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A B S T R A C T

In this work two one-dimensional (1D) models are used to approximate the catalytic behavior of three-dimen-
sional (3D) shaped pellets. One of the 1D models employs a single parameter and is identified as Generalized
Cylinder (1D-GC), while the second model, named Variable Diffusivity model (1D-VD), makes use of three
parameters. Both models have been introduced in previous contributions and their performances were suc-
cessfully tested for single catalytic reactions. A conventional system of two first order reactions in series and the
process of selective hydrogenation of butadiene in the presence of 1-butene that shows strong inhibition effects
are considered. The pellet shapes for which the largest errors were detected when using the 1D models in the
cases of a single reaction were selected for this study. It was found that the use of the 1D-GC model leads to
errors in the estimation of the effective reaction rate of up to around 7% for the first-order series-reaction system
and up to 20% for the hydrogenation selective process. In contrast, the 1D-VD model can be used with a
maximum error of the order of 1% for the first-order series-reaction system and about 4% for the selective
hydrogenation system.

1. Introduction

The reaction–diffusion equations inside non-spherical catalytic
pellets should be expressed in two (2D) or, in general, three (3D) spatial
dimensions. An analytical solution will be possible only for linear ki-
netic and flux models and for isothermal conditions. It follows that most
frequently a numerical solution will be needed for solving the con-
servation equations. This task is computationally accessible for a lim-
ited number of operating conditions. However, if the optimization of a
reactor is to be addressed, and in particular when dealing with systems
involving a set of reactions, it is evident that the demand for compu-
tation time will grow significantly, since the calculations must be re-
peated in the order of thousands of times. Therefore, it is highly de-
sirable to avoid numerical calculations involving 2 or 3 spatial
dimensions.

Aris [2] presented a simple approach to reduce 2D or 3D problems
to a one-dimensional (1D) problem. It is based on the fact that at high
enough values of the Thiele modulus (ϕ), the effectiveness factor for a
single reaction does not depend on the shape of the catalytic pellet, but
only on the ratio of the volume to its external surface (ℓ=Vp/Sp). In
order to carry out approximate evaluations of low and intermediate

values of ϕ, a simple geometry (e.g., a slab) having the same value of ℓ
as the actual pellet can be adopted. The expected precision using this
approximation is of the order of 20% for a single reaction and with
relatively simple kinetic expressions.

Datta and Leung [5] proposed a more convenient 1D model, called
the generalized cylinder (1D-GC), in which diffusion proceeds along a
single direction z of a hypothetical catalytic body with a cross-section
variable according to zσ. The definition of the parameter σ (called the
shape factor) was extensively discussed and systematized by Mariani
et al. [10,11,12,13], who showed the aptitude of the 1D-GC to ap-
proximate accurately the effective reaction rates for single reactions
with simple kinetic expressions.

However, it was found that the 1D-GC model may lead to significant
errors for some pellet shapes when the relationships between the geo-
metric dimensions reach critical values [16] or when the reaction is
accelerated inside the catalyst, either by thermal or inhibition effects
[14]. In order to recover a high level of precision, a new three-para-
meter one-dimensional model, called variable diffusivity model (1D-
VD), was proposed. The three parameters are evaluated by satisfying
simultaneously the behavior of the actual pellet at high and low reac-
tion rates. The 1D-VD model guarantees an accuracy better than 2%
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when used for isothermal first-order kinetics and a wide set of catalytic
pellet shapes and their geometric relationships [16]. On the other hand,
Mariani et al. [14] analyzed the effect of kinetic expressions on the
accuracy of 1D models, extending the analysis to the limit where
multiple stationary states arise. It turned out that when the 1D-GC
model is used, errors can grow up to 40%, while the 1D-VD model al-
lows keeping the maximum deviations below 10%, for the most critical
cases.

Some other contributions have also addressed the problem of dif-
fusion and a single reaction in 2D or 3D pellet shapes by using a 1D
approximation, as those of Miller and Lee [15], Burghardt and Ku-
baczka [4], Wijngaarden et al. [23], Papadias et al. [18], Buffham [3]
and Lopes et al. [9]. As discussed in our previous works [7,8,10–14],
those contributions do not present general criterions to fix the para-
meters of the 1D model to the actual shape of the catalyst or are de-
voted to specific cases as for thin catalytic coatings [9] or 2D shapes
[18]. The recent presentation of Schweitzer et al. [21] also deals with
2D shapes, as arise from long multi-lobe cylinders.

The summarized findings provide a solid basis for asserting that 1D-
models (in particular, the 1D-VD model) allow for a suitable re-
presentation of the behavior of single reactions taking place in actual
3D catalytic pellets. However, it is very common in industrial processes
to find multiple reaction systems [17]. Some authors tested 1D ap-
proximations to a case study of multiple reactions. For example, Piña
et al. [20] and more recently Piña and Borio [19] studied the steam
reforming process considering the three main catalytic reactions on a
seven-holed pellet with convex ends (Haldor Topsoe R-67-7H). The
actual geometry was replaced by an equivalent 1D geometry defined as
an infinite hollow cylinder with the inner radius equals to that of the
actual holes and an external radius defined to match the same value of ℓ
as the actual pellet. Dixon and Cresswell [6] tried an equivalent slab, an
infinite cylinder and a sphere to simulate the behavior of a finite hollow
(Raschig ring) and a solid cylinders for a given consecutive-parallel
reaction scheme. It was concluded that the equivalent infinite cylinder
allows reaching the more accurate estimations of the effectiveness
factors. The works summarized above exemplify that previous con-
tributions deal with specific cases of pellet shapes and reaction systems,

and the 1D approximation was chosen to fit such cases, but without
trying to systematize a general procedure to reduce the dimensionality.

The objective of this work is to carry out an exhaustive analysis of
the behavior of the 1D-GC and 1D-VD models for two selected cases: a
system of first-order series reactions and the selective hydrogenation
process of butadiene in the presence of 1-butene, in both cases under
isothermal conditions, for a representative set of pellet shapes com-
mercially employed. These examples were chosen because they lead to
the existence of maximums in the rate of some of the reactions, inside
the catalytic pellet. This poses a challenging feature for the 1D ap-
proximations, since the relevant maximum reaction rate cannot be
identified beforehand and its magnitude and location will depend on
properly predicting the evolution of the composition inside the pellet.

