: Eq. (31) in [34]. This
last expression is restricted to all the requirements in Eq. (63)
and, additionally, to low values of the Donnan potential. This
is why it could only be calculated for the lowest value of the
fixed charge. As can be seen, important deviations with respect
to both numerical calculations appear for high concentrations
and for highly charged particles.

All of the above raises some reservations on the use of
the existing analytical expression for the interpretation of ex-
perimental data for the electrophoretic mobility of soft parti-
cles in concentrated suspensions. Firstly because of the strin-
gent requirements for the validity of the analytical expression,
Eq. (63), which limit its applicability to particles with thick
membrane and relatively high drag coefficient. Then because
of the definition of the electrophoretic mobility given in terms
of the external field, when the experimentally accessible value
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Fig. 7. Dependence of the electrophoretic mobility on the volume fraction φ

calculated for the indicated values of the charge of the particle Q. Nu-
merical results obtained using the Shilov–Zharkikh (continuous lines) and
the Levine–Neale (dashed lines) boundary conditions, analytical results of
Ohshima [18] (dotted lines), and analytical results of Ohshima [18] combined
with an analytical expression for Ks/Kex [34] in order to express the elec-
trophoretic mobility in terms of E rather than Eex (dash and point line). The
remaining parameters are given in Table 1, except for the values d = a, used in
view of the fourth condition in Eq. (63), and λa = 104, highest value in Fig. 6.

is that of the macroscopic field (an analytical expression re-
lating both fields is only available for weakly charged parti-
cles: [34] and Eq. (64)). Finally, because even when all the
conditions stated for the validity of Eq. (63) are met, the ap-
proximate analytical solution of the integral equations presents
substantial deviations from numerical results, except for low
concentrations of weakly charged particles. This suggests that
most interpretations of the electrophoretic mobility of soft par-
ticles in concentrated suspensions require numerical calcula-
tions.

Acknowledgments

Financial support by Ministerio de Ciencia y Tecnología
(BFM2003-4856) and Consejería de Innovación, Ciencia y Em-
presa de la Junta de Andalucía (project FQM 410) of Spain,
Consejo de Investigaciones de la Universidad Nacional de Tu-
cumán (26/E220) and Consejo Nacional de Investigaciones
Científicas y Técnicas (PIP 0465/98) of Argentina is gratefully
acknowledged.
References

[1] S.S. Dukhin, V.N. Shilov, Dielectric Phenomena and the Double Layer
in Disperse Systems and Polyelectrolytes, Kerter Publishing House,
Jerusalem, 1974.

[2] E.H.B. DeLacey, L.R. White, J. Chem. Soc. Faraday Trans. 2 77 (1981)
2007.

[3] M. Minor, A. van der Wal, J. Lyklema, in: E. Pelizetti (Ed.), Fine Parti-
cles Science and Technology, Kluwer Academic, Dordrecht/Norwell, MA,
1996, pp. 225–238.

[4] C.S. Mangelsdorf, L.R. White, J. Chem. Soc. Faraday Trans. 94 (1998)
2441.

[5] R.J. Hunter, Adv. Colloid Interface Sci. 100 (2003) 153.
[6] R.W. O’Brien, D.N. Ward, J. Colloid Interface Sci. 121 (1988) 402.
[7] B.J. Yoon, S. Kim, J. Colloid Interface Sci. 128 (1989) 275.
[8] H.J. Keh, T.Y. Huang, J. Colloid Interface Sci. 160 (1993) 354.
[9] A.J. Poza, J.J. Lopez-García, A. Hayas, J. Horno, J. Colloid Interface Sci.

219 (1999) 241.
[10] A.S. Dukhin, V. Shilov, Y. Borkovskaya, Langmuir 15 (1999) 3452.
[11] F. Carrique, F.J. Arroyo, A.V. Delgado, J. Colloid Interface Sci. 243 (2001)

351.
[12] H. Ohshima, J. Colloid Interface Sci. 163 (1994) 474.
[13] J.J. López-García, J. Horno, C. Grosse, Phys. Chem. Chem. Phys. 3 (2001)

3754.
[14] H. Ohshima, J. Colloid Interface Sci. 228 (2000) 190.
[15] R.J. Hill, D.A. Saville, W.B. Russel, J. Colloid Interface Sci. 258 (2003)

56.
[16] J.J. López-García, C. Grosse, J. Horno, J. Colloid Interface Sci. 265 (2003)

327.
[17] J.J. López-García, C. Grosse, J. Horno, J. Colloid Interface Sci. 265 (2003)

341.
[18] H. Ohshima, J. Colloid Interface Sci. 225 (2000) 233.
[19] E. Lee, K. Chou, J. Hsu, J. Colloid Interface Sci. 280 (2004) 518.
[20] C.S. Mangelsdorf, L.R. White, J. Chem. Soc. Faraday Trans. 88 (1992)

3567.
[21] J.J. López-García, J. Horno, in: J. Horno (Ed.), Network Simulation

Method, Research Signpost, Trivandrum, 2002.
[22] T.J. Johnson, E.J. Davis, J. Colloid Interface Sci. 215 (1999) 397.
[23] E. Lee, J.W. Chu, J.P. Hsu, J. Colloid Interface Sci. 209 (1999) 240.
[24] J.M. Ding, H.J. Keh, J. Colloid Interface Sci. 236 (2001) 180.
[25] F. Carrique, F.J. Arroyo, M.L. Jimenez, A.V. Delgado, J. Phys. Chem. B

107 (2003) 3199.
[26] S. Levine, G.H. Neale, J. Colloid Interface Sci. 47 (1974) 520.
[27] V.N. Shilov, N.I. Zharkikh, Y.B. Borkovskaya, Colloid J. 43 (1981) 434.
[28] A.S. Dukhin, V.N. Shilov, Y.B. Borkovskaya, Langmuir 15 (1999) 3452.
[29] S. Kuwabara, J. Phys. Soc. Jpn. 14 (1959) 527.
[30] J. Happel, AIChE J. 4 (1958) 197.
[31] H. Ohshima, J. Colloid Interface Sci. 269 (2004) 255.
[32] R.W. O’Brien, L.R. White, J. Chem. Soc. Faraday Trans. 2 74 (1978) 1607.
[33] H. Ohshima, in: A.T. Hubbard (Ed.), Encyclopedia of Surface and Colloid

Science, vol. 2, Dekker, New York, 2002.
[34] H. Ohshima, J. Colloid Interface Sci. 229 (2000) 307.


	Numerical calculation of the electrophoretic mobility of concentrated suspensions of soft particles
	Introduction
	Theory
	Description of the problem
	Linearization of the equations
	Boundary conditions
	Electric potential
	Fluid velocity
	Ionic concentrations
	Vorticity


	Results and discussion
	Acknowledgments
	References


