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Abstract

We develop a model of regime-switching risk premia as well as regime-

dependent factor risk premia to price real options. The model incorporates

the observation that the underlying risky income streams of real options are

subject to discrete shifts over time as well as random changes. The presence

of discrete shifts is due to systematic and unsystematic risk associated with

changes in business cycles or in economic policy regimes or events such as

takeovers, major changes in business plans. We analyze the impact of regime-

switching behavior on the valuation of projects and investment opportunities.

We find that accounting for Markov switching risk results in a delay in the

expected timing of the investment while the regime-specific factor risk premia

make the possibility of a regime shift more pronounced.
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1 Introduction

We extend the real options valuation framework developed by McDonald and Siegel

(1986) along the lines of Driffill, Raybaudi, and Sola (2003) and Guo, Miao, and

Morellec (2005) to incorporate regime-dependent factor and regime switching risk

premia. It is well-documented that investment falls sharply during recessions and rises

sharply during booms. For example, as the US economy went into a deep recession

in the early 1980’s, real GNP fell 3 percent in 1981 and 1982, while investment fell

by 18 percent in real terms. In the following year, as the expansion began, GNP rose

4 percent while investment rose 13 percent. Recent work models the cyclical features

of firms’ growth prospects in the spirit of Hamilton (1989) to capture these regime

shifts in investment. For example, Guo, Miao, and Morellec (2005) demonstrated that

business cycle expansion and contraction “regimes” potentially have sizable effects on

the profitability or riskiness of investment and, hence, on firms’ willingness to invest in

physical capital. However, this recent work ignores two important channels through

which business cycles affect investment decisions.

The first channel is due to the fact that the factor risk premia seem to be higher

at business cycle troughs than at peaks. This phenomenon has attracted the close

attention of economists. Bernanke and Kuttner (2005) highlight the importance of

the perceived riskiness of stocks in the relationship between monetary policy and the

stock market. Campbell and Cochrane (1999) pointed out that the risk premium for

stocks will rise only to the extent that people experience declines in income and wealth

that reduce their ability or willingness to absorb risk. This implies that investors

would require a higher rate of return (hurdle rate) on the investment project during

recessions than during expansions. The second channel is due to the fact that the

changes in risk premia over time can arise not only from regime-specific continuous

(random) changes in risky income, but also from regime (discrete) shifts. It is often
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assumed that regime-switching risk is diversifiable and, hence, can be ignored when

pricing primary and derivative assets. Several authors such as Naik (1993), Dai and

Singleton (2003), and Wu and Zeng (2006) have stressed that regime risk premia are

not only statistically significant, but also economically important for pricing purposes.

We therefore develop a valuation framework that incorporates both regime-dependent

risk premia and regime-switching risk premia and assess how their presence affects

investment decisions.

In order to capture the effects of discrete shifts on the valuation of assets and

contingent claims, researchers use either diffusion-jump [for example Merton (1976)]

or switching diffusion [for example Bollen (1998)] models.1 However, applications

of models with discrete shifts to real options are rare (see Schwartz and Trigeorgis

(2001) for classical papers and recent contributions). Therefore our aim is to value

irreversible investment opportunities under regime-switching. This extension is in the

spirit of the Markov-switching model of Hamilton (1989). We then use this model to

analyze the impact of the switching diffusion model on the valuation of investment

projects and real options. In particular, we analyse the effects through channels of

regime-switching risk premia and regime-dependent diffusion risk premia.

Related to our model of investment under uncertainty with regime shifts are Has-

sett and Metcalf (1999), Driffill, Raybaudi, and Sola (2003), Guo, Miao, and Morel-

lec (2005) and Elliott, Miao, and Yu (2009). Hassett and Metcalf (1999) introduced

regime shifts in investment tax credit policies within the classic single regime invest-

ment under uncertainty model of McDonald and Siegel (1986). Driffill, Raybaudi,

and Sola (2003) first developed a model to price real options under switching diffu-

sion processes. Guo, Miao, and Morellec (2005) provides a rigorous mathematical

derivation of the problem examined in Driffill, Raybaudi, and Sola (2003). Finally,

Elliott, Miao, and Yu (2009) consider regime shifts only in the cost of investment

1Naik (1993) integrates these two approaches.
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in the same spirit of Hassett and Metcalf (1999). But unlike Hassett and Metcalf

(1999) they model the investment cost as a hidden Markov chain. Our paper can be

considered as an extension to these approaches since none of these papers considers

either the effects of regime-switching risk premia or regime-dependent-diffusion risk

premia on investment opportunities.

We find that incorporating diffusion risk precipitates the expected time of the

investment in booms and postpones the expected time of investments in recessions.

We also find that when we incorporate the Markov-switching price of the risk in the

model, the expected time of the investment in both regimes is delayed.

The rest of the paper is organized as follows. In section 2 we develop a valuation

model of profits under a regime-switching diffusion processes. Section 3 applies this

regime-switching value model to price the option to invest. Section 4 reports and

discusses numerical results. Section 4 presents numerical results and investigates

their implications for the project valuation and optimal timing of investment decisions

across regimes. Section 5 concludes the paper.

2 The Model

We use a real options model of investment with regime shifts, along the lines of Driffill,

Raybaudi, and Sola (2003) and Guo, Miao, and Morellec (2005) with two differences:

(i) factor risk is regime-specific and (ii) regime switching is priced. Consider a firm

with an infinite-horizon investment project which generates a random net cash flow

(or earnings) stream of πt per unit time. The randomness in the model is not simply

governed by a diffusion process with constant drift and volatility but instead charac-

terized by an additional source of uncertainty that the dynamics of the state variable

shifts between different regimes at random times. In other words, the fundamen-

tal uncertainty in the economy is generated by a Brownian motion, {Wt}, defined
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on a probability space (Ω,F , P ) and also a marked point process, more precisely a

multi(two)-state Markov chain {st}. Time is continuous.

Dynamics of the state variables. The profit process π under the actual mea-

sure P is formally represented by a stochastic differential equation for which we specify

a regime-switching geometric Brownian motion process,2

dπt = µst
πtdt + σst

πtdWt. (1)

The drift and diffusion terms of this profit stream are characterized by state-dependent

drift µst
and diffusion σst

parameters. For the sake of tractability, it is assumed that

st is independent of Wt. As pointed out by Guo, Miao, and Morellec (2005), “while

πt is not a Markov process, (πt, st) is jointly Makovian if at any time t the state of st

is known.”

Regime-switching. The states (regimes) st of the world is modelled by a con-

tinuous time Markov chain. We suppose the firm operates in two economic regimes:

‘high µ - low σ’ and ‘low µ - high σ’, such that st is a two-state Markov chain alter-

nating between states 1 and 2.3 The state space of the chain s can be taken to be

the two unit vectors e1 = (1; 0)′ and e2 = (0, 1)′ in R2. Suppose the rate matrix of

the chain st is H = (hij); 1 ≤ i, j ≤ 2, where H is a Q−matrix and hij > 0 for i 6= j,

2A candidate representation of a business cycle in a continuous-time framework might be an

Ornstein-Uhlenbeck (OU) process. This adds a mean-reverting element to a standard Brownian

motion process. However, in an OU process, when the state variable exceeds its mean value, its

expected rate of growth is low, and when the state variable is less than its mean value, its rate of

growth is relatively high. An OU process is bound to combine high levels with low expected growth,

and vice versa. This restricts the way that it can represent booms and recessions.
3The two-regime Markov chain models are widely used in both macroeconomics and finance

literature as it captures the observed boom-recession cycle of the real world. The early applications

of these models include Bonomo and Garcia (1996) and Driffill and Sola (1998).
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h1j + h2j = 0 for j = 1, 2 so h11 < 0 and h22 < 0:

H =

[

h11 h12

h21 h22

]

=

[

−h1 h2

h1 −h2

]

. (2)

We will follow the Hidden Markov Model (HMM) approach4 and write the semi-

martingale representation of the Markov chain [see Chapter 12 of Elliot, Aggoun, and

Moore (1995)] as

st = s0 +

∫ t

0

Hsvdv + Nt, (3)

where N = {Nt,≥ 0} is an R2 valued Martingale process with respect to F s
t . By the

result shown in Appendix B of Elliot, Aggoun, and Moore (1995) the regime st has

the following dynamics

dst = Hstdt + dNt. (4)

Solving the above SDE derives the following expression for the expected value of

st

E[st] = eHts0, (5)

where E is the expectation operator taken conditional on the information available

at time t, i.e., E[.|Ft]
5 and

eHt =
1

c




h2 h2

h1 h1



 +
e−ct

c
H with c = h1 + h2. (6)

4Modelling Makov chains has been extensively studied in the literature of asset pricing under

regime shifting processes. For example, Elliot, Aggoun, and Moore (1995) consider a Hidden Markov

Model (HMM). Its applications to asset pricing can be found in Buffington and Elliott (2002) and

Elliott, Miao, and Yu (2009). Yin and Zhang (1998) considered a Conditional Markov Chain. Its

applications to the term structure can be found in Bielecki and Rutkowski (2004) and Dai and

Singleton (2003). Finally, Landen (2000) uses a Marked Point Process. Its applications can be

found in Wu and Zeng (2005) and Wu and Zeng (2006).
5Here the relevant information set is Fst

t .
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We can obtain the probability that a transition occurs from state ei (say i = 1)

to state ej (say j = 2) in a small time interval (t, t + dt) is equal to h1dt. Similarly,

1 − h1dt is the probability that the process remains in state ei.
6

Project valuation. Consider an investor who thinks about how much to save

and consume, and what portfolio of assets to hold. Suppose the investor can buy a

security whose price is V (πt, st) and that pays a dividend stream πt in state of the

world st. The most basic pricing equation that comes from the first-order condition

of that problem is the following fundamental pricing equation:

V (πt, st)u
′[ct(st)] = E

∫ ∞

τ=0

e−ρτu′[ct+τ (st+τ )]πt+τdτ, (7)

where u[c] is the instantaneous utility function of shareholders, ct(st) is the consump-

tion of the representative household at time t with economy in state s, and ρ is

their subjective discount rate. As in Cochrane (2005) we define the pricing kernel

(stochastic discount factor) as

M(st) ≡ e−ρtu′[ct(st)], (8)

and by substituting Eq. (8) into Eq. (7) we obtain the following expression:

0 = M(st)πtdt + E[d(M(st)V (πt, st))], (9)

= M(st)πtdt + E[V (πt, st)d(M(st)] + E[M(st)dV (πt, st)] + E[d(M(st)dV (πt, st)].

For this regime-switching diffusion setting, following the work of Dai and Singleton

(2003) the process {M(st)} can be written as follows:

dM(st) = − rfM(st)dt − λst
M(st)dZt − M(st)Γst

[dst − Hstdt], (10)

6Note that the probability qt
ij = P(st = ej |s0 = ei) at time t conditional on the initial state of

the chain s0 can be calculated as follows

qt
ij =







hj+hie
−ct

c
, i = j;

hj−hie
−ct

c
, i 6= j.
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where rf is the risk-free rate of return, λst
is the (regime-dependent) market price of

continuous risk (diffusion risk), Γst
is the market price of a shift from regime st = j

to regime i (i 6= j; i, j = 1, 2), and dZt is the increment of a standard Wiener process,

which is correlated with dWt with correlation coefficient ρst
(the correlation between

returns of the market portfolio and the cash flows of the project). Note that the

market price of staying in the same regime is taken to be zero. With this assumption,

as explained in Footnote 11 of Dai and Singleton (2003), the market prices of risk for

regime shifts cannot be determined freely. They are related in the following way:

(1 + Γi)(1 + Γj) = 1 for i 6= j

It is assumed that the current state of the economy is known.7

By substituting Eq. (10) into Eq. (9) and rearranging the resulting expression we

obtain the following expression [see Appendix A]:

rfV (πt, st)dt = πtdt + E[dV (πt, st)] + E

[
dM(st)dV (πt, st)

M(st)

]

. (11)

This equation intuitively states that the return on the asset at the risk-free rate is

equal to the flow of profits plus the expected capital gains on the asset, plus a risk

premium. The capital gain on the asset in each state of the world can be written

out as the sum of following three parts (the details of the derivation are provided in

Appendix A):

E[dV (πt, e1)] = µ1Vπ(πt, e1)πdt + 1

2
σ2

1Vππ(πt, e1)π
2dt + h1[V (πt, e2) − V (πt, e1)]dt,

E[dV (πt, e2)] = µ2Vπ(πt, e2)πdt + 1

2
σ2

2Vππ(πt, e2)π
2dt + h2[V (πt, e1) − V (πt, e2)]dt.

(12)

where Vπ and Vππ denote, respectively, the first and second partial derivatives of V

with respect to π.

Similarly conditional on st = ei the expression for E(dV dM
M

) is written as

E[dV (πt,e1)dM(e1)
M(e1)

] = −λ1ρ1σ1Vπ(πt, e1)πtdt − h1Γ1(V (πt, e1) − V (πt, e2))dt,

E[dV (πt,e2)dM(e2)
M(e2)

] = −λ2ρ2σ2Vπ(πt, e2)πtdt − h2Γ2(V (πt, e2) − V (πt, e1))dt.
(13)

7Veronesi (1999) and Cagetti, Hansen, Sargent, and Williams (2002) extend this specification to

unobservable states.
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By substituting equations (12) for dV , (10) for dM and (13) for E[dV dM ] in

Eq. (11) and rearranging the resulting expression, we obtain:

rfV1 = π + [µ1 − λ1ρ1σ1]V1ππ + 1
2
σ2

1V1πππ2 + h1(1 + Γ1)[V2 − V1],

rfV2 = π + [µ2 − λ2ρ2σ2]V2ππ + 1
2
σ2

2V2πππ2 + h2(1 + Γ2)[V1 − V2],
(14)

where Vi = V (πt, ei). As pointed out by Naik (1993) and followed by Dai and

Singleton (2003) in the presence of the price of regime switching risk premia the

elements of the rate matrix can be written under the risk-neutral measure Q such as

ĥi = hi(1 + Γi) for i = 1, 2.8

Proposition 1. (Project Valuation) The ‘fundamental’ value of the project in

each regime, which rules out speculative bubbles, can be obtained as

Vi = kiπ, i = e0 = 1 or i = e0 = 2, (15a)

where ki is given by

ki =
[

re
j + ĥi − µj

]/[ 2∏

i=1

(re
i + ĥi − µi) −

2∏

i=1

ĥi

]

for i 6= j, (15b)

where re
i = rf + λiρiσi.

Proof. In Appendix B.

In the above equation the expected rate of return, re
i , on the project is the sum

of the risk-free rate rf and the diffusion (factor) risk premium λiρiσi. The expected

return9 is written in this conventional way for ease of comparison. The expression

for k can be written in several alternative ways. It can be expressed in terms of

either the risk-free rate or the instantaneous expected rate of return r̂e
i = re

i + hiΓi:

ki =
[

rf + ĥi − µ̂j

]/[ 2∏

i=1

(rf
i + ĥi − µ̂i) −

2∏

i=1

ĥi

]

for i 6= j

8It must be noted that in Dai and Singleton (2003) h under Q is ĥi = hi(1−Γi) while Proposition

3 of Naik (1993) confirms our result, ĥi = hi(1 + Γi).
9See Shackleton and Wojakowski (2002) for an analysis of the expected return of real options.

9



ki =
[

r̂e + hi − µj

]/[ 2∏

i=1

(r̂e
i + hi − µi) −

2∏

i=1

ĥi

]

for i 6= j

where µ̂ = µi − λiρiσi which is the drift term of the profit process under Q.

Notice that when the two regimes st ∈ S are switched off [i.e., h1 = h2 = 0,

µ1 = µ2 and r̂e
1 = r̂e

2], Eqs. (15a) and (15b) collapse to the value of the project under

a single regime [see Dixit and Pindyck (1994) (Chapter 6)]:

V = π/[re − µ].

Notice that for the value of the project, V, to be bounded, the discount value, re,

should be greater than the drift, µ. The difference re − µ (usually denoted by δ)

represents a measure of dividends. The expression re − µ = δ can be thought as

an equilibrium relationship. If some of the parameters of the model change, the

equilibrium must be restored, but which of the three magnitudes adjusts depends on

the underlying technology and behavior.

Remark 1. In the regime-dependent model, the presence of regime-switching risk

(i.e., capital gains due to discrete shifts), implies that δi differ from r̂e
i − µi (as seen

from Eq. (15)) since rational investors take regime switches into account, and therefore

the dividend (or convenience) yield, ki, is determined by the transition probabilities

hj , the regime-dependent r̂e
j , and µj, j = 1, 2.

We perform a numerical analysis of the model, choosing the parameter values in

line with those used in Driffill, Raybaudi, and Sola (2003), Guo, Miao, and Morellec

(2005) and Dai and Singleton (2003) in order to evaluate the impact of allowing for

regime-switching price of the risk on ki. We do this assuming that expansions are

characterized by a high growth rate and low volatility of profits, whereas economic

recessions have a low growth rate and high volatility. The numerical results reported

in Table 1 conform with the results for asset prices at the aggregate level obtained by

Cecchetti, Lam, and Mark (1990) and Driffill and Sola (1998) when the required rate
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of return is not regime-specific and exclusive of the regime switching risk premium.

For the chosen values presented in Table 1, the single regime model generates k =

28.33.

Table 1: The Impact of Regime Switching on Valuation

λi ρi µi σi re hiΓi ki

Identical Diffusion Risk Premia (re
1 = re

2)

Regime 1 6.50 % 7.00 % 7.43 % 40.12

Regime 2 1.30 % 15.00 % 7.43 % 30.47

Regime Varying Diffusion Risk Premia (re
0 6= re

1)

Regime 1 0.60 0.30 6.50 % 7.00 % 6.26 % 52.37

Regime 2 0.30 0.80 1.30 % 15.00 % 8.60 % 35.05

Regime Switching Risk Premia (r̂e)

Regime 1 0.60 0.30 6.50 % 7.00 % 6.26 % 0.02 % 36.66

Regime 2 0.30 0.80 1.30 % 15.00 % 8.60 % -0.02 % 24.53

rf = 5%, h1 = 0.065, h2 = 0.090, Γ1 = 0.3800 and Γ2 = −0.2754

The numerical experiment of the model when the diffusion-risk premia are as-

sumed to be invariant across regimes indicates that the value of the project in the

two regimes can be substantially different: a multiplier of 30.47 in regime 2 (recession)

as opposed to 40.12 in regime 1 (boom). The expansion regime (with a high growth

rate and low volatility of profits) is associated with higher values of k (and hence

higher project values, V ). Similarly, recessions (low growth rate and high volatility

yield) are associated with lower values of k (and hence lower values of the project).

To relax the assumption that the discount rates are the same in the two states,

we choose values for λ and ρ consistent with the observation that the risk premium
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is higher during recessions than during expansions. We choose values for the market

price of the risk and for the coefficient of correlation (between the pricing kernel and

the project value), which are higher in regime 1 than in regime 2. Notice that having

λ and ρ as regime-specific parameters implies that the risk premia are also regime-

dependent. Adding regime specific diffusion risk to the model further increases the

divergence between the values of the project in each regime (since we discount more

the future profits in recessions than in booms).

Remark 2. Relaxing the identical diffusion risk premia assumption widely used

in the literature increases the difference between the value of the project in the two

regimes.

The assumption of regime-specific diffusion risk premia implies expected rates of

return on the projects of re
1 = 6.26% and re

2 = 8.60%, as opposed to the single rate of

return re = 7.43% associated with the assumption of identical diffusion risk premia.

Similarly, the difference between the regime convenience yields, k, increases. Under

this assumption, the boom regime k-value rises from the value 40.12 (obtained under

the identical diffusion risk premia assumption) to 52.37 in regime 1, and increases

from 30.47 to 35.05 in regime 2 (recession). These differences in re and k in turn

increase the difference between the value of the project in the two regimes. This

conforms to the finding of Abel and Blanchard (1986), who highlight the effects of

variations in the cost of capital on the present value series.

Finally, we analyze the effects of pricing the regime-switching risk on the project

valuation. We find the following.

Remark 3. Pricing the regime-switching risk decreases the dividend yield in both

states because the projects are discounted at a higher rate.

The last two rows of Table 1 summarize the effect of pricing regime-switching

on the dividend yield. We also report hiΓi which measures the risk premium in

12



regime i due to regime-switching. The required rates of return of the project increase,

as expected, by the extent of the regime-switching risk premium to approximately

r̂e
1 = 6.46% and r̂e

2 = 8.40%. Similarly, the project’s convenience yields decrease,

reflecting the rise in the expected rates of return.

Remark 4. An increase (in each state) in the price of the regime-switching risk

can be interpreted as an increase in the probability of switching to the recession state

(from a boom) and as a reduction in the probability of switching to the boom (from a

recession).

This symmetry can be easily seen in Eq. (14) in the text. Then, an increase in

the probability of switching to a recession and/or a decrease in the probability of

switching to a boom have the effect of reducing the value of the project.

3 Valuing the Option to Invest

In this section we consider regime switching and optimal investment timing in a real

option framework in the spirit of McDonald and Siegel (1986). We find the value of

the option to invest, F, and the critical profit stream, π∗, at which it is optimal to

pay a sunk cost, I, for a project, V . The investment opportunity is assumed to last

forever and therefore it is equivalent to a perpetual call option—the right but not the

obligation to buy a share of stock at a prespecified price.

Since the profit process follows the two-regime-switching process defined in Eq. (1),

there exists a different trigger threshold, π∗
i , for each regime i. That is, there are two

optimal critical values, π∗
1 and π∗

2 , with π∗
1 < π∗

2, (as in Hassett and Metcalf (1999),

Driffill, Raybaudi, and Sola (2003) and Guo, Miao, and Morellec (2005)) and thus

there are three relevant regions in the profit space: In region 1 (π ≤ π∗
1), there

is no investment regardless of the value of π until the profits stream reaches π∗
1,

where, provided that the economy is in state 1, investment takes place. In region 2
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(π∗
1 ≤ π ≤ π∗

2), there is investment if the economy is in regime 1, and in region 3

(π∗
1 < π∗

2 ≤ π) there is investment regardless of the state of the economy.10

The investment problem in each region is defined in Table 2, which shows the

equations that characterize the investment opportunities, F , across regions.

Table 2: Investment Problem in Each Region

In region 1: µ1πF1π + 1
2
σ2

1π
2
1F1ππ + ĥ1(F2 − F1) − rfF1 − ρ1λ1σ1πF1π = 0

(π ≤ π∗
1) µ2πF2π + 1

2
σ2

2π
2
2F2ππ + ĥ2(F1 − F2) − rfF2 − ρ2λ2σ2πF2π = 0

In region 2: F1 ≤ V1 − I

(π∗
1 ≤ π ≤ π∗

2) µ2πF2π + 1
2
σ2

2π
2
2F2ππ + ĥ2(F1 − F2) − rfF2 − ρ2λ2σ2πF2π = 0

In region 3: F1 ≤ V1 − I

(π∗
2 ≤ π) F2 ≤ V2 − I

where Fiπ and Fiππ denote, respectively, the first and second partial derivatives of F

with respect to π in state i. Fi = F (πt, ei) is the value of the function in state i, and

so on.

This system of equations can be solved subject to eight (boundary) conditions,

namely

(i) zero value conditions

Fi(0) = 0, i = 1, 2;

(ii) value matching conditions

Fi(π
∗
i ) = Vi(π

∗
i ) − I, i = 1, 2;

10Because of the corresponding investment action, the sets (0, π∗

1) and (π∗

2 ,∞) are often referred

as to the inaction region and the action region, respectively. The set [π∗

1 , π∗

2 ] is called transient

region (see Guo (2001)).
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(iii) smooth-pasting conditions11

F ′
i (π

∗
i ) = V ′

i (π
∗
i ), i = 1, 2;

(iv) continuity conditions12

lim
π↓π∗−

1

F2(π) = lim
π↑π∗+

1

F2(π),

lim
π↓π∗−

1

F ′
2(π) = lim

π↑π∗+

1

F ′
2(π).

Proposition 2. (Option Valuation) Solutions for F1 and F2 across regions are

given by the expressions reported in Table 3:

Proof. See Appendix C.

In Appendix C we show that the system of six equations in Table 3 can be solved

for six unknowns: π∗
1 , π∗

2, A1, A2, C1 and C2. The unknowns B1 and B2 are obtained

from a relationship between A′s and B′s (presented in Appendix C): B1 = l1A1 and

B2 = l2A2. The solution for the value of the option to invest in region 1, (0, π∗
1]

accounts for the possibility that the investor may invest in the other regime. In this

region the value of the option in each regime i has two components (see Appendix C)

associated with the negative roots of the polynomial in γ (see tables and Appendix

C). The value of the option F2 in the region [π∗
1, π

∗
2 ] reflects the fact that, if the

economy switches from regime 2 to 1, the firm immediately invests.

11Technically these conditions are meant to ensure that the slopes of the functions Fi and Vi − I

are equal at the investment thresholds π∗

1 and π∗

2 . Intuitively, they imply that the rate of returns to

the option and the project net of the investment cost are equal at the investment thresholds.
12They ensure the smoothness of the option value function at the boundary between the inaction

region and the transient region [see Driffill et al. (2003) and Guo, Miao, and Morellec (2005)].
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Table 3: Solution for Investment Problem in Each Region

In region 1: F1 =
∑2

i=1 Aiπ
γi

(π ≤ π∗
1) F2 =

∑2
i=1 Biπ

γi

In region 2: F1 ≤ k1π − I

(π∗
1 < π ≤ π∗

2) F2(π) = C1π
ζ1 + C2π

ζ2 − ĥ2I

(ĥ2+re

2)
+ ĥ2k1

(ĥ2+re

2)−µ2

π

In region 3: F1 ≤ k1π − I

(π∗
2 ≤ π) F2 ≤ k2π − I

where γ1 and γ2 are distinct real roots of the quadratic equations defined in

Eq. (C.4) in Appendix C; ζ1 and ζ2 are similarly distinct real roots of the quadratic

equation defined in Eq. (C.9) in Appendix C; A1, A2, π∗
1, π∗

2, C1, C2 are constants

to be determined by the model’s two value matching conditions, two smooth-

pasting conditions and two continuity conditions as described in Appendix C. B1

and B2 are determined as function of A1 and A2.

4 Sensitivity Analysis

In this section we conduct a sensitivity analysis of the impact of regime-dependent

market prices of diffusion risk and regime-switching risk on capital budgeting (invest-

ment) decisions. The baseline values for the key parameters are given in Table 1;the

sunk cost I takes a value of 50 in the baseline case. The threshold values of profits

required for entry, and values of the project at entry, are calculated numerically, and

listed in Table 4. Figure 1 plots the state dependent project and the option val-

ues as a function of the level of profit.13 Table 4 reports critical values of the profit

streams of the project, derived under the assumption of both regime-switching risk

13Figure 1 is generated for the model with regime-varying diffusion (factor) risk premia and priced

regime-switching risk premia.
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premia and regime-dependent market prices of diffusion risk. For comparison, we

also provide values for the single regime case. As seen from Figure 1, the investment

thresholds and project values in the expansion regime (i.e., regime 1) differ consid-

erably from those in the recession regime (i.e., regime 2). These results further vary

across the three models we consider, namely, (i) identical diffusion risk premia, (ii)

regime varying diffusion risk premia and (iii) regime-switching risk premia.

Under the assumption of identical diffusion risk premia, we find that the critical

profit level in regime 2 (recession) is 5.1 while the value in regime 1 (boom) is 2.65.

This result is due to the fact that the better market conditions associated with the

boom induce the firm to invest at a lower critical value in the boom than in the

recession regime. Notice that the critical value (and project value) in the single regime

model is not the average of the two regimes’ values. Consider the use of a single regime

diffusion process when the true underlying uncertainty is subject to Markov switches

in the mean and in the variance. The single regime model omits the changes in mean

and therefore would typically overestimate its variance. This miscalculation would

be exacerbated the greater the difference between the means of the two states. If

the drifts in the two regimes are very different, then the calculated variance (which

wrongly omits the changes in the mean) in the single regime diffusion process is likely

to be larger than the variance in either regime of the switching diffusion model. Since

the value of the option to invest depends strongly on the variance of the returns

to the investment, modelling data generated by a switching diffusion process as a

single regime diffusion process is likely to give highly misleading predictions about

the optimal timing of investment decisions. Notice that this effect on the single regime

model will be present regardless of the characterization of recession as the low and

high variance state.

Remark 5. Relaxing the assumption of identical diffusion risk premia increases

the critical profits level in the recessions and decreases it in the booms.
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Allowing the diffusion risk premia to vary across regimes (the risk is assumed to

be low in booms and high in recessions) further lowers the critical profit level in the

boom to 2.05 (from 2.65 in the case of identical diffusion risk premia) and increases

the critical value to 5.51 in the recession (from 5.11 under identical diffusion risk

premia). This result is due to the fact that profits are discounted more heavily

in a recession than in a boom. It is in line with empirical evidence that private

(investment) spending increases during expansions and drops during recessions.

4.1 Effects of Introducing Regime-Switching Risk Premia

Adding regime-switching risk premia to the discount rate increases the critical values

that trigger investment in both regimes. Table 5 reports the results from the sen-

sitivity analysis carried out for πi, ki, and Vi with respect to Γi. The results show

that the higher is the market price of the risk Γ1 (i.e., the higher the probability)

of switching from a boom to a recession, the greater is the critical value π∗
1. This is

expected since, if there is a higher prospect of switching to a recession (or making

a capital loss), the agents would only invest in a boom at a higher threshold. Also,

the higher is the market price of the risk (i.e., the lower the probability) of switching

from a recession to a boom, the higher is the critical value π∗
2. This reflects the fact

that the reduction in the possibility of making a capital gain when changing regimes

discourages investment.

Also, a high market price of the risk of switching from a boom regime to a recession

regime lowers the convenience yield k. This reflects the fact that future profits are

discounted at a higher rate. The reduction in k1 outweighs the rise in π∗
1 and thus

leads to a decrease in V1. Notice that when we incorporate Markov-switching premia,

the expected timing of the investment is postponed both in the booms and in the

recessions This is due to the fact that adding this extra component to the discount

factor modifies the critical thresholds but does not modify the driving process.
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Table 4: Thresholds and Project Values

Two Regime Model Single Regime Model

Identical Diffusion Risk Premia(re
1 = re

2)

Critical Value π∗ π∗
1 = 2.65 π∗

2 = 5.11 π∗ = 2.20

Project Value V (π∗) V (π∗
1) =106.27 V (π∗

2) =155.62 V (pi∗) =62.29

Regime Varying Diffusion Risk Premia (re
1 6= re

2)

Critical Value π∗ π∗
0 = 2.05 π∗

1 = 5.51 π∗ = 2.20

Project Value V (π∗) V (π∗
1) =107.56 V (π∗

2) =193.28 V (π∗) =62.29

Regime Switching Risk Premia (re + hiΓi)

Critical Value π∗ π∗
1 = 2.40 π∗

2 = 5.62 π∗ = 2.20

Project Value V (π∗) V (π∗
1) =88.00 V (π∗

2) =137.89 V (π∗) =62.29

Γ1 = 0.3800, Γ2 = −0.2754, I = 50 and the baseline values for the rest of the

parameters are given in Table 1.

4.2 Elasticity Analysis

We explore how changes in the parameters affect optimal investment decisions. Ta-

ble 6 reports the elasticities of the five key variables in each regime i = 1 (boom),2

(recession): namely, (i) the critical values of the profit (π∗
i ), (ii) the convenience yield

(ki), (iii) regime-switching risk premia (hiΓi), (iv) the project value (V (π∗
i )), and (v)

the value of the option (F (π∗
i )), with respect to the mean growth rate of the profit

process µi, its volatility σi, the market price of diffusion risk λi, the probability of

regime-switching hi and the market price of regime-switching risk Γi in each regime.

The first two rows of Table 6 show that all the five key variables (in each state),

except the critical value of profits, respond positively to increases in the expected

growth rate of profits in either state (µi, i = 1, 2). The reason for the negative

elasticity of the critical value of profits is that an increase in the drift parameter has
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two opposite effects: (i) it increases the value of the project and (ii) it increases

the value of the option to invest. The first effect dominates and thus a higher drift

results in a lower entry threshold. Also, a change in the drift parameter affects the

value of the option in two different ways: on the one hand, a change in profits affects

negatively the value of the option to invest (it is like an increase in dividends reducing

the value of a call), while on the other hand, since a change in the drift increases the

value of the project, it also increases the value of the option (it is like an increase

in the value of the underlying asset increasing the value of a call). In our numerical

analysis the second effect was dominant.

The next two (third and fourth) rows of Table 6 show the elasticities with respect

to λi (changes in λi correspond to changes in the discount rates). All the five key

variables ( in each state), except the critical level of profits, have a negative elasticity.

The reason for the positive elasticity of the critical value of profits is that an increase

in the discount rate has two opposite effects. As λi increases, the critical project-value

decreases (since an increase in λ implies that future profits are discounted at higher

rate) and also the value of the option to invest diminishes. The first effect dominates

so the critical profits are higher.

The fifth and sixth rows of Table 6 report the effects of changes in the variances

of the profit process (σi, i = 1, 2). The effects on the relevant critical thresholds are

complex since this parameter affects not only the driving process but also the discount

rate. If we observe the effect on the critical level of profits we see that the range of

inaction increases (a higher critical level to carry out the investment) in both cases

and in both states. Although this outcome is in line with results obtained in Driffill,

Raybaudi, and Sola (2003), the reasons for these results are quite different.

An increase in σ, ceteris paribus, increases the option price, reflecting the fact that

the greater is the risk, the greater is the option value. Nevertheless, this has the effect

of increasing the critical value of the profit threshold and reducing the critical value of
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the project evaluated at the critical profits (because it reduces the convenience yields

in both states). The overall effect on the value of the option would depend on all of

these forces. In particular, we find that only the rise in σ2 generates an increase in

the option value in regime 2 evaluated at the threshold. On the contrary, the rise in

σ1 leads to a fall in the option values in both regimes. Likewise, an increase in σ2 does

not raise the value of the option to invest in regime 1, evaluated at the threshold.

To understand the weight in the final result of the different channels, notice that

even though an increase in σi has the effect of reducing the convenience yields— that

is, the k-values (since the discount rate is a function of σi)— the final effect of an

increase in σ2 on V2(π
∗
2) and F2(π

∗
2) is positive. This is because the increase in the

critical level of profits, π∗
2 (induced by the direct effect of an increase in the option

value as a result of an increase in σ2), outweighs the fall in k2 and thus the value of the

project in state 2, V2(π
∗
2), increases. From this, it follows that F2(π

∗
2) also increases.

On the other hand, increasing the variance, σ1, reduces the critical value of the

project at entry in both states.—(this is due to the fact that the fall in ki outweighs

the increase in π∗
i ) Thus, the value of the option to invest (at the critical profit level)

is decreasing in the innovation variance in all cases.

We now allow for changes in the expected durations of booms and recessions,

i.e., changes in hi. They are shown in the seventh and eighth rows of Table 6. We

observe that increasing the probability of switching to a recession regime (h1) affects

negatively all the key variables, except the critical value of profits, and therefore

it postpones the expected timing of the investment. We obtain opposite effects by

increasing the probability of switching to a boom regime. Notice that these are the

aggregate effects of accounting for different means and variances and discount factors

associated with each regime. In particular, regime 1 has high drift and low variance

while regime 2 has lower mean and higher variance. The final result depends on all

of these forces.
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When we increase the probability of switching to a recession, the critical values

of the projects at the thresholds decrease as a result of the lower expected profits in

the recession state. Notice that when we observe the critical level of profits we see

that the inaction region increases in both states as a result of the higher variance of

the recession state. While the probability of switching to a boom increases, the value

of the project evaluated at the critical level increases as a result of the higher drift in

the boom.

Finally, we examine the effects of increases in Γ′s on the key variables. From the

seventh and eighth rows of Table 6 we observe that all the key variables except the

critical value of the profit have negative elasticities. Increasing Γ′s corresponds to

changing the probability of regime-switching.
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Table 5: Sensitivity Analysis

Small Γ1, Γ2 Large Γ1, Γ2

Γ1 = Γ2 Γ1 > Γ2 Γ1 < Γ2 Γ1 = Γ2 Γ1 > Γ2 Γ1 < Γ2

Regime-Switching Risk Premium

h1Γ1) 0.020 0.038 0.020 0.116 0.224 0.109

h2Γ2 0.020 0.020 0.035 0.116 0.116 0.132

π∗
1 2.21 2.40 2.14 2.68 2.96 0.72

π∗
2 5.42 5.43 5.33 5.02 5.06 0.55

k Value

k1 47.23 39.55 53.58 37.89 30.76 46.71

k2 34.82 29.98 41.00 34.39 28.29 43.14

Project Value

V (π∗
1) 104.47 95.08 114.57 101.55 91.06 33.46

V (π∗
2) 188.58 162.77 218.33 172.58 143.07 23.63

This table shows the value of the variable named in the left-hand entry of each row calculated under

different combinations of Γ1, Γ2 values given at the head of each column. The combinations are as

follows. The first three combinations are made under small values of Γ1, Γ2. The first case simply

sets Γ1 = Γ2. The second doubles the values of Γ1, keeping the value of Γ2 intact while the third

doubles the values of Γ2, keeping the value of Γ1 intact. The combinations under large values are

made by multiplying the benchmark values of Γ1, Γ2 by either 20 or 30: The first takes 20 times

the benchmark values of Γ1, Γ2; the second combines 30 times the benchmark value of Γ1 with 20

times the benchmark value of Γ2 while the last combines 20 times the benchmark value of Γ1 with

30 times the benchmark value of Γ2. The quantities whose sensitivities are shown are as follows:

π∗

1 = critical value of the profit level that triggers investment in regime 1 (expansion); π∗

2 = critical

value of the profit level that triggers investment in regime 2 (recession); k∗

1 = convenience yield in

regime 1; k∗

2 = convenience yield in regime 2; V (π∗

1) = the critical value of the project in regime 1;

and V (π∗

2) = the critical value of the project in regime 2.

This numerical analysis is based on the baseline values for all the parameters except I = 50 are

given in Table 1.
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Table 6: Elasticities of Variables with Respect to the Key Parameters

(Two-State Regime-Switching Model with Regime Switching Risk)

π∗
1 π∗

2 k1 k2 h1Γ1 h2Γ2 V (π∗
1) V (π∗

2) F (π∗
1) F (π∗

2)

µ1 -1.030 -0.077 1.175 0.759 1.669 1.115 0.133 0.682 0.335 1.148

µ2 -0.094 -0.056 0.126 0.182 0.286 0.192 0.031 0.125 0.080 0.211

ρ1λ1 0.202 0.015 -0.225 -0.145 -0.326 -0.219 -0.023 -0.130 -0.058 -0.219

ρ2λ2 0.226 0.360 -0.346 -0.500 -0.064 -0.043 -0.121 -0.142 -0.305 -0.239

σ1 0.211 0.016 -0.225 -0.145 -0.353 -0.237 -0.014 -0.130 -0.035 -0.218

σ2 0.310 0.712 -0.346 -0.500 0.750 0.503 -0.038 0.209 -0.095 0.351

Γ1 0.013 0.000 -0.021 -0.014 -0.016 -0.011 -0.009 -0.014 -0.022 -0.023

Γ2 0.007 0.002 -0.015 -0.022 -0.034 -0.023 -0.009 -0.020 -0.022 -0.033

h1 0.355 0.000 -0.592 -0.383 -0.437 -0.294 -0.240 -0.383 -0.606 -0.644

h2 -0.115 -0.040 0.262 0.378 0.582 0.390 0.146 0.338 0.371 0.569

This table shows the percentage change in the variable named at the head of each column caused by a unit percentage

change in the variable named in the left-hand entry of each row. The quantities whose responses are shown are as

follows: π∗

1 = critical value of the profit level that triggers investment in regime 1 (expansion); π∗

2 = critical value of

the profit level that triggers investment in regime 2 (recession); k∗

1 = convenience yield in regime 1; k∗

2 = convenience

yield in regime 2; h1Γ1 = regime-switching risk premium in regime 1; h2Γ2 = regime-switching risk premium in

regime 2; V (π∗

1) = the critical value of the project in regime 1; V (π∗

2) = the critical value of the project in regime 2;

F (π∗

1) = the value of the option to invest in regime 1; and F (π∗

2) = the value of the option to invest in regime 2.

This numerical analysis is based on the baseline values for all the parameters except I = 50 are given in Table 1.
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Figure 1: Firm Values and Option Values in Two Regimes



5 Conclusion

This paper has analysed investment decisions under uncertainty when the dynamics of

both the decision variable—growth rate and volatility parameter—and the stochastic

discount factor—price of factor risk and price of regime switching risk— shift between

states at random times. We derive closed form investment policies for the manager

which maximize the value of the project. As in Guo, Miao, and Morellec (2005) the

value-maximizing investment policy is such that in each regime the firm’s investment

policy is optimal, conditional on the optimal investment policy in the other regimes.

Because of the possibility of a regime shift, the option to invest in each regime reflects

the possibility for the firm to invest in the other regime. The comparative statics

revealed significant valuation effects, and altered the timing of exercise of the options.

We find that incorporating regime-dependent diffusion risk precipitates the expected

time of the investment in booms and postpones the expected time of investments

in recessions. This nature of our model reinforces the finding of Guo, Miao, and

Morellec (2005) that “investment is lumpy following a shift from the regime with

the highest investment curve to the regime with the lowest one.” Allowing for the

Markov-switching price of the risk on the other hand has the effect of postponing the

expected time of the investment in both regimes. This is due to the fact that adding

this extra component to the discount factor modifies the critical thresholds but does

not modify the driving process. This strikes a clear distinction from the recent papers

on regime switching real options.

Some possible extensions of the framework would be: Firstly, the model can be

generalized to more than two states, secondly, the model can be extended to a general

equilibrium model of investment under uncertainty, thirdly, the model can be used to

estimate as well as to calibrate the observed factor and regime-switching risk premia.

These might be directions for future research.
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Appendix: Derivations and Proofs for Propo-
sitions

Appendix A. Derivation of Equations (8) and (9)

Project valuation.

Following Cochrane (2005) the no-arbitrage risky project valuation equation can

be written as

0 = M(st)πtdt + E[d(M(st)V (πt, st))]. (A.1)

We apply Ito’s lemma to break up the last term d(M(st)V (πt, st)):

d(M(st)V (πt, st)) = V (πt, st)dM(st)+M(st)dV (πt, st)+dM(st)dV (πt, st). (A.2)

For this regime-switching diffusion setting, following the work of Dai and Singleton

(2003) the process {M(st)} can be written as follows:

dM(st) = − rfM(st)dt − λst
M(st)dZt − M(st)Γst

dNt (A.3)

where rf is the risk-free rate of return, λst
is the (regime-dependent) market price of

continuous risk (diffusion risk), Γst
is the market price of a shift from regime st = j

to regime i (i 6= j; i, j = 1, 2), and dZt is the increment of a standard Wiener process,

which is correlated with dWt with correlation coefficient ρst
(the correlation between

returns of the market portfolio and the cash flows of the project).

By substituting Eq. (A.3) for dM in Eq. (A.1) we obtain the following expression:

rfV (πt, st)dt = πtdt + E[dV (πt, st)] + E

[
dM(st)dV (πt, st)

M(st)

]

. (A.4)

To obtain the final result presented in the text we need to derive an expression

for E[dV (πt, st)] and E[dM(st)dV (πt,st)
M(st)

].
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i) Derivation of EdV (πt, st).

Let Vi = V (πt, ei) for i = 1, 2 and V (πt, st) = 〈~V , st〉 where ~V = (V1, V2) is a 2× 1

row vector consisting of elements V1, V2. Here 〈., .〉 is the inner product operator used

in the following way: If x, y are (column) vectors in RN we write 〈x, y〉 = x′y for their

scalar (inner) product. When x is a matrix and y is a (column) vector, we write we

write 〈x, y〉 = diag(xy) denotes the diagonal matrix with vector xy on its diagonal.

Then using Ito’s Lemma to cases with regime shifts along the lines of Elliot,

Aggoun, and Moore (1995) we can express the change in the project value as to

dV = dV (πt, st) as in Elliott, Miao, and Yu (2007):

dV = 〈d~V , s〉 + 〈~V , ds〉

= Vπ(πt, st)dπ + 1
2
Vππ(πt, st)(dπ)2 + 〈~V , Hstdt〉 + 〈~V , dN〉,

=
(
µst

Vπ(πt, st)π + 1
2
σ2

st
Vππ(πt, st)π

2
)
dt + σst

Vπ(πt, st)πdWt
︸ ︷︷ ︸

due to diffusion

+

+ 〈~V , Hstdt〉 + 〈~V , dN〉
︸ ︷︷ ︸

due to discrete shifts

(A.5)

where the subscripts π and ππ denote, respectively, the first and second partial deriva-

tives of variable V with respect to π.

Notice that we can express 〈~V , Hstdt〉 = (h1[V2 − V1]dt, h2[V1 − V2]dt)′ and, using

the fact that dN = (dN1, dN2) and that dN1 = −dN2, we can write 〈~V , dN〉 =

[V1 − V2]dN1.

This gives the following two equations when st = e1 or st = e2,

dV1 =
(
µ1V1ππ + 1

2
σ2

1V1πππ2 + h1[V2 − V1]
)
dt + σ1t

V1ππdW + [V1 − V2]dN1

dV2 =
(
µ2V2ππ + 1

2
σ2

2V2πππ2 + h2[V1 − V2]
)
dt + σ2t

V2ππdW + [V2 − V1]dN2

By taking expectations we obtain

E(dV1) =
(
µ1V1ππ + 1

2
σ2

1V1πππ2 + h1[V2 − V1]
)
dt,

E(dV2) =
(
µ2V2ππ + 1

2
σ2

2V2πππ2 + h2[V1 − V2]
)
dt.
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ii) Derivation of E(dM(st)dV (πt,st)
M(st)

).

To arrive to the final solution of this expression we start by deriving, for each

regime an expression of the product of the product of dM(st)dV (πt, st).

dM(e1)dV1 = −λ1ρσ1t
M(e1)V1ππdt − M(e1)Γ1[V1 − V2]dN2

1

dM(e2)dV2 = −λ2ρσ2t
M(e2)V2ππdt − M(e2)Γ2[V2 − V1]dN2

2

(A.6)

Notice that E (dWtdZt) = ρdt that an expression (dN)2 can be obtained using the

results presented in Lemma 1.3 in Appendix B of Elliot, Aggoun, and Moore (1995):

(dN)2 = diag(Hst)dt − diag(st)H
′dt − H diag(st)dt.

where diag(x) denotes the diagonal matrix with vector x on its diagonal. This

expression simplifies to (dN)2 = diag((h1dt, h2dt)′).

Substituting this result in Eq. (A.6) yields:

E(dM(e1)dV1

M(e1)
) = −λ1ρσ1V1ππdt − Γ1h1[V1 − V2]dt,

E(dM(e2)dV2

M(e2)
) = −λ1ρσ1V1ππdt − Γ2h2[V2 − V1]dt.

(A.7)

By substituting this expression in

rfV (πt, st)dt = πtdt + EdV (πt, st) + E
dM(st)dV (πt, st)

M(st)
. (A.8)

gives us

rfV1 = π + (µ1 − λ1ρσ1)V1ππ + 1
2
σ2

1V1πππ2 + h1(1 + Γ1)[V2 − V1]

rfV2 = π + (µ2 − λ2ρσ2)V2ππ + 1
2
σ2

2V2πππ2 + h2(1 + Γ2)[V1 − V2]
(A.9)

which is Eq. (14) in the main text.
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Appendix B. Proof of Proposition 1

We rewrite the second-order differential equations to be solved conditional on st = e:

π + [µst
− λst

ρst
σst

]Vππ +
1

2
σ2

st
Vπππ

2 + 〈V, Hst〉 − rfV − Γst
〈V, Hst〉 = 0. (B.1)

Writing explicitly the above equation yields:

π + [µ1 − λ1ρ1σ1]V1ππ + 1
2
σ2

1V1πππ2 + h1(1 − Γ1)(V2 − V1) − rfV1 = 0,

π + [µ2 − λ2ρ2σ2]V2ππ + 1
2
σ2

2V2πππ2 + h2(1 − Γ2)(V1 − V2) − rfV2 = 0,

where V1 = V (πt, e1) and V2 = V (πt, e2). The general solutions to these equations

consist of two parts: (i) the solution to the characteristic function and (ii) the partic-

ular integral. The solutions to the characteristic function are identified with bubbles

in the asset price and have to be equal to zero if the asset price is to equal the present

value of future returns. The particular integrals, which equal the present value of

future returns, are

Vst
= kst

π, (B.2)

where kst
is either k1 when e1 or k2 when e2, which are constants to be determined.

By defining re
i = rf + λiρiσi and substituting (B.2) together with its first and second

derivatives with respect to π into (B.1), we obtain a pair of equations

re
1k1 = 1 + k1µ1 + ĥ1(k2 − k1),

re
2k2 = 1 + k2µ2 + ĥ2(k1 − k2),

(B.3)

which can be solved for k1 and k2:

k1 = [re
2 + ĥ1 + ĥ2 − µ2]/Ω,

k2 = [re
1 + ĥ1 + ĥ2 − µ1]/Ω,

where Ω = (re
1 + ĥ1 − µ1)(r

e
2 + ĥ2 − µ2) − ĥ1ĥ2. These equations may be written in a

compact form as in Eq. (15b) in the main text.
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Appendix C. Proof of Proposition 2

As noted in the text, there are three investment regions of interest. These regions are

determined by the critical trigger levels corresponding to the two regimes, π∗
1 and π∗

2.

C.1 Investment Problem in (Common Inaction) Region 1

Consider Region 1 where π ≤ π∗
1 . In this region, no investment is made regardless of

the level of profits. The value of the option to invest, F (πt, st), can be obtained from

the basic asset pricing expression

E[d(M(st)F (πt, st))] = 0. (C.1)

which is isomorphic with equation (A.1) with the profit stream set to zero, and F (.)

replaces V (.). Consequently the solution for (C.1) mirrors that for (A.1). The result

is identical to equation (A.9), except that the first term on the right-hand side of

(A.9) (π) does not appear, and we have:

µ1F1ππ + 1
2
σ2

1F1πππ2 + h1(1 − Γ1)(F2 − F1) − rfF1 − ρ1λ1σ1πF1 = 0,

µ2F2ππ + 1
2
σ2

2F2πππ2 + h2(1 − Γ2)(F1 − F2) − rfF2 − ρ2λ2σ2πF2 = 0,
(C.2)

where Fπ and Fππ denote, respectively, the first and second partial derivatives of F

with respect to π while the subscripts 1 and 2 denote the partial derivatives taken in

regimes 1 and 2, respectively.

C.2 Solution for Investment Problem in Region 1

Assuming that F1 and F2 are linearly independent, the trial solutions of Eq. (C.2)

take the following two equations when st = e1 or st = e2,

F1 = Aπγ
1 ,

F2 = Bπγ
2 ,

(C.3)
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where A and B are constants to be determined. Substituting these solutions into

Eq. (C.2) and matching coefficients yields the following expressions:

[
re
1 + ĥ1 − µ1γ − 1

2
σ2

1γ(γ − 1)
]
A = h1B,

[
re
2 + ĥ2 − µ2γ − 1

2
σ2

2γ(γ − 1)
]
B = h2A,

(C.4)

where ĥi = hi(1 − Γi). We can eliminate A and B from these two equations and

obtain a fourth order polynomial in γ, thus:

[
re
1 + ĥ1 − µ1γ −

1

2
σ2

1γ(γ − 1)
][

re
2 + ĥ2 − µ2γ −

1

2
σ2

2γ(γ − 1)
]

= h1h2

This equation has four distinct roots, with γ3 < γ4 < 0 and 1 < γ1 < γ2. The

general solution to (C.2) is:

F1 =
∑4

i=1 Aiπ
γi ,

F2 =
∑4

i=1 Biπ
γi .

However, since Fi(0) = 0 can only be satisfied if A3 = A4 = B3 = B4 = 0, the solution

reduces to:

F1 =
∑2

i=1 Aiπ
γi ,

F2 =
∑2

i=1 Biπ
γi .

C.3 Investment Problem in Region 2

In Region 2, the firm only invests if π > π∗
1 . The basic asset pricing used above

is modified slightly to account for the investment taking place if the economy is in

regime 1:

F1 ≤ V1 − I,

µ1π1F2π + 1
2
σ2

1π
2
2F2ππ + h̃2(F1 − F2) − rfF2 − ρ2λ2σ2π2F2π = 0.

(C.5)

Substituting and simplifying yields

µ2π2F2π + 1
2
σ2

2π
2
2F2ππ + ĥ2(V1 − I − F2) − rfF2 − ρ2λ2σ2π2F2π = 0. (C.6)
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Given that V1(π) = k1π, we rewrite Eq. (C.6) as

µ2π2F2π + 1
2
σ2

2π
2
2F2ππ − ĥ2F2 − rfF2 − ρ2λ2σ2π2F2π = ĥ2(I − k1π). (C.7)

The trial solution to the corresponding homogenous part of Eq. (C.7) takes the form

F c
2 (π) = Cπζ , (C.8)

where the ζ ′s satisfy the following quadratic equation

µ2ζ +
σ2

2

2
ζ (ζ − 1) − (ĥ2 + re

2) = 0. (C.9)

With the real and unequal roots of the quadratic equation of (C.9) the general solution

of the homogenous part of (C.7) is

F c
2 (π) = C1π

ζ1 + C2π
ζ2, (C.10)

where ζ1 < 0 and ζ2 > 1.

Using the method of undetermined coefficients, one can show that the forcing term

ĥ2(I − k1π) of the non-homogeneous equation (C.7) takes the following particular

solution

F nc
2 (π) = C3π + C4. (C.11)

By summing up the two solutions F c and F nc, we obtain the general solution to (C.7)

as

F2 = C1π
ζ1 + C2π

ζ2 + C3π + C4.

To determine C3 and C4 in the particular solution, we differentiate the candidate

solution Eq. (C.10) and plug it into Eq. (C.7) to obtain

µ2C3π −
(

ĥ2 + re
2

)

(C3π + C4) = ĥ2I − ĥ2k1π.
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Applying the constant coefficients technique gives us

µ2C3 −
(

ĥ2 + re
2

)

C3π = −ĥ2k1,

−
(

ĥ2 + re
2

)

C4 = ĥ2I.

The solutions of these equations are

C3 =
ĥ2k1

(

ĥ2 + re
2

)

− µ2

,

C4 = −
ĥ2I

(

ĥ2 + re
2

) .

Therefore we finally obtain the solution for F2 :

F2(π) = C1π
ζ1 + C2π

ζ2 −
ĥ2I

(

ĥ2 + re
2

) +
ĥ2k1

(

ĥ2 + re
2

)

− µ2

π.

C.4 Investment Problem in Region 3

Finally, in Region 3, investment is made. The value functions are given by

F1 ≤ V1 − I,

F2 ≤ V2 − I.
(C.12)

C.5 Solution of the Constants and Critical Triggers

In order to solve the above equations for the constants Ai, Bi, Ci (i = 1, 2) and critical

triggers π∗
i (i = 1, 2) we utilize the fact that the value of investment opportunity

Fi (i, = 1, 2) must also satisfy the following boundary conditions:

(i) the value-matching conditions

Fi(π
∗
i ) = Vi(π

∗
i ) − I, i = 1, 2
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(ii) the smooth-pasting conditions

F ′
i (π

∗
i ) = V ′

i (π
∗), i = 1, 2

(iii) the continuity value-matching condition

lim
π↓π∗

1

F2(π) = lim
π↑π∗

1

F2(π),

(iv) and the continuity smooth-pasting condition

lim
π↓π∗

1

F ′
2(π) = lim

π↑π∗

1

F ′
2(π).

More precisely, we have from the value-matching conditions

A1π
∗γ1

1 + A2π
∗γ2

1 = k1π
∗
1 − I, (C.13a)

−
ĥ2I

(

ĥ2 + re
2

) +
h̃2k1

(

ĥ2 + re
2

)

− µ2

π∗
2 + C1π

∗ζ1
2 + C2π

∗ζ2
2 = k2π

∗
2 − I, (C.13b)

from the smooth-pasting conditions

γ1A1π
∗(γ1−1)
1 + γ2A2π

∗(γ2−1)
1 = k1, (C.13c)

ĥ2k1
(

ĥ2 + re
2

)

− µ2

+ ζ1C1π
∗(ζ1−1)
2 + ζ2C2π

∗(ζ2−1)
2 = k1, (C.13d)

and from continuity value-matching and smooth-pasting conditions

B1π
∗γ1

1 + B2π
∗γ2

1 = −
ĥ2I

(

ĥ2 + re
2

) +
ĥ2k1

(

ĥ2 + re
2

)

− µ2

π∗
1 + C1π

∗ζ1
1 + C2π

∗ζ2
1 , (C.13e)

γ1B1π
∗(γ1−1)
1 +γ2B2π

∗(γ2−1)
1 =

ĥ2k1
(

ĥ2 + re
2

)

− µ2

+ζ1C1π
∗(ζ1−1)
1 +ζ2C2π

∗(ζ2−1)
1 . (C.13f)
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This is a system of 6 equations (C.13a)–(C.13d) in 8 unknowns (π∗
1, π

∗
2, A1, A2, B1, B2,

C1, C2). To eliminate (B1, B2) we use Eq. (C.4) as follows:

G0(γ1)A1 = h2(1 − Γ2)B1, (C.14a)

G0(γ2)A2 = h1(1 − Γ1)B2, (C.14b)

G1(γ1)B1 = h2(1 − Γ2)A1, (C.14c)

G1(γ2)B2 = h2(1 − Γ2)A2, (C.14d)

where

Gi(γj) =
[
re
i + hi(1 − Γj) − µiγj −

1

2
σ2

i γj(γj − 1)
]
, i = 1, 2, j = 1, 2.

Solving the above four equations (C.14a)-(C.14d) for B1 and B2 yields

B1 = l1A1, ; B2 = l2A2, (C.15a)

where l1 = G0(γ1)
h1(1−Γ1)

= h2(1−Γ2)
G1(γ1)

and l2 = G0(γ2)
h1(1−Γ1)

= h2(1−Γ2)
G1(γ2)

.

From Eqs. (C.13a) and (C.13c) we obtain expressions for A1 and A2:

A1 =
(γ2 − 1)k1π

∗
1 − γ2I

(γ2 − γ1)(π∗
1)

γ1
; A2 =

(γ1 − 1)k1π
∗
1 − γ1I

(γ1 − γ2)(π∗
1)

γ2
.

Similarly, Eqs. (C.13b) and (C.13d) yield expressions for C1 and C2:

C1 =

ζ2
re

2I

[ĥ2+re

2
]
+ (1 − ζ2)

[

ĥ2

(ĥ2+re

2)−µ2

k1 − k2 −
ζ2

(1−ζ2)
I

]

π2

(π∗
2)

ζ1(ζ2 − ζ1)
,

C2 =

ζ1
re

2I

[ĥ2+re

2
]
+ (1 − ζ1)

[

ĥ2

(ĥ2+re

2)−µ2

k1 − k2 −
ζ1

(1−ζ1)
I

]

π2

(π∗
2)

ζ1(ζ1 − ζ2)
.
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