2. 1D models and pellet shapes

The mass conservation equations for the diffusion-reaction problem
in a pellet of any shape, assuming steady state conditions, uniform
catalytic activity and fluxes described by the Fick law with uniform
effective diffusivity can be written according to Eqs. (1).

L = πD (C ) ℓ , in Vpk k
2

k (1a)

=C C , on Sk k,S p (1b)

where L is the Laplace operator with dimensionless coordinates
(xi= ′xi/ℓ), Ck is the molar concentration of species k and Ck,S the
uniform value on Sp. The consumption rate πk is related to the reaction
rates rj as πk=∑ = ν rj 1

R
jk j, where νjk are the stoichiometric coefficients.

The effective reaction and consumption rates are defined as

∫=r 1
V

r dVj
eff

p V j
P (2a)

∑=
=

π ν rk
eff

j 1

R

jk j
eff

(2b)

The 1D-GC model is based on catalytic body with variable cross-
section S(z)= Sp zσ, where the dimensional coordinate z= z′/L defines

Nomenclature

1-BE 1-butene
a, b, c geometric parameters from pellets in Table 1 [m]
b∗ dimensionless pellet height [–]
BA n-butane
BD 1,3-butadiene
BY 1-butyne
Ck molar concentration of species k [mol m−3]
D effective diffusivity of the limiting reactant [m2 s−1]
Dk effective diffusivity of the species k [m2 s−1]
i(z) coefficient for the effective diffusivity in the 1D-VD model,

defined in Eq. (6) [–]
H pellet height [m]
kcj specific kinetic coefficient of the reaction j, Eqs. (8a) and

(8b) [s−1]
kj specific kinetic coefficient of the reaction j, Eqs. (11a) and

(11b) [mol m−3 s−1]
Kk equilibrium adsorption constant of the species k [–]
ℓ VP/SP; characteristic length of the pellet [m]
L diffusion length for 1D models [m]
rj rate of the reaction j [mol m−3 s−1]
rref reference rate of reaction defined in Eq. (13c)
Sp external surface area of the pellet accessible to reactants

[m2]
Vp pellet volume [m3]

yk mole fraction of the species k [–]
z′ spatial coordinate for 1D models [–]
z dimensionless coordinate for the 1D models, z′/L [–]

Greek Letters

ε1, ε2 relative errors in the predictions of effective reaction rates
defined in Eqs. (13a) and (13b), respectively

δj,GC relative difference in the predictions from the 1D-GCγ and
1D-GCΓ models for the reaction j, defined in Eqs. (18a)
and (18b) [–]

πk consumption/generation rate of the species k [mol m−3

s−1]
ϕj Thiele modulus for the reaction j [–]
γ, Γ, β geometric parameters of the actual pellet [–]
σ shape factor; parameter of the 1D-GC model, defined in

Eqs. (4) and (5) for the 1D-GCγ and 1D-GCΓ alternatives,
respectively [–]

ψ1, ψ2, α parameters of the 1D-VD model in Eq. (6) [–]

Superscripts and Subscripts

s value at the pellet surface (SP)
eff effective value
max maximum value
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the direction of the mass (and eventually heat) fluxes, between z= 1
(the external surface) and z=0 (the apex of the body). The geometric
parameter of the model is the exponent σ, while the diffusion length L
can be written in terms of Vp as L Sp/(1+ σ)=Vp. The values of Vp and
Sp are taken to be the same as those of the actual pellet. In this way, the
model keeps the value of the characteristic length ℓ, and L can be re-
written as L= ℓ(σ+1). For the 1D-GC model the conservation equa-
tions become:

⎛
⎝

⎞
⎠

= +−D z d
dz

z dC
dz

(1 σ) ℓ πk
σ σ k 2 2

k (3a)

= =dC /dz 0, at z 0k (3b)

= =C C , at z 1k k,S (3c)

When σ=0, 1, 2 the model reduces to a slab, an infinitely long circular
cylinder and a sphere, respectively. For using the 1D-GC model to ap-
proximate the behavior of a given 3D pellet shape, the target is that the
effective reaction rates, as defined in Eq. (2a), can be evaluated by the
model as closely as possible as the actual values in the 3D pellet. To this
end, the value of the model parameter σ ·should be chosen according to
a certain geometrical criterion. The “geometrical” restriction is highly
desirable, in practice, to associate σ to the geometry of the actual 3D
pellet, irrespective of kinetic expressions and operating conditions.

Two basic criterions were used and tested in previous contributions
for single reactions [7,8,10–14,16].

One of them is based on expanding the ratio (reff/rS) (rS is the re-
action rate at the external surface conditions) in powers of the square of
the Thiele modulus, ϕ2= ℓ2rS/(DCS) for a given pellet shape, as ori-
ginally proposed by Mariani et al. [11]. The zero-order term of the
series is 1 and the second and third terms are proportional to factors γ
and β that depend strictly on the shape of the pellet [11]. The values of
γ and β are evaluated from the solution of a Poisson equation on the
pellet volume. By noting that ϕ2 will be the same for 1D-GC model and
for the actual 3D pellet, it is then required that the 1D-GC model ren-
ders the same value of γ as the actual pellet. For the 1D-GC model, a
simple relation arise, γ1D-GC= (1+ σ)/(3+ σ). Therefore, the criterion
to evaluate σ from matching the same value γ as that of the actual pellet
is expressed by

= − −σ (3γ 1)/(1 γ),γ (4)

where the suffix γ for σγ is used to recall the criterion employed and γ is
the value for the actual pellet. The formulation to calculate γ for any
pellet shape is detailed in Mariani et al. [11], along with close ap-
proximations for some specific pellet shapes. Extensions to calculate γ,
and also β, for a spatial distribution of catalytic activity and transport
models other than Fick law are discussed by Mocciaro et al. [16]. For an
abbreviate presentation just dealing with the problem posed in Eqs. (1),
the reader can consult the work of Mariani et al. [14]. It is stressed that
the task for a given particle shape should be performed once for all.

It becomes evident that using Eq. (4) for the parameter σ of the 1D-
GC model will render a good approximation for reff provided that ϕ2 is
effectively low. If ϕ2 is very high, the result for reff will also be accurate,
as it will be proportional to (1/ϕ) for both, 1D-GC model and actual
pellet. Deviations, therefore, will be circumscribed to intermediate
values of ϕ.

The second criterion to fix σ arises by expanding (reff/rS) in powers
of (1/ϕ). The first order term corresponds to the limiting value just
mentioned above and the second term is proportional to a geometrical
factor Γ. This factor can be written as the sum of two contributions,
Γ= ̂+

⌣
Γ Γ, where

⌣
Γ can be explicitly expressed in terms of the curva-

ture of the smooth sectors on the external surface of the pellet [7] and ̂Γ
depends on the included angle of the (eventual) edges formed from the
intersection of smooth sectors and slightly on the shape of the reaction
rate law [8]. An explicit approximation ̂Γ was given by Keegan et al.
[8]. For the 1D-GC model, Γ1D-GC= σ/(1+ σ). Then, the alternative

criterion to evaluate σ is fitting the Γ value of the 1D-GC model to the
value of the actual pellet:

= −σ Γ/(1 Γ)Γ (5)

where Γ is the value for the actual pellet. Using Eq. (5), the 1D-GC
model will be capable to provide a precise approximation to reff for high
and moderately high values of ϕ, while the limiting value (reff/rS)→ 1
as ϕ→ 0 will be also matched. Again, deviations will be found for in-
termediate values of ϕ, although displaced to lower values of ϕ with
respect to the use of Eq. (4). The formulation to evaluate Γ was sum-
marized by Mocciaro et al. [16] and just for the problem defined by Eqs.
(1) by Mariani et al. [14].

For multiple reaction systems, the set r j
eff can be expanded in a si-

milar way as described for a single reaction. The meaning and values of
the parameters γ, β,

⌣
Γ remain unaltered, for a given pellet shape. The

same applies for ̂Γ in the case of first order reaction rates [22]. Fol-
lowing the results for a single reaction, it can be expected with con-
fidence that using the value of ̂Γ for a first order reaction will be sui-
table in most instances. This fact has been checked to be true from the
results of the selective hydrogenation example undertaken in this work.

The 3-parameter 1D-VD model introduced by Mocciaro et al. [16]
assumes that reactions take place in a slab with half-thickness defined
by the value of ℓ corresponding to the actual pellet. The pellet-shape
effect is accounted for by assuming that the transport parameters of the
species depend on the dimensionless spatial coordinate z= z′/L (z= 0
at the middle plane of the slab). For the Fick model used here:

D = − + −(z) D exp[ψ (1 z) ψ (1 z) ]k k 1 2
α (6)

where ψ1, ψ2 and α are parameters defined in such a way as to satisfy
the values of the geometrical parameters γ, β and Γ of the actual pellet,
as explained by Mocciaro et al. [16].

The mass conservation equations, according to the 1D-VD are:

D =d[ (z)dC /dz]/dz ℓ πk k
2

k (7a)

= =dC /dz 0 at z 0k (7b)

= =C C at z 1k k,S (7c)

It should be remarked that for a prompt account on the evaluation
of the actual 3D pellet geometrical parameters (γ, β and Γ) and the 1D-
DV model parameters (ψ1, ψ2 and α), the reader is advised to consult
the work of Mariani et al. [14].

Four shapes of the catalytic pellet were selected for the purpose of
this contribution, which are illustrated in Table 1 along with the spe-
cific aspect ratios, which were taken from catalogues of commercially
available pellets. The solid cylinder is a very common shape and was
chosen as a standard. The selective hydrogenation example undertaken

Table 1
Shape of the cross-sections and geometric aspect ratios for the 3D pellet considered in this
study (b*= b/H, H is the height of the cylinder). The expressions to evaluate the geo-
metric parameter Γ are also included (ACS: cross- section area).

Pellet Cross-section Dimensions (Γ ACS/ℓ2)

Solid cylinder
b

b*= 0.59, 2.5 32b*+ 2π

4-holed ring
b
c

c a

a/b= 0.273
c/b= 0.227
b*= 0.55

32b*(1+ 4a/b)− 6π

Trilobe
b

a

a/b=
+

3
2 3

b*= 0.86

80b*(a/b)+ (5π − 6)

Wagon wheel

b
c

c
c/b= 0.2
b*= 1.1

92.8b*− 27.6 (specific for
c/b= 0.2)
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in the following sections is carried out in trickle bed reactors, for which
trilobe pellets are frequently employed. The two hollow cylinders (4-
holed ring and wagon wheel) were chosen because these shapes were
shown to introduce large deviations for reff when using 1D approx-
imations for single reactions with highly non-linear kinetics [14].
Table 1 also include the expressions to evaluate Γ for different ratios
b∗=b/H.

The values of the shape parameters γ, β and Γ for the pellet in
Table 1 and the corresponding values of the 1D-model parameters are
listed in Table 2, for the finite values of the ratio b∗=b/H (Table 1)
and also for b∗=0 (infinitely long pellets). The latter set will be also
employed in Section 4 because the 1D models frequently introduce
larger deviations as H→∞ [16]. The solid cylinder is an exception, as
the fluxes just follow a single (radial) direction when H→∞.

3. The reaction sets

The first example is defined by a couple of first-order irreversible
series-reactions, A→ B→ C. Kinetics are then given by

=r k C ,1 c1 A (8a)

=r k C2 c2 B (8b)

The Thiele moduli employed for these reactions are expressed as:

=ϕ ℓ k /D1
2 2

c1 A (9a)

=ϕ ℓ k /D2
2 2

c2 B (9b)

The solution of the general problem described by Eqs. (1), in terms
of the profiles for CA/CA,S and CB/CA,S, will depend on ϕ1, ϕ2 and the
ratios CB,S/CA,S, DB/DA, apart from the specific features of the pellet
shape. The ratios r j

eff/(kcjCA,S) will depend on the same variables.
The second example concerns the catalytic hydrogenation of con-

jugate dienes and acetylenic compounds in mono-olefin rich streams.
Pd is used as the main catalytic agent. Specifically for C4 cuts from
thermal or catalytic cracking, 1,3 butadiene (BD) and some acetylenic
species, e.g., 1-butine (BY) should be eliminated to valorize the cut. The
selectivity of the process is determined by the affinity of Pd to adsorb
the polyunsaturated species that can cover completely the active sites,
even at very low concentrations, thus avoiding the adsorption of the
butene isomers (1-butene, 1BE; cis 2-butene, cBE; trans 2-butene, tBE)
that otherwise would lead to their hydrogenation and hydro-iso-
merization. Such an inhibition effect is the main feature for choosing
this process as a case study. A complete kinetic characterization in li-
quid phase of this catalytic reaction system on a commercial catalyst
was carried out by Alves et al. [1]. Ten reactions involving the hydro-
genation of BY, BD and of the hydrogenations and isomerizations of the
butene isomers were kinetically identified. A significant simplification
will be made here with the purpose of highlighting the inhibition effect
on the performance of 1D-approximations, but without having to resort
to a complex interpretation and description of the results. On one hand,

only the presence of BD has been retained, as acetylenics hydrogenate
preferentially, thus leaving BD as the species responsible to avoid the
reactions of the butene isomers. On the other hand, in spite that butene
isomers compete for adsorption on the active sites, their adsorption
strengths are similar. Therefore, the reactions of the isomers do not
introduce any special feature. Only 1BE is retained, as the only product
from BD hydrogenation and as the only olefin possible to be hydro-
genated. In this way, the reactions finally considered in the present
example are

+ →BD H 1BE2
r1 (10a)

+ →1BE H BA2
r2 (10b)

where BA stands for n-butane.
Following Alves et al. [1], the kinetic expressions can be written as:

⎜ ⎟= ⎛
⎝

⎞
⎠

r K
K

k y y
DEN1

BD

1BE

1 BD H

HC

2

(11a)

=r
k y y
DEN2
2 1BE H

HC

2

(11b)

⎜ ⎟= + ⎛
⎝

⎞
⎠

+DEN κ
K

K
K

y yHC
1BE

BD

1BE
BD 1BE (11c)

where the mole fractions are written as yk=Ck/CT (k=BD, 1BE, H2).
KBD and K1BE are the adsorption constants of BD and 1BE and kj (j = 1,
2) are the specific kinetic coefficients. The parameter κ in (11c) ac-
counts for the adsorption of the saturated species (e.g. BA). In practice,
the relation (κ/K1BE) is very small as compared to the remaining con-
tributions to DENHC for observable values of yBD and y1BE. For numer-
ical evaluations, the value κ/K1BE= 10−4, was employed. Smaller va-
lues have been checked to leave the results virtually unchanged. The
total molar concentration CT can be regarded to remain constant in the
course of the reactions. It should be noted that according to Alves et al.
[1] the effective reaction order of H2 in r2 is slightly smaller than 1, but
the simplification in (11b) is of no practical consequence for the pur-
pose of the present work.

The underlying feature of reaction rate expressions is the role of the
adsorption constant ratio (KBD/K1BE) that reaches values of around
1000 [1]. The inhibition exerted by the presence of BD upon the 1BE
hydrogenation can be evaluated by the ratio X=[(K /K )(y /y )]BD 1BE BD 1BE .
If X≪ 1 (e.g. when BD is absent), it is obtained from Eqs. (11b,c) that
1BE will react as a zero-order reaction with respect to itself, with a
plateau value r2= (k2 yH2). Instead, if X≫ 1, r2= (k2 yH2)/X. The zero-
order feature is maintained, but r2 is strongly depressed. Thus, with
(KBD/K1BE)∼ 1000, even a value yBD as low as yBD= y1BE/100 will
cause r2 to decrease by a factor of 10. On the other hand, provided yBD
is not very small, BD will also react closely as a zero order reaction,
with a plateau value r1= (k1 yH2) (from Eqs. 11a,c).

The Thiele moduli related to the rates in Eqs. (11a,b) are defined as

Table 2
Shape-coefficients for the pellets in Table 1 and values of the parameters for the 1D-models.

Parameter Pellet

Solid cylinder 4-holed ring Trilobe Wagon wheel

b*= 0.59 b*= 2.5 b*= 0 b*= 0.55 b*= 0 b*=0.86 b*= 0 b*= 1.1

3D-pellet Γ 0.792 0.561 −0.241 0.164 0.377 0.732 −0.173 0.297
γ 0.680 0.500 0.366 0.448 0.443 0.625 0.347 0.448
β 0.690 0.334 0.185 0.290 0.255 0.566 0.180 0.307

1D-GC σγ 3.246 0.996 0.157 0.622 0.595 2.333 0.063 0.624
σΓ 3.809 1.275 −0.194 0.195 0.606 2.726 −0.148 0.423

1D-VD α 3.140 4.835 5.229 5.795 4.156 3.356 12.375 11.302
ψ1 −1.584 −1.574 0.482 −0.327 −0.754 −1.463 0.346 −0.594
ψ2 −2.567 −2.476 −6.381 −5.970 −1.976 −2.483 −9.938 −8.497
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⎜ ⎟= ⎛
⎝

⎞
⎠

ϕ ℓ k
D C

K
K

Y1
2 2 1

BD T

BD

1BE
S

(12a)

=ϕ ℓ k
D C

Y2
2 2 2

1BE T
S (12b)

=
+ +( )

Y
y

y y
S

H ,S
κ

K
K
K BD,S 1BE,S

2

1BE
BD

1BE (12c)

The solution of Eqs. (1) will depend on several parameters: ϕ1, ϕ2,
KBD/K1BE, C1BE,S/CBD,S, CH2,S/CBD,S, D1BE/DBD, DH2/DBD. To test the
behavior of 1D models, some of them will be bounded or fix according
to the actual levels of the variables involved (Section 4.2).

4. Results and discussion

The platform Comsol Multiphysics® was used to solve Eqs. (1) for the
actual pellet and Eqs. (3) and (7) for the 1D-models. The size of the
mesh for the numerical solution was adjusted to guarantee a precision
of 0.1%.

At given values of the parameters, for both reaction sets defined in
Section 3, the relative error in the estimation of r1

eff (Eq. (2a)) in-
troduced by the 1D models will be evaluated by

=
−

ε 100
(r ) r

r
1

1
eff

1D 1
eff

1
eff (13a)

where r1
eff is the value obtained with the actual pellet shape and the

suffix 1D denotes the value from any of the 1D models: 1D-GCγ (using
σγ, Eq. (4)), 1D-GCΓ (using σΓ, Eq. (5)) or 1D-VD. For the second re-
action, the following measure of error will be used:

=
−

ε 100
(r ) r

r
2

2
eff

1D 2
eff

ref
eff (13b)

=r max{r ,π }ref 2
eff

B
eff (13c)

where πB
eff = r1

eff − r2
eff is the net consumption rate (Eq. (2b)) of either

species B in the example of first-order series-reactions or of 1BE in the
selective hydrogenation example. The definition of rref is a consequence
of the stoichiometric and kinetic features of the examples. In both cases
reaction 1 proceeds independently of reaction 2, but the occurrence of
reaction 2 strongly depends on the first reaction. For the first-order
series-reactions, the case with CBS= 0 is relevant. When this condition
is combined with small values of ϕ1, very small values of CB inside the
catalyst arise. Consequently, r2

eff will be very low and, in practice,
negligible. Thus, if the low value of r2

eff were used as the reference rate
in Eq. (13b), large values of ɛ2 could arise, but without any practical
significance. On the other hand, when continuously varying the values
of the system parameters (ϕ1, ϕ2, CBS/CAS), a value πB

eff =0 will arise
and therefore πB

eff cannot be used indiscriminately as a reference rate in
Eq. (13b). The choice of rref in Eq. (13b) eliminates the described sin-
gular situations and provides a significant evaluation from a practically
point of view for the deviation of the 1D models. Basically the same
pattern holds in the selective hydrogenation example, with BD reacting
independently and 1BE playing the role of the intermediate product.
Yet, even if C1BE,S is large, r2

eff can still be very low, due to the strong
inhibition effect exerted by the presence of BD. Consequently, rref de-
fined in Eq. (13b) will be used for this example too.

By construction, the 1D models predict the correct values of r j
eff

either for very low or very high Thiele modulus. Therefore, the preci-
sion of the 1D-models can be conveniently assessed by identifying for
each reaction j the error ε j

max with a maximum absolute value in the
whole range of Thiele moduli.

In Tables 3–6 introduced in the following sections, the symbol (∗)

accompanying values of ε j
max indicates that rref = r2

eff holds in Eq. (13c).

4.1. First order series-reactions

It was assumed the same value for the effective diffusivities of both
species, A and B, in this example (DA=DB=D). Considering first the
case with CA,S= 1mol/l and CB,S= 0, two sets of results were obtained
for the cross-section shapes defined in Table 1, either with finite heights
(b∗ > 0, Table 3) or when H→∞ (b∗=0, Table 4). In each case, ϕ1

(Eq. (12a)) was varied in the whole range of feasible values
(0≤ ϕ1≤∞), while the values ϕ2/ϕ1= 0.1, 1, 10 were used for the
second reaction (Eq. (12b)). The results, in terms of ε j

max are displayed
in Tables 3 and 4.

Tables 3 and 4 show that the precision of the 1D-VD model is always
better than 1% and that the errors from the use of the 1D-GC are
bounded by 7% in both cases, using σγ (Eq. (4)) or σΓ (Eq. (5)) to define
the shape parameter. These results indicate that any of the 1D models
can be employed with quite acceptable precision. For the solid cylinder
and trilobe, the errors are always very low and the 1D-GCΓ model can
be conveniently used, on account of the simple evaluation of parameter
Γ (Table 2). Table 4 for b∗=0 shows errors from both models 1D-GCγ
and 1D-GCΓ somewhat larger than in Table 3, according to the ex-
pectation that long cylinders usually introduce larger discrepancies.

The solid cylinder with b∗=0 was not considered in Table 4 as in
this case any of the 1D-GC models (1D-GCγ or 1D-GCΓ) are exact while
the 1D-VD produces negligible errors.

It is recalled that the reaction 1 (A→ B, r1= k1CA) proceeds in-
dependently of the second reaction and the values of ε1

max correspond to
those of a single first order reaction. Therefore, for the purpose of the
present work, the values of ε2

max are of particular significance. Tables 3
and 4 show that ε2

max are only moderately higher than ε1
max .

For the results of finite (Table 3) or infinitely long cylinders
(Table 4) the values ε1

max take place for intermediate values of ϕ1 (be-
tween 0.5 and 3.5). The values ε2

max take place when ϕ1= ϕ2 and in the
range 0.5≤ ϕ1≤ 4.5. A typical behavior for the ratio r2

eff/r1,S is illu-
strated in Fig. 1. The 1D-VD model reproduces very precisely all the
data points evaluated for the actual pellet shape. The 1D-GC introduces
some differences, especially around the maximum. As expected, the
differences are more rapidly attenuated towards lower values of ϕ for
the 1D-GCγ model and towards higher values for the 1D-GCΓ model. It
should be noted that r2

eff continuously increases as ϕ1= ϕ2 does, but the
ratio r2

eff/r1,S plotted in Fig. 1 presents a maximum, due to the fact that
diffusion limitations confine the presence of B to a narrow zone close to
external surface when ϕ1= ϕ2 is raised.

Two further sets of evaluations were carried out for CB,S≠ 0 (CB,S

[mol/l]= 0.5 and 1), while keeping CA,S= 1mol/l, for the 4-holed ring
with b∗=0. Then, for the sequence CB,S= (0, 0.5, 1) mol/l, the errors
ε2

max for the 1D-VD model were kept below 0.1% in all cases, while they
follow the sequence (−6.3, −5.1, −4.7) for the 1D-GCγ, and (7.3, 6.4,
5.6) for 1D-GCΓ. A slowly decreasing trend can be appreciated, in line
with the fact that the raise of CB,S will ultimately turn the system into
two reactions acting in parallel and independently of each other.

Table 3
Maximum errors ε j

max in the prediction of effective reaction rates from 1D-models for first-
order series reactions with finite heights (b* > 1) of particle shapes defined in Table 1.
CA,S= 1mol/l and CB,S= 0. The symbol (*) indicates rref = r2

eff holds in Eq. (13c).

Model Pellet (ε1
max , ε2

max)

Solid cylinder 4-holed ring Trilobe Wagon
wheel

b*= 0.59 b*=2.5 b*= 0.55 b*= 0.86 b*= 1.1

1D-VD 0.4, 0.5 0.4, 0.6 0.1, 0.3 0.3, 0.5 0.3, 0.6
1D-GCγ 0.3, 0.4(*) 0.4, 0.6 −3.3, −4.5 0.2, 0.3(*) −2.2,

−2.9
1D-GCΓ -0.5, -0.6(*) −1.4, −1.9 2.8, 4.1 −0.7, −0.8(*) 0.5, 0.9
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4.2. Selective hydrogenation

It was noted in Section 3 that the solution of Eqs. (1) for reactions
(10) with kinetics defined in Eqs. (11) involves a large number of
parameters. Some of them will be fixed here according to actual values
of the variables for this example. The effective diffusivity of H2 is about
4 times larger than those for BD and 1BE, which in turn are similar to
each other [1]. Then, it was taken DBD=D1BE=D, DH2/D=4. From
DBD=D1BE, the ratio of Thiele moduli defined in Eqs. (12) becomes

⎜ ⎟= ⎛
⎝

⎞
⎠

ϕ ϕ k
k

K
K2 1

2

1

1BE

BD (15)

The available experimental evidence indicates that the kinetic
coefficient k1 and k2 are similar [1]. Following the kinetic expressions

(11), this finding shows that both species, BD and 1BE, will react at a
similar rate, rj = kj yH2, when only one of them is present. To define a
base set of conditions, k1= k2 will be assumed. Besides, it was already
commented on in Section 3 that the ratio KBD/K1BE reaches values
around 1000. Therefore, KBD/K1BE= 1000 was first considered. These
assumptions lead to ϕ1= 0.032ϕ2 in Eq. (15). In turn, it has been
checked that the range 0.01 < ϕ1 < 32 was suitable to identify the
maximum errors ε j

max .
For the base set of conditions, it is assumed that yBD,S= 0.01 and

y1BE,S= 0.2. These are typical values for a C4 cut.
The concentration of H2 dissolved in the liquid phase is highly re-

levant for the selectivity of the process when BD is depleted inside the
catalyst, due to diffusion limitations (high values of ϕ1). Taking into
account that DH2/DBD=4, if yH ,S2 > yBD,S/4 there will be an excess of
H2 inside the catalyst after the extinction of BD. Therefore, 1BE will be
free to adsorb and react with the H2 surplus. To consider the worst
possible scenario, as regards 1BE hydrogenation, it will be asumed for
the base case that the molar fraction of H2 remains uniform inside the
catalyst pellet, i.e. yH2= yH2,S.

In summary, the conditions for the base case are:

= = =D D ;k k ;K /K 1000;BD 1BE 1 2 BD 1BE (16a)

= = =y 0.01;y 0.2;y yBD,S 1BE,S H2 H2,S (16b)

The set of values in (16) will be modified for the evaluations dis-
cussed in Section 4.2.4.

The results for this example will be limited to evaluations in the 4-
holed ring and in the trilobe (Table 1). The 4-holed ring was chosen
because it was the shape that introduced the largest deviations from the
1D-models in the example of first-order series-reactions (Tables 3 and
4). The trilobe was chosen as a reference shape on account of its use in
commercial selective-hydrogenation processes (e.g. PRICAT PD 309/4
from Johnson Matthey). In addition, the case b∗=0 (H→∞) was
considered, as it also enhances the errors from the 1D-models.

4.2.1. Results for the base- case conditions
The values ε j

max from the use of the 1D models are reported in
Table 5. The errors from the 1D-VD model are bounded by 2% and
therefore the results from this model are quite satisfactory. Instead, it is
evident that both versions of the 1D-GC model show a lack of precision,
particularly regarding ε2

max, for the 4-holed ring. On the other hand, the
three 1D models are highly precise for the trilobe pellet.

Fig. 2a,b show the effect of ϕ1 and ϕ2= 0.032ϕ1 on the errors εj
(Eqs. 13). It can be appreciated that the 1D-VD model keeps very low
errors εj in the whole range. It is also significant to note that although
the values ε j

max (Table 5) for the 1D-GCγ model are smaller than for the
1D-GCΓ model, relatively large values |εj| are sustained even at large
values of ϕ1 for the 1D-GCγ model.

Table 4
Maximum errors ε j

max in the prediction of effective reaction rates from 1D-models for first-
order series-reactions with infinite heights (b*= 0) of particle shapes defined in Table 1.
CA,S= 1mol/l and CB,S= 0. The symbol (*) indicates rref = r2

eff holds in Eq. (13c).

Model Pellet (ε1max, ε2max)

4-holed ring Trilobe Wagon wheel

1D-VD 0.1, −0.1 0.1, 0.3 −0.2, −0.3
1D-GCγ −4.3, −6.3 −0.3, −0.4 −3.5, −5.0
1D-GCΓ 4.9, 7.3 −0.4, −0.5 2.0, 2.8

Table 5
Values ε j

max from the 1D-models for selective hydrogenation. b*= 0 and base-case con-
ditions (Eqs. (16)). The symbol (*) indicates rref = r2

eff holds in Eq. (13c).

Model Pellet (ε ,1
max ε2

max)

4-holed ring Trilobe

1D-VD 1.4, 2.2 (*) 0.8, −1.3 (*)

1D-GCγ −6.3, 11.3 (*) 0.2, 0.2
1D-GCΓ 12.1, 18.6 (*) −0.3, 0.3

Table 6
Values ε j

max and δj,GC
max from the 1D-models for selective hydrogenation in a 4-holed ring

(b*=0) for different conditions. The symbol (*) indicates rref = r2
eff holds in Eq. (13c).

Conditions (ε ,1
max ε2

max)

1D-VD 1D-GCγ 1D-GCΓ δj,GC
max

Base case 1.4, 2.2(*) −6.3,
11.3(*)

12.1,
18.6(*)

−13.3, 21.8

y1BE,S = 0 1.8, −3.8 −6.4, 14.4 15.4, 22.4 −15.5,
−19.6

xH2,S= 0.0025 0.1, 0.0 −4.0, −0.3 −5.04, 0.4 −8.1, −0.6
xH2,S= 0.005 −0.3, 0.4 −6.3, 2.6 7.8, 4.7 11.0, −4.2
xH2,S= 0.01 0.7, −0.8 −6.7, 6.6 10.3, 13.2 −13.0,

−10.6

k2=0.2k1 1.4, −0.3 −5.8, −1.4 12.1, −2.5 −12.4, 2.6
k2= k1 (base case) 1.4, 2.2(*) −6.3,

11.3(*)
12.1,
18.6(*)

−13.3, 21.8

k2=5k1 1.4, −6.2(*) −6.0,
−29.6(*)

12.0,
−60.7(*)

−12.2,
78.8(*)

k2= 20k1 1.3, 14.4(*) −6.1,
39.0(*)

11.6,
−60.4(*)

−12.8,
78.9(*)

KBD/K1BE= 5 0.4, 1.8(*) −4.3,
−6.7(*)

4.8, 13.5(*) −7.4,
−15.2(*)

KBD/K1BE= 100 0.5, −2.3(*) −5.5, 7.4(*) 7.5, 16.5(*) −10.3,
15.7(*)

KBD/K1BE= 1000 (base
case)

1.4, 2.2(*) −6.3,
11.3(*)

12.1,
18.6(*)

−13.3, 21.8

KBD/K1BE= 10,000 −13.0, 19.5

Fig. 1. r2
eff/r1,S vs. ϕ (with ϕ1= ϕ2) for first-order series-reactions in a 4-holed ring with

b*= 0. CA,S= 1mol/l and CB,S= 0.
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4.2.2. Analysis of errors
This section can be skipped in a first reading. Nonetheless, it is

emphasized that it can provide an important insight about the sources
of errors in the predictions and limitations of the employed 1D models.

By comparing the results in Table 5 with those in Table 4 (first-order
series-reaction example) for the 4-holed ring, it becomes clear that the
kinetic features of the selective hydrogenation case combined with
some specific pellet shapes will enhance the appearance of higher levels
of error from the 1D-models, of special practical significance for the 1D-
GC model.

To explain the reasons for this behavior, the values of ϕ1 at which
the 1D-GCΓ model shows the peaks of ε2 in Fig. 2b are chosen:
ϕ1= 1.65 (ϕ2= 0.05) and ϕ1= 7.09 (ϕ2= 0.2). For these Thiele
moduli, Fig. 3 shows for the 1D-VD and 1D-GCΓ models the profiles of
molar fractions yBD and y1BE (Fig. 3a-I,II) and of hydrogenation rates
(r1/r1,s) and (r2/ r1,s) (Fig. 3b-I,II), where r1,s is very closely equal to the
plateau value, r1,s = k1 yH2,s. In these figures the coordinate ζ=V(z)/
Vp= z(1+σ) is used, where σ=−0.94 for the 1D-GCΓ model (Table 2)
and σ=0 for the 1D-VD model, to compare both models at the same
volume. Note that ζ=0 is the pellet centre and ζ=1 the pellet surface.

As the errors from the 1D-VD model are small and roughly an order
of magnitude less than those for the 1D-GCΓ model (Fig. 2), the results
from the 1D-VD model will be supposed to be the “correct” ones and the

1D-GCΓ model plays the role of the “approximate” model.
In the case ϕ1= 1.65, it can be appreciated in Fig. 3b,I that for the

most part, the hydrogenation of BD proceeds almost independently of
the 1BE hydrogenation and nearly as a zero-order reaction (i.e. close to
the plateau value r1= k1yH2,s). According to the 1D-VD model, only
when the BD concentration has dropped to around a tenth of the surface
value (Fig. 3a,I) 1BE starts reacting faster and even the plateau value
r2= k2yH2,s (i.e., r2/r1,s≈ 1, as k1= k2 in the base case) is reached
close to ζ=0. Instead, Fig. 3a,I reveals that the 1D-GCΓ model does not
predict the BD extinction and yBD remains significantly greater than
zero up to ζ=0, causing significant differences in the estimations of
both, r1 and r2 (Fig. 3b,I), and consequently in the estimation of r1

eff and
r2

eff .
The errors εj introduced by the 1D-GCΓ (Eqs. 13) can be approxi-

mately described by resorting to the limiting case (KBD/K1BE)→∞ and
κ=0 (Eq. (13c)). Thus, BD will strictly react as a zero order reaction,
according to r1= k1yH2,s, and 1BE will do so, according to r2= k2yH2,s,
but only after the point where yBD=0 is eventually reached. The si-
tuation is depicted in Fig. 4(I), where it is assumed that the BD dis-
appearance occurs at a value ζBD near to ζ=0. In this way, the Eqs.
(13) yield

Fig. 2. Values of ε1 (a) and ε2 (b) for the 4-holed ring
(b*=0). Selective hydrogenation example and base-case
conditions (Eqs. (16)).
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where ζBD stands for the correct value and ζGCΓ
BD for the approximate

value.
Eq. (17a) shows that ε1 only depends on the ability of the approx-

imate model to predict the location at which yBD=0 is reached. As
deviations from the true concentration profile increase as the distance
from the surface increases, relatively large values of ε1 will arise when
ζBD is close to zero. This behavior is at variance with that of a higher
order reaction (e.g. a first order reaction), when ε1 will depend on the
whole concentration profile, and explains why ε1

max becomes larger than
in the example of first-order series-reactions.

From Eq. (17b), it is clear that ε2 will be also conditioned to the correct
prediction of ζBD. For the base case with k2/k1=1 and small values of ζBD,
the denominator in Eq. (17b) becomes (1-2ζBD), which corresponds to
rref= r1

eff -r2
eff (Eq. (13c)), and ε2= − −100(ζ ζ )/(1 2ζ )GCΓ

BD BD BD . By compar-
ison with Eq. (17a), this expression tells us that values |ε2|> |ε1| will
arise.

Another relevant effect emerges from Eq. (17b). Assume a problem
with a ratio (k2/k1) well above 1, such that the denominator in Eq.

(17b) will eventually turn out to be ζBD. Then, ε2= −100(ζ ζ )/ζGCΓ
BD BD BD.

If ϕ1 is allowed to increase, a situation when ζGCΓ
BD =0 and ζBD≠ 0 will

arise for some value of ϕ1, and the value ε2=−100% will be reached.
This large error will take place even if the approximate model only
introduces a slight retard in the disappearance of BD. Alternatively, the
reverse situation with ζGCΓ

BD ≠ 0 and ζBD=0 can happen and then ε2→
∞. Therefore, problems with large values of (k2/k1) will present an
extreme parameter sensitivity, due to a combination of strong inhibi-
tion effects (by BD) on a very fast reaction (1BE hydrogenation), and
large errors will arise from any geometric approximation. Actually, a
small difference in the estimation of certain parameters, as effective
diffusivities, will also introduce large errors even if the exact geome-
trical description is employed.

The second type of significant errors ε2 can be discussed from
Fig. 3a,II and b,II for the higher value ϕ1= 7.09 (ϕ2= 0.2). yBD drops
rapidly to zero and leaves a large fraction of pellet volume available for
1BE hydrogenation. It can be observed that for the 1D-VD model y1BE
drops to zero before the center of the pellet (Fig. 3a,II). Instead, the 1D-
GCΓ model keeps y1BE > 0 up to ζ=0 and a significant error ε2 arises
(actually, the largest value ε2

max reported in Table 5 for the 1D-GCΓ
corresponds to the situation in Fig. 3b,II). At this condition, rref = r2

eff

(Eq. (13c)) for the base-case conditions.
For the limiting case (KBD/K1BE)→∞ (Sketch II in Fig. 4), the error

ε2 from Eq. (13b,c) becomes

Fig. 3. Mole fraction (I) and reaction rate (II) profiles for
selective hydrogenation using the 1D-GCΓ and 1D-VD
models. 4-holed ring with b*= 0 and base-case conditions
(Eqs. (16)).

2 2 H2r k y

1 1 H2r k y

BD

BDy
1BEy

1BE

(II) 

2 2 H2r k y

1 1 H2r k y

BD

BDy

1BEy

(I) 
0 1 0 1 

Fig. 4. Molar fraction and rate profiles when (KBD/K1BE)→
∞. Sketch (I): yBD= 0 is reached (intermediate value of ϕ1).
Sketch (II): yBD=0 and y1BE=0 are reached (large value of
ϕ1).
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where ζ1BE stands for the position at which 1BE is extinguished. The
error ε2 in (17c) depends on the ability of the approximate model GCΓ
to predict the correct size of the zone (ζBD-ζ1BE) where 1BE reacts,
which in turn depends on the precision of the estimates of both, ζBD and
ζ1BE. In this way, ε2 can be expected to be larger than for the case of an
isolated zero order reaction.

Errors ε2 only related to the extinction of BD (Fig. 3a,b-I, inter-
mediate values of ϕ1) will be identified as type I errors and those that
also involve the extinction of 1BE (Fig. 3a,b-II, relatively large values of
ϕ1) as type II errors. Fig. 2b reveals that for each 1D model there is a
range of Thiele moduli in which ε2 reaches significant levels. This range
(approximately, 1.5 < ϕ1 < 8) includes both type of errors for each
1D model. At lower values of ϕ1, the error ε2 drops very fast, but at
higher values of ϕ1 the error ε2 decreases more slowly, at a rate de-
pending on each model.

4.2.3. Computational issues
It is pertinent to note that severe convergence difficulties arise in

the Comsol Multiphysics® platform when dealing with zero-order reac-
tions at conditions leading to the extinction of the reactant somewhere
inside the catalytic pellet and, therefore, the reaction rate profile be-
comes a step function. The problem can be circumvented by introdu-
cing a smoothed reaction rate, r= k CA/(δ+CA), solving the problem
for a set of small values of δ and extrapolating the results to δ→ 0.
However, as small values of δ should be considered, the solver need a
proper mesh refinement to obtain precision and achieve convergence.
This strategy can be employed without many difficulties to solve 1D
problems. For higher dimensions (2D or 3D problems), the choice of a
balanced mesh to maintain precision and convergence under memory
restrictions and/or keeping reasonable execution time becomes in our
experience a major problem. Yet, as reported by Mariani et al. [14], it
has been possible to tackle 2D problems, i.e. for infinitely long cylinders
(b∗=0) of different cross-section shapes, but the solution of the cor-
responding 3D problems (b∗ > 0) could not be undertaken, for the
most part.

For the present selective hydrogenation example, similar problems
were faced for the base case parameters, as the reactions behave si-
milarly as zero order reactions. In particular, the 4-holed ring could not
be studied when considering a finite height. Also, values of the ad-
sorption constant ratio (KBD/K1BE) significantly larger than 1000 could
not be tried for the 2D case (b∗=0). The need for employing a very
refined mesh for (KBD/K1BE)=1000 at values of ϕ1 larger than the unit
demanded long execution times to solve the example for 4-holed ring
and b∗=0, of the order of hours when performed on a standard PC. On
the contrary, the solution of the 1D-models were reached in seconds.
The large difference stresses the significance of reducing the dimension
of the problem in the evaluation of effective reaction rates for multiple-
reaction problems.

4.2.4. Results from modification of some variables from the base-case
conditions

Since the largest values of ε j
max are found for the 4-holed ring with

b∗=0 (Table 5), the effect of changing some variables or parameters
from the values of the base-case (Eqs. (16)) will be considered here for
that shape. Individual variations will be considered, while keeping the
rest of values as for the base-case. The corresponding values of ε j

max,
which will be discussed below, are reported in Table 6 that also displays
the values for the base case, for reference. In addition, Table 6 includes
an evaluation of the differences between the 1D-GCγ and 1D-GCΓ
models. Similