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Polarity effects in unsupported polar nanoribbons
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We analyze the characteristics of polarity in unsupported nanoribbons with zigzag edges, by a combination
of analytic models, semiempirical Hartree-Fock simulations, and first-principles approach. We consider two
materials with widely different ionic-covalent character, MgO and MoS2, and two polarity healing mechanisms:
the so-called electronic compensation in ribbons with pristine edges, and ionic compensation in ribbons with
an adequately chosen density of missing edge ions. The general expression of compensating charges, the edge
metallization and spin polarization in the electronic mechanism, and the efficiency of the ionic mechanism are
similar to those known in thin films and at polar surfaces. Differences, however, exist and are related to the low
dimensionality, the atomic structure, and the strong undercoordination of edge atoms in nanoribbons. Polarity
signatures are specified and a discussion of the possible origins of metallic edge states in these low dimensional
objects is provided.
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I. INTRODUCTION

Polar surfaces of compound materials have been the subject
of intense research in the past because of their prominent
interest, both from fundamental and applied points of view.1,2

More recently, the field has evolved towards the nanoscale,
largely stimulated by the growing demand of novel materials
for applications in microelectronics and heterogeneous cataly-
sis. This is particularly true for ultrathin films, made of only a
few atomic layers stacked along a polar direction, which have
been shown to display a variety of new characteristics.3–5 There
have also been some advances in the controlled fabrication
of small polar objects, such as nanoribbons, nanoislands,
and nanoclusters,6–13 with the focus put on how to control
their growth in view of novel applications in optoelectronics,
sensors, transducers, catalysis, and biomedical sciences among
others.

While polarity concepts in ultrathin films are now rather
well established, the same is not true in nanoribbons and
nanoislands.14 It is only recently that ab initio simulations
of nanoribbons with polar edges have been performed,
evidencing electronic properties close to those met in polar
films, such as metallicity and magnetism,15–27 in as various
compounds as MgO, ZnO, BeO, V2O5, or MoS2. However,
in most cases, rather than referring to polarity, authors have
drawn conclusions and made comparisons with edge states in
graphene ribbons, which merely result from undercoordination
effects.28,29

Triggered by this increasingly active research area, we wish
to precisely assess the signatures of polarity in unsupported
nanoribbons. Beyond classical electrostatic arguments given
in Ref. 30, and some ab initio results on supported MgO
ribbons,31 in the present work, we consider zigzag nanoribbons
of two different materials displaying widely different ionoco-
valent character: MgO and MoS2. MgO is prototypical of a
strongly ionic oxide, with a large band gap, crystallizing in the

rocksalt structure. When unsupported, MgO(111) monolayers
were shown to adopt a flat nonpolar geometry, with cation
and oxygen atoms arranged in a h-BN-like manner.32 Out of
such a monolayer, two types of ribbons may be cut: armchair
ribbons whose edges on both sides contain an equal number
of anions and cations and thus are not polar, and zigzag
ribbons which display alternating rows of anions and cations.
The latter possess an obvious polar character and are the
only ones we will consider in the present work. Figure 1(a)
shows top and side views of an MgO(111) zigzag nanoribbon.
MoS2 is a semiconductor belonging to the transition metal
dichalcogenide family. It displays a stacking of 2H-type
trilayers, held together mainly through weak van der Waals
interactions. Each trilayer is composed of a plane of Mo
sandwiched by two sulfur planes. The Mo atoms are in a
trigonal prismatic coordination, and are strongly covalently
bound to S atoms within the same trilayer. Figure 1(b) shows
top and side views of a zigzag edge nanoribbon cut out of
a MoS2 2H trilayer, with the same type of alternating anion
and cation rows as in the MgO ribbon. MoS2 has received
special attention due to its uses in the petroleum industry
as catalyst and lubricant,33,34 and more recently due to its
potential applications in microelectronics.35

In this paper, by using a combination of analytic, semiem-
pirical, and ab initio methods, we analyze polarity char-
acteristics in nanoribbons with zigzag edges. We consider
two compensation mechanisms:1,2 electronic in ribbons with
stoichiometric edges, and ionic in ribbons with an adequately
chosen density of missing edge ions, and we decipher some
new concepts behind edge polarity, as compared to thin-film
polarity. The outline of the paper is the following. Section II
describes dimensionality and size effects based on analytic
arguments of general validity, relevant to polar nanoribbons
in the large width limit. In Sec. III, relying on ab initio
DFT simulations, we compare electrostatic, electronic, and
energetic properties of MgO and MoS2 zigzag ribbons,
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FIG. 1. (Color online) Zigzag ribbons, cut out of (a) a MgO(111)
monolayer and (b) a MoS2 2H trilayer. Small spheres are O or S
atoms. Big spheres are Mg or Mo atoms. The structures are periodic
in the X direction. The distances between successive atomic rows are
denoted by R1 and R2.

with both stoichiometric and reconstructed edges. In the
discussion, Sec. IV, we stress effects which result from the low
dimensionality of these systems, in particular the asymptotic
behavior of the electrostatic polar characteristics, we assess
the signatures of polarity and we discuss the origin of edge
states in polar nanoribbons. The understanding developed in
this work is relevant for results obtained in the literature, in
obviously polar nanoribbons, but in which polarity had not
been recognized and should help placing them in the proper
context.

II. CHARACTERISTICS OF POLAR RIBBONS IN THE
LARGE WIDTH LIMIT

In the earliest works on semi-infinite polar surfaces,36–38

pure electrostatic considerations have proven to be an essential
prerequisite for any understanding of their properties. Later
on, the same was found for ultrathin films.39 In this section, in
order to derive the generic characteristics of polar ribbons in
the large width limit, we start by recalling some purely elec-
trostatic arguments.30 Then we derive analytic models which
account for two types of polarity compensation in unsupported
ribbons, the so-called electronic and ionic mechanisms.1,2

A. Macroscopic electrostatic model

In a first step, a macroscopic electrostatic approach, similar
to the one used for surfaces36–38 and thin films,30 is used. The
core idea is to model the ribbon as a series of alternating
parallel wires with uniform linear charge densities ±λ. Each
wire represents a row of anions (−λ) or cations (+λ). Nearest-
neighbor wires are separated by a distance R1, and successive
pairs by a distance R2 (see Fig. 2). The ratio R = R1/(R1 +
R2) will quantify the strength of polarity effects. The ribbons
are infinitely long and their width is measured by the number
N of pairs of rows.

The total electrostatic potential is the sum of all long-range
contributions due to the charge densities per unit length ±λ.
The potential created by a single charged row at distance d can

FIG. 2. Capacitor model for polar nanoribbons. Each row has a
uniform charge density ±λ. In the compensated regime, modifications
δλ appear on the outer rows.

be approximated by

V (d) ≈ −2λlnd. (1)

To avoid nonphysical divergence, a cutoff b (of the order of
an atomic distance) has to be introduced in the expression of
V (0), which yields V (d = 0) = −2λ ln 2b.

The expressions for the total electrostatic potentials on
the anion (A) and cation (C) rows, VAn and VCn, are much
more involved than for thin films, due to the logarithmic
behavior of the Coulomb potential. Using the definition of the
� function40 �(n + R) = (n − 1 + R)(n − 2 + R) . . . (1 +
R)�(R + 1), one finds that on the outermost cation row

VC1 = 2λ ln
(R1 + R2)�(N + R)

2b�(N )�(R)
(2)

while on the other side of the ribbon

VAN = −2λ ln
(R1 + R2)�(N + R)

2b�(N )�(R)
. (3)

The potential difference �V = VC1 − VAN across the
ribbon reads

�V = 4λ ln
(R1 + R2)�(N + R)

2b�(N )�(R)
. (4)

Its asymptotic expression, in the large N limit, is obtained by
using the Stirling formula �(x) ≈ e−xxx−1/2

√
2π for the �

function when its argument is large:

�V → 4Rλ ln N, (5)

which highlights the logarithmic divergence of this quantity in
the large-N limit.30

The total dipole moment per unit length is proportional to
the ribbon width:

P = NλR1. (6)

These size dependencies of �V and P [Eqs. (5) and (6)], are
characteristic of an uncompensated state.41 The divergence of
�V can be avoided by adding compensating charge densities
±δλ on the outer edges. This recipe is well known at surfaces
and in thin films, and the stabilization of �V is referred to as
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the healing of polarity. The new charge densities produce an ad-
ditional electrostatic voltage, which, according to Eq. (1), reads

�Vcomp = −4δλ ln[N (R1 + R2) − R2], (7)

as well as a contribution to the total dipole moment equal to

Pcomp = −4δλ[N (R1 + R2) − R2]. (8)

The total potential difference and dipole moments are
�Vtot = �V + �Vcomp and Ptot = P + Pcomp. Considering
Eqs. (5) and (7), the cancellation of the divergence of �Vtot at
N → ∞ can be achieved by choosing

δλ = Rλ. (9)

The same condition allows us to remove the linear dependence
of the total dipole moment Ptot as a function of N . Although P

and �V display different size dependencies than in thin films,
this electrostatic criterion applied to charge densities per unit
length is identical to that valid in thin films or at surfaces for
charge densities per unit area.

To summarize, in the absence of polarity compensation,
the voltage across the ribbon diverges as ln N , and the dipole
moment P as N . Both divergences can be healed by the
presence of compensating charges δλ = Rλ, the relationship
between λ and δλ being formally similar to that valid for films.
So far nothing has been said about the physical mechanism
which produces these compensating charges. In the remainder
of this section we consider an ionic-type mechanism and an
electronic-type mechanism to account for the compensation of
polarity.

B. Size effects for ionic-type compensation

We now consider an ionic-type mechanism in which δλ =
Rλ is provided by adsorption of charged species (for example,
edge hydroxylation) or by loss of ions (edge nonstoichiome-
try). The focus of this subsection is on the size dependence of
the electrostatic properties of the ribbons in such compensated
state, and more particularly on their asymptotic behavior.

In the presence of the compensating charge density δλ =
Rλ on the outer rows, the total voltage across the ribbon
�Vtot = �V + �Vcomp reads

�Vtot = 4λ ln
(R1 + R2)�(N + R)

2b�(N )�(R)
− 4Rλ ln[N (R1 + R2) − R2], (10)

which, in the large-N limit, scales as

�Vtot = �V∞ + 2λR
N

(11)

with �V∞ = 4λ(1 − R) ln(R1 + R2) − 4λ ln 2b�(R) in this
model. In real systems, �V∞ may involve some additional
contributions, such as short-range electrostatic terms.

The total dipole moment Ptot = P + Pcomp no longer
depends on ribbon width:

Ptot = NλR1 − Rλ[N (R1 + R2) − R2] = R2Rλ. (12)

C. Size effects for electronic-type compensation

Spontaneous modification of the electronic structure in
response to the polar potential (edge metallization) provides

FIG. 3. Schematic electronic structure of polar nanoribbons in
the (a) uncompensated and (b) compensated regimes.

another way of achieving charge compensation. It is the only
compensation mechanism which can take place in unsupported
ribbons with stoichiometric edges, in the absence of ion
adsorption. The understanding of the compensating regime
in that case is rather involved, since it requires taking into
account the electronic structure explicitly. In this subsection,
we develop an analytic model which goes beyond macroscopic
electrostatics, in which short-range electrostatic interactions
are taken into account, as well as electron transfers in a
rigid-band approximation. This model is analogous to the one
developed for ultrathin films in Ref. 39.

Due to the variation of the electrostatic potential across the
ribbon, as given by Eqs. (2) and (3), the energies of the local va-
lence (VBs) and conduction bands (CBs) are shifted from their
positions in the infinite layer. For narrow enough ribbons, they
may not overlap and yield an insulating “uncompensated” elec-
tronic structure (Fig. 3 left panel). However, when N becomes
large enough, both valence states on one edge and conduction
states on the other intersect the Fermi level, and a metallic band
structure results, with modifications of the charge densities
±δλ on each edge due to changes in band filling (Fig. 3 right
panel). This is the so-called electronic mechanism.

The long-range electrostatic potential which acts on the
various layers includes two contributions: one due to the
(unmodified) charge densities ±λ, and the other due to the
compensating charge densities ±δλ, which in this model is
assumed to be fully localized on the outermost rows on each
side of the ribbon. Additionally, the ±δλ induce a correction,
due to intra-atomic electron-electron interactions, on the outer
layer potentials (with UA and UC the on-site Coulomb electron-
electron interactions and a the one-dimensional unit-cell
parameter). The total electrostatic potential has also short-
range contributions which differ in the central part and at the
surface of the ribbon due to the different local environments. It
may be accounted for by corrections wA and wC on the outer
anion and cation layers, respectively, which do not depend on
ribbon width (in the following, δw = wA − wC),

VC1 = 2λ ln
(R1 + R2)�(N + R)

2b�(N )�(R)

+ 2δλ ln
2b

(R1 + R2)(N − 1 + R)
− aUCδλ + wC,

(13)
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VAN = −2λ ln
(R1 + R2)�(N + R)

2b�(N )�(R)

− 2δλ ln
2b

(R1 + R2)(N − 1 + R)
+ aUAδλ + wA.

(14)

Assuming that the conduction-band minimum (CBM) and
valence-band maximum (VBM) have major contributions
from cation and anion orbitals, respectively,42 in a rigid-
band approximation, their energy positions become CBM1 =
CBM0 − VC1 and VBMN = VBM0 − VAN , where CMB0 and
VBM0 are the values in the absence of polarity. Assuming
constant densities of states 1/α and 1/β in the conduction and
valence bands, respectively, the equalization of the Fermi level
of both edges of the ribbon yields

EF = CBM1 + αδλ = VBMN − βδλ, (15)

which allows us to write

�V = G + δλ(α + β), (16)

where G = CBM0 − VBM0 is the band gap of the system in
the absence of polarity.

The value of δλ results, to order 1/N :

δλ ≈ 4Rλ ln N − G̃ − δw

4 ln N + Ṽ
(17)

with Ṽ = a(UC + UA) + α + β + 4 ln(R1 + R2)/2b and G̃ =
G − 4λ ln[R1/2b�(R + 1)]. When N goes to infinity, δλ

converges towards δλ∞ = Rλ = λR1/(R1 + R2) and the
asymptotic limit is reached following a 1/ ln N law:

δλ ≈ δλ∞ − G̃ + Ṽ δλ∞ + δw

4 ln N
. (18)

The voltage across the ribbon no longer diverges. It tends
towards a constant value �V∞ = G + (α + β)δλ∞, also
following a 1/ ln N law.

The total dipole moment density P = NλR1 − δλ(N (R1 +
R2) − R2) no longer diverges linearly with ribbon width as
in the absence of compensating charges, but rather scales as
N/ ln N :

P = N (R1 + R2)

4 ln N
(G̃ + Ṽ δλ∞ + δw). (19)

The formation energy per unit length of the ribbon Eform can be
calculated as the difference between the total energy per unit
length Eribbon and the energy of the corresponding number of
formula units in the infinite monolayer EML:

Eform = Eribbon − NEML. (20)

Among the various contributions to Eform, the electrostatic
part is equal to Eel

form = 0.5
∑

λiVi , where λi and Vi are the
linear charge densities and potentials of each row, respectively.
Eel

form has thus the same N dependence as �V or δλ. In the
large-N limit, it diverges in the uncompensated regime (δλ =
0), while reaching a constant value with a 1/ ln N law in the
compensated regime.

When N → ∞, the band shift between two successive
layers �V/N becomes negligibly small, which enables a

“quasibulk” electronic structure being established in the
central part of the film. In this limit, δλ may be written

δλ = δλ∞ − �V∞ε∞
4 ln N

+ · · · (21)

with

ε∞ = G̃ + Ṽ δλ∞ + δw

G + (α + β)δλ∞
. (22)

This expression is formally similar to the one derived for thin
films.39

While the above derivation assumes that the film keeps
a rigid structure, allowing for relaxation effects implies to
replace the optical dielectric constant ε∞ by the static dielectric
constant (zero phonon energy) ε0, in Eq. (21). Therefore, all
the aforementioned quantities (�V , δλ and Eel

form) are expected
to have the same 1/ ln N dependence both for the relaxed and
rigid structures, but with a slope larger in the former case
(ε0 > ε∞).

To summarize, in this section, the generic width dependence
of the electrostatic characteristics of polar nanoribbons has
been derived in the large width limit. In the ionic compensation
mechanism, compensating charges are provided by a well-
defined density of missing ions on opposite edges and no strong
modification of the electronic structure is necessary. The total
dipole moment does not vary with N and the asymptotic value
of the voltage across the ribbon is reached in a 1/N manner.
At variance, in the electronic mechanism, at work in polar
nanoribbons with stoichiometric edges, compensating charges
are provided by edge metallization and electron transfer
between opposite edges. They hinder the formation energy and
the voltage across the ribbon to diverge as the number of rows
increases. Asymptotic values of �V , δλ, and Eel

form are reached
in a 1/ ln N way. A peculiarity is the size dependence of the
total dipole moment which keeps diverging as N/ ln N . The
value of the total dipole moment is thus not a good indicator of
the state (compensated or not) of the system, at variance with
polar surfaces or films.

III. FIRST-PRINCIPLES RESULTS

This section is devoted to an accurate account of the ener-
getics and electronic structure of MgO and MoS2 nanoribbons
in the medium size range. Considering these two largely
different compounds allows us to check the importance of
the gap width and the ionic/covalent ratio in the anion-cation
bonding on the polar properties. We first present results of
DFT electronic structure calculations of stoichiometric polar
ribbons with zigzag edges and widths going from N = 2 to
N = 15. Representative cases of reconstructed ribbons with
missing edge atoms are then analyzed.

A. Simulation setups

All calculations are performed using ab initio spin polarized
density functional theory as implemented in the VASP43 code.
PAW pseudopotentials are used,44 together with the general-
ized gradient approximation as parametrized by Perdew et al.45

for the exchange and correlation potential. Self-consistent
iterations are carried out until the difference in total energy
between successive steps is smaller than 10−6 eV. The kinetic-
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energy cutoff of the plane waves is set equal to 400 and 1000 eV
for MgO and MoS2,46 respectively. The considered atomic
valence electrons are 3s2 for Mg, 2s22p4 for O, 3s23p4 for
S, and 4s24p64d55s1 for Mo. All these structures are fully
relaxed until residual forces drop below 0.01 eV/Å.

To model infinite one-dimensional (1D) ribbons periodic in
the X direction (Fig. 1) and avoid interactions between their
periodic images, large cells of dimension 70 and 36 Å in the Y

and Z directions are used for MoS2 (respectively 60 and 30 Å
for MgO), which leaves at least 30 Å vacuum in both directions,
for all ribbon widths under consideration. The k-point grid in
the corresponding first Brillouin zone is 9 × 1 × 1 for MgO
and 36 × 1 × 1 for MoS2. Charges are calculated according to
the Bader’s prescription.47,48

B. MoS2 and MgO ribbons with stoichiometric zigzag edges

1. Ribbons of fixed width N = 7

We first consider MgO and MoS2 ribbons of fixed width
N = 7. Figure 4 shows the row-projected densities of states

Mg x 5
O

-20 -16 -12 -8 -4 0 4

n=1

n=2

n=4

n=6

n=7

(a)

S
Mo

-20 -16 -12 -8 -4 0 4
Energy (eV)

n=1

n=2

n=4

n=6

n=7

(b)

FIG. 4. Projected densities of states through (a) MgO and (b)
MoS2 relaxed zigzag nanoribbons with stoichiometric edges and
N = 7 width. Row n = 1 is a cationic row. For simplicity, rows
corresponding to n = 3 and n = 5 are skipped. The Fermi level is at
zero energy.

FIG. 5. Charge modifications δλi/|λ|, on each row i through MgO
and MoS2 relaxed zigzag nanoribbons with stoichiometric edges and
N = 7 width. Magnesium/molybdenum termination is on the left of
the diagram.

(DOS) and Fig. 5 displays the modifications of Bader charges
on each atomic row, relative to the ribbon center (δλi/|λ|). In
the case of MoS2, the charges of S atoms on both sides of the
Mo plane are added.

The row-projected DOS evidence a progressive shift of
the local VB and CB states, due to the electrostatic potential
variations across the ribbon [Eqs. (13) and (14)]. This shift is
more visible on the VB and even more on states with strong
anion s character (states below −10 eV). Both ribbons have
a nonzero DOS at the Fermi level, due to an overlap of edge
states. Such edge metallization is in agreement with the model
developed in Sec. II C and with previous works.15–20,24–27

These states receive contributions mainly from the p-type
orbitals on the anion termination and the Mg 3s (Mo 4d)
orbitals on the opposite Mg (Mo) termination. It can be said
that a 1D electron gas is present on the ribbon edges. This
metallicity, however, does not prejudge the existence of sizable
conductivity on these edges. We will come back to the nature
of edge states in the next section. Additionally, the ribbons
display edge spin polarization.

The Bader charges on the outer rows differ from those on
the ribbon center (Fig. 5). The modifications δλi are located
mainly on the two outermost rows on each side of the ribbons.
In order to make a correspondence with the analytic model, a
sum of the δλi is performed separately on each side to obtain
δλ. For both compounds, the resulting δλ/λ values are close
to the expected 1/3 value, as predicted by Eq. (9) for the
zigzag ribbon geometry, where R2 = 2R1. The behavior of
the electrostatic potential as well as the value of δλ/λ, are true
signatures of polarity in these ribbons.

Differences between the two compounds involve the
magnitude of the total band shift and the localization of
the spin polarization. The band shift in the MgO ribbon is
approximately 3 eV, more than two times larger than in MoS2

(approximately 1.3 eV). This may be interpreted as due to the
different values of the compensating charges δλ∞ = Rλ and
of the gaps G, which enter the expression of �V in the model
developed in Sec. II C (�V∞ = G + (α + β)δλ∞). Indeed,
the Mg charge λ is ∼30% larger than that of Mo, and the
MgO monolayer gap (∼2.8 eV) largely exceeds that of the
MoS2 trilayer (∼1.6 eV), yielding a greater value of �V .
Additionally, short-range Coulomb interactions on the edges
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δw and bandwidth effects, α and β, could contribute but in a
less obvious manner.

While all rows in the MgO ribbons display a well-defined
separation between VB and CB, this is not the case in the
MoS2 ribbon. This difference may be assigned to the strength
of undercoordination effects on the outer rows which turn out
to be much stronger in MoS2 than in MgO, and contribute to
the metallization of the edges.

Spin-polarization effects are present in both compounds.
They can be explained by high densities of states at the
Fermi level, leading to an exchange splitting according to
Stoner criterion. In relation to polarity, this argument has
been used to explain the oxygen magnetic moment found
at MgO(111) stoichiometric surface terminations by first-
principles calculations.49 It applies here too at the oxygen
edges of MgO ribbons and at both Mo and S edges of MoS2.
At variance, the Mg edge is characterized by a more dispersive
band and thus by a lower density of states, not allowing the
Stoner criterion to be fulfilled. An estimate of the magnetic
moments, obtained by integration of the spin polarized electron
density in atomic spheres, is 0.38μB per oxygen edge atom in
MgO, 0.24μB per edge atom at the S termination of MoS2, and
0.57μB at its Mo termination. A ferromagnetic spin ordering
is found along the O edge in MgO, and Mo and S edges
in MoS2. No significant magnetic interaction exists between
Mo and S edges in MoS2 ribbons, in the limit of precision
of the calculation. Similar spin ground states were found
in simulations of other oxide17,19,20 and MoS2

22–24,27 zigzag
nanoribbons.

2. Size effects

Beyond these results on ribbons of width N = 7, we have
studied the size evolution of the formation energies Eform and
compensating charges δλ/ | λ | of MgO and MoS2 zigzag
ribbons (Figs. 6 and 7, respectively). Eform is found to be an
increasing function of N , but the maximum ribbon size, here
(N = 15), does not allow it to actually enter the asymptotic
regime. The formation energy is larger for MoS2 than for MgO.
However, their ratio is much smaller than the ratio of the bulk
cohesive energies of the two compounds (approximately equal
to 2). This points towards a lesser impact of polarity on MoS2

ribbons than on MgO. A similar result had been obtained
when comparing the impact of polarity on SrTiO3 and MgO
stoichiometric polar surfaces and assigned to a more efficient
electrostatic screening of polarity in small gap compounds.50

Compensating charges are present for all widths and their
value for large N is close to 1/3. They are smaller for the MgO
relaxed structures than for unrelaxed ones, in agreement with
the discussion of dielectric constants in Sec. II C. According
to Fig. 7, the asymptotic value of δλ/ | λ | is reached at larger
sizes in MgO than in MoS2. This result can be rationalized by
comparing the slopes of the 1/ ln N terms in Eq. (21) for both
compounds. The slope is equal to �V∞ε∞ = G̃ + Ṽ δλ∞ +
δw. As in the discussion of the voltage above, the larger slope
in MgO can be mainly assigned to its larger gap and larger
ionicity.

MgO ribbons of small widths (N < 7) undergo strong struc-
tural distortions. Their structure spontaneously transforms into
a (001) ribbon with nonpolar [100] edges characterized by

(a)

(b)

FIG. 6. Formation energy per unit length of (a) MgO and (b)
MoS2 zigzag nanoribbons with stoichiometric edges, as a function of
width N .

δλ = 0. This is in line with the structural transformations
which take place in the small thickness regime in polar films,
leading to nonpolar configurations.32 On the other hand, MoS2

zigzag ribbons are always stable, and strong relaxation effects

(a)

(b)

FIG. 7. Compensating charges δλ/λ of (a) MgO (top) and (b)
MoS2 zigzag nanoribbons with stoichiometric edges, as a function of
width N .
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are observed only in the N = 2 case. Otherwise, relaxation
effects are weak, much weaker in MoS2 than in MgO, and
mainly affect edge rows. No evidence of uncompensated
polarity is found.

C. Ionic compensation mechanism in reconstructed MoS2

and MgO ribbons and comparison with the electronic
compensation mechanism

In the previous section, we have analyzed the manifestations
of the electronic compensation mechanism, which takes place
in unsupported ribbons with stoichiometric edges (×1 unit
cell). Here, we present the characteristics of N = 7 ribbons
with reconstructed edges (×3 unit cell) with the goal to get
insight into the ionic mechanism in MoS2 and MgO ribbons
and compare its characteristics to those of the electronic
mechanism. For this purpose, we have removed one-third
of the edge ions on both sides of the ribbons to fulfill the
condition δλ/ | λ |= 1/3. In MoS2 ribbons there are several
ways of removing the two sulfur atoms per ×3 unit cell. The
one shown in Fig. 8 is found to be the most stable.

Figures 9 and 10 display the projected densities of states and
charge distribution, respectively, for both compounds. Both
quantities are averaged over the ×3 unit cell and the structures
are fully relaxed.

In both MgO and MoS2 cases, the monotonic shifts of the
local VB and CB states across the ribbons, observed in the
stoichiometric zigzag ribbons (Fig. 4), are no longer present.
In the MgO ribbon, the VB and CB states do not overlap and
the electronic structure is semiconducting and nonmagnetic.
In MoS2, the band gap remains closed on the outer rows, as in
the pristine zigzag structure, so that the reconstructed ribbon
edges are metallic. Spin polarization is present only on the
S termination, with ferromagnetic ordering, but the magnetic
moment is localized mainly on the Mo atom on the underlying
row, closest to both S vacancies (μ ∼ 0.88μB ). Interestingly,
on this termination, the states at the Fermi level mainly come
from Mo d orbitals while S p states are completely filled. In
stoichiometric ribbons, the latter were partly depleted (Fig. 4).

In Fig. 10, the electron redistributions associated to both
polarity compensation mechanisms are shown. They are found

FIG. 8. (Color online) Reconstructed N = 7 MgO (top panel) and
MoS2 (bottom panel) unrelaxed ribbons, top view. Small and large
spheres represent O/S and Mg/Mo atoms, respectively. The structure
is periodic in the X direction.

Mg x 5
O

-20 -16 -12 -8 -4 0 4

n=1

n=2

n=4

n=6

n=7

(a)

S
Mo

-20 -16 -12 -8 -4 0 4
Energy (eV)

n=1

n=2

n=4

n=6

n=7

(b)

FIG. 9. Projected densities of states through (a) MgO and (b)
MoS2 reconstructed nanoribbons of N = 7 width (×3 unit cell aver-
age). Row n = 1 is a cationic row. For simplicity, rows corresponding
to N = 3 and N = 5 are skipped. The Fermi level is at zero energy.

to be much smaller in reconstructed ribbons than in the pristine
structures and display different behavior across the ribbons. In
the pristine structure, the electron redistribution itself provides
the compensating charges canceling the divergence of the
voltage �V and the absolute value of δλ is fixed by the
electrostatic criterion. The values 
n = ∑n

i=1 δλi/ | λ | of
the electron density variations integrated across the ribbons
display a nearly constant value ±1/3 as a function of n and
only vanish when n becomes equal to N (integration over the
whole width, fulfilling the neutrality condition. Such behavior
is characteristics of an electronic dipole across the ribbon.
At variance, in the ionic mechanism, the missing ions on the
outer rows provide the compensating charges. The electron
redistribution is a mere response to bond breaking at the edges
and is thus much weaker than at pristine edges. The vanishing
of 
n somewhere inside the ribbons shows that the electron
redistribution δλ is equal to zero, at both edges. It is remarkable
that the characteristics of the electron redistributions are very
similar in MgO and MoS2 ribbons, whatever the mechanism
of compensation, despite their noticeably different edge
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(a)

(b)

(c)

(d)

FIG. 10. From top to bottom: (a) Electron redistribution δλi/|λ|
and (b) integrated electron density values 
n (see text) through
unreconstructed and reconstructed MgO ribbons of N = 7 width;
(c),(d) the same for MoS2. In the reconstructed ribbons charges are
averaged in the ×3 unit cell and do not include the missing ion
charges. Magnesium/molybdenum termination is on the left of the
diagrams.

DOS characteristics when reconstructed (metallic in MoS2,
semiconducting in MgO).

MoS2 reconstructed ribbons are thus characterized by an
absence of band shifts, a filling of the S p states on the

sulfur termination (similar to that of oxygen p states at the
oxygen edge of MgO ribbons) and electronic redistribution
characterized by δλ = 0. These features are characteristic of
the ionic compensation mechanism for which the adequately
chosen number of missing ions on the outer rows cancels
the voltage divergence. The remaining metallicity can thus be
assigned to undercoordination effects at edge atoms.

Reconstructed ×3 ribbons turn out to be slightly more
stable than their unreconstructed ×1 counterparts. The energy
differences per ×3 unit cell are equal to 0.5 and 0.075 eV
for MgO and MoS2, respectively (0.05 and 0.008 eV/Å,
respectively). This increased stability shows that the bond
breaking necessary to obtain reconstructed edges costs less
energy than the electronic compensation, even in the case of a
small gap compound like MoS2. This result is in line with the
general findings on polar surfaces1,2 although the numbers are
quite small. The energy difference is much lower in MoS2

than in MgO, which can be rationalized by remembering
that the unreconstructed MoS2 ribbons are proportionally
more stable than the MgO ones (Sec. III B2). The energy
difference values quoted above represent a lower bound to
the efficiency of the ionic mechanism, since it is possible that
more stable reconstructed configurations with larger unit cells
exist. However, a systematic analysis of edge reconstruction
effects is beyond the scope of this paper, whose aim was rather
to identify polarity signatures in polar nanoribbons.

To summarize, all the unsupported zigzag nanoribbons
analyzed in this work show signatures of polarity, similar
to those observed in thin films,2 and in agreement with the
models developed in Sec. II. Characteristics of the ribbons
are sensitive to undercoordination effects, which are strong in
these low dimensional systems. Differences between the MgO
and MoS2 ribbons are related to the ionicity of both compounds
(the value of λ), the width of the band gaps, the screening
properties, and the existence of stronger undercoordination
effects in the MoS2 case.

IV. DISCUSSION

The numerical simulations of MgO and MoS2 ribbons,
as well as the analytical predictions made in Sec. II, allow
us to highlight some important characteristics of polarity in
nanoribbons, related to the dimensionality of the systems, the
nature of the edge states, and the competition between different
compensation mechanisms.

A. Dimensionality effects and asymptotic behavior

While, on general grounds, the scenarios of polarity healing
by the electronic or ionic mechanisms in nanoribbons bear
some resemblance to those known at surfaces of macroscopic
samples or thin films, the logarithmic dependence of the
electrostatic potential [Eq. (1)] which comes from the dimen-
sionality of the ribbons has some distinctive consequences.

One consequence concerns the asymptotic regime, which
is reached rather slowly in nanoribbons, especially in unrecon-
structed ones, so that the first-principles simulations performed
in Sec. III up to N = 15 have not allowed us to reveal it. To
complement first-principles simulations and support analytical
arguments, in Figs. 11(a)–11(f), the width variations of the
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FIG. 11. Width variation of (a) the total compensating charges
δλ, (b) the total dipole moment P , (c),(d) the voltage �V , and
(e),(f) the ribbon formation energy Eform for unreconstructed (×1) and
reconstructed (×3) ribbons. The straight lines show the asymptotic
behavior of the various quantities.

compensating charges δλ, of the total dipole moment P , of the
total voltage �V , and of the ribbon formation energy Eform

are represented for unreconstructed and reconstructed MgO
ribbons of width up to N = 200. They have been obtained by
means of an order N semiempirical Hartree-Fock code that
we have developed,51 with parameters necessary to simulate
MgO systems determined in Ref. 51. In full agreement with
the analysis made in Sec. II, in unreconstructed ribbons, δλ/λ

and �V reach their asymptotic values in a 1/ ln N manner.
The N → ∞ limit of δλ/λ is 1/3, as expected from the
electrostatic criterion. The slope of these functions in the
asymptotic limit, marked by the straight lines, is larger when
relaxation effects are included, also in agreement with Eq. (21).
The N dependence of the ribbon formation energy Eform is

similar, showing that it is mainly driven by δλ/λ and �V . On
the other hand, the dipole moment goes on increasing with N

despite the presence of compensating charges, but in a N/ ln N

manner, as predicted in Eq. (19).
At variance, in reconstructed ribbons (×3), aside from the

small width regime where interactions between opposite edges
(not taken into account in the analytic model) induce small
size variations, the values of the total compensating charge
(including the missing ions) and of the total dipole moment
remain nearly constant as a function of 1/N . The voltage
displays linear variations as a function of N , as predicted
by Eq. (11) while the formation energy does not display
clear variations, being mostly constant. Relaxation effects
are stronger in reconstructed than in ×1 ribbons due to the
increased number of undercoordinated atoms. Their effect on
electrostatic properties goes beyond the mere use of a larger
dielectric constant.

The nonlinear size scaling of the polar voltage in the ribbon
uncompensated state [Eq. (5)] thus translates into specific
electrostatic and electronic behaviors in the compensated states
which differ from those present in thin films (Table I). When an
ionic mechanism is at work, the leading term in �V varies as
1/N to be compared to a quasiconstant behavior in films. The
size variations of the dipole moment, on the other hand, are
similar for the two systems. At variance, when compensation
is provided by an electronic mechanism and edge metallization
takes place, the asymptotic values of δλ and �V are reached in
a 1/N fashion in films and, more slowly, in a 1/ ln N manner,
in ribbons. The total ribbon dipole keeps increasing as N/ ln N

in the large width limit, which is not the case in thin films.

B. Signatures of polarity and compensation

Aside from special cases of uncompensated polarity (see
Sec. IV D), all polar systems in experiments or in numerical
simulations are compensated. Recognizing polarity signatures
is thus not always easy. Indeed, in a number of previous
works, polarity had not been recognized as responsible for
the properties of states near the Fermi level in zigzag ribbons
with pristine edges, which were derived by a number of ab
initio simulations. It is thus important to specify the actual
signatures of polarity.

The first obvious signature of a polar stacking is the
structure of the system itself. Using formal charges and
knowing the prototypical spatial variation of the electrostatic
potential for the dimensionality under consideration (films,
ribbons, chains), it is easy to assess whether the stacking leads
to a divergence of the voltage (Tasker’s criterion for films37). In
this respect, the zigzag ribbons of MgO, ZnO, BeO, V2O5, or
MoS2 considered in Refs. 15–27 were obviously polar, while
the graphene ribbons to which some of these systems were
compared are obviously nonpolar.

The present study brings a strong warning on the relevance
of the dipole moment to inform about polarity.30 For ex-
ample, in compensated nanoribbons (electronic mechanism),
P goes on diverging at large size. This comes from the
fact that, at variance with thin films, P and �V are no
longer proportional. In Ref. 30, we had provided two other
examples of low dimensional systems (the one-dimensional
chain of alternating anions and cations, and some symmet-
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TABLE I. Behavior of compensating charges, voltage, and total dipole in polar thin films and nanoribbons.

Compensation mechanism Physical quantity Thin films Nanoribbons

Ionic Voltage �V − �V∞ = 0 �V − �V∞ ∝ 1/N

Asymptotic behavior Dipole moment P − P∞ = 0 P − P∞ = 0

Electronic Compensating charge δσ∞ = R1σ/(R1 + R2) δλ∞ = R1λ/(R1 + R2)
N → ∞ values Voltage �V∞ = G + (α + β)δσ∞ �V∞ = G + (α + β)δλ∞

Total dipole P∞ = (G + Ṽ δσ∞)/4π P∞ → ∞
Electronic Compensating charge δσ − δσ∞ ∝ 1/N δλ − δλ∞ ∝ 1/ ln N

Asymptotic behavior Voltage �V − �V∞ ∝ 1/N �V − �V∞ ∝ 1/ ln N

Dipole moment P − P∞ ∝ 1/N P ∝ N/ ln N

ric nano-objects) similarly showing that the value of the
dipole moment is not a faithful indicator of polarity. In
one-dimensional chains, P diverges with size, although no
polarity is present. The situation is exactly opposite in some
symmetric nano-objects, in which, although the total dipole
moment is zero, polarity is present. The message is thus
that although at semi-infinite surfaces and in asymmetric
ultrathin films, it is legitimate to indifferently use the dipole
moment value or the voltage to characterize polarity, since
these two quantities are proportional, this is not a general
property.

The actual indicators of compensated or uncompensated
polarity are the voltage �V and the compensating charges
±δλ. The electrostatic potential is the important quantity,
since it determines a large part of the formation energies
and electronic band characteristics. In uncompensated polar
systems, it shifts the bands from one row to the other. When
an ionic compensation mechanism is at work, the density of
ions which has to be removed from the edges is determined
from the condition that its associated potential cancels the
total voltage divergence, leading to the condition δλ/λ = R.
Some electronic redistribution, in that case, takes place on
the edges. It is characterized by δλ/λ = 0, as at nonpolar
edges, and is irrelevant to polarity healing. In the electronic
compensation mechanism, the row-projected DOS displays
shifts across the ribbons which allow the overlap of VB and
CB and charge modifications on the edges. The compensating
electronic redistributions, as highlighted in Fig. 10, have to
asymptotically obey the electrostatic criterion δλ/λ = R and
induce a voltage across the ribbon.

C. Physical origin of edge states

In polar systems, when a nonzero DOS is found at the
Fermi level, the question may be asked whether this is due
to undercoordination effects or to electronic compensation of
polarity. This question is not only academic since conductivity
properties may be very different in one case or the other.
Indeed, the electronic mechanism of polarity compensation
requires an overlap of edge bands. On the other hand, it
is well known from many past surface science studies that
undercoordination may induce one or the other of the following
effects: presence of localized gap states (dangling bonds),
surface metallization, opening or reduction of the gap com-
pared to the bulk, depending upon the nature of the compound
and the geometry of the surface. In graphene zigzag ribbons,

for example, there are edge states built from unsaturated sp2

orbitals (dangling bonds) due to atom undercoordination.
The comparison between MgO and MoS2, in the present

study, brings some insights into processes relevant for nanorib-
bons. In these systems, edge atoms are strongly undercoordi-
nated: twofold to be compared to threefold for Mg, O, and S in
the corresponding infinite layers, and fourfold to be compared
to sixfold for Mo. In MgO, metallization occurs only when
the edges are stoichiometric. When δλ is provided by edge
reconstruction (ionic mechanism), the electronic structure
remains semiconducting with a mere gap narrowing.

At variance, in MoS2 ribbons, metallicity takes place for
both compensation mechanisms, but is associated to different
underlying physical processes and different characteristics of
the electron distribution. In reconstructed ribbons, there is
no voltage across the ribbons which can induce an overlap
of the VB and CB. Due to the more covalent character of
the Mo-S bonding compared to Mg-O and the smaller gap,
undercoordination effects are able to close the MoS2 gap
and lead to metallic edges. Regarding MoS2 ribbons with
pristine edges, it is likely that both undercoordination effects
and electronic compensation are responsible for their edge
metallic behavior. However, the latter drives the characteristics
of the electron redistribution (value of δλ/λ close to 1/3 and
associated voltage), as in MgO.

D. Other compensation mechanisms

In past studies, we had identified two mechanisms specific
of the low thickness regime in ultrathin films, which are not at
work at semi-infinite surfaces: a thorough structural transfor-
mation of the film32 and the possibility of an uncompensated
state.41 We have found an equivalent structural transformation
in the present study. For widths less that N = 7, MgO ribbons
with stoichiometric edges spontaneously transform into (001)
ribbons with nonpolar [100] edges. Both the local symmetry
of the ribbons (from hexagonal to square) and the bulk
structure from which the ribbons are cut (from h-BN to rocksalt
structure) change.

As far as uncompensated polarity is concerned, the general
argument that we had developed relied on the existence of a
gap, the uncompensated state being stabilized as long as the
voltage across the films is smaller than the gap [Fig. 3(a)].
Such a situation seems not to occur in MgO nor in MoS2

ribbons. In MgO, narrow nanoribbons can relax towards the
nonpolar (001) structural ground state, thus preventing an

205423-10



POLARITY EFFECTS IN UNSUPPORTED POLAR NANORIBBONS PHYSICAL REVIEW B 87, 205423 (2013)

uncompensated state to be stabilized. In MoS2, additional
effects could play a role, such as the presence of cation
states at the top of the VB and/or the gap closure due to
undercoordination at edge atoms, which were not considered
in our description of the uncompensated polarity mechanism.41

This is a delicate issue which is left for future works.
The goal of the present work was not to make a thorough

study of all possible compensation mechanisms and their
relative efficiency. We have only considered an electronic
mechanism for the compensation of stoichiometric edges and,
alternatively, a single reconstructed configuration providing
the required compensating charges. In line with most results
on polar oxide surfaces, we find that the latter yields lower for-
mation energies for both compounds. However, the resulting
stabilization is weak in the chosen systems. This may be due
partly to the low ribbon dimensionality which allows smallerR
values than at surfaces31 and partly to the low electropositivity
of Mo. Indeed, it has been found at some polar surfaces
of transition metal oxides2 that the electronic compensation
mechanism is more efficient than the ionic one. There
may also be ways to stabilize edge metallization purposely,
for example by interaction with a metallic substrate31 or
by hydrogenation.52 Here, behind the thorough analysis of
polarity that we have performed, one of our goals was to place
the results of numerous simulation works on ribbons with
stoichiometric edges, in the proper context.

V. CONCLUSION

In this paper we have analyzed the characteristics of polarity
in unsupported nanoribbons with zigzag edges by relying on a
combination of analytic models, semiempirical Hartree-Fock
simulations, and first-principles calculations. As examples,
we have considered two materials with widely different
ionic-covalent character: MgO and MoS2. We have studied
two compensation mechanisms: electronic in ribbons with
pristine edges, and ionic in ribbons with missing edge ions.
We have been able to highlight resemblances and differences
with polarity characteristics in thin films or at surfaces.

Resemblances include the asymptotic expression of
compensating charges δλ/λ = R, the edge metallization,

accompanied by spin polarization, necessary to provide the
compensating charges in the electronic mechanism, and the
stabilization effect of the ionic mechanism compared to the
electronic one.

Differences are related to low dimensionality, the atomic
structure, and the strong undercoordination of edge atoms in
nanoribbons. Dimensionality induces a nonlinear scaling of
the polar characteristics. The Coulomb potential created by
charged rows at a distance d varies spatially as ln(d). This
implies that the voltage across the ribbons and the total dipole
moment are not proportional, the former being the important
electrostatic quantity. Atoms at ribbon edges are usually more
undercoordinated than at surfaces. Edge states resulting from
this undercoordination may thus be present in the electronic
spectra, with no relation to polarity.

Previous simulations of zigzag ribbons of various com-
pounds had evidenced the presence of states at Fermi level,
but most of them had failed to interpret them in terms of
polarity. It is true that the roles of undercoordination and
polarity cannot be easily separated by only looking at the
total DOS. We have specified the actual polarity features for
both compensation mechanisms. By comparing the electronic
structures of ribbons with pristine and reconstructed edges
in MgO and MoS2 compounds, we have been able to assess
that undercoordination does not induce the presence of edge
states in MgO. In MoS2 however, states at the Fermi level
have a contribution from both polarity and undercoordination
when the edges are stoichiometric (electronic mechanism) and
only from the latter when ionic-type compensation takes place.
We have highlighted differences in the electron redistribution
induced by the two effects.
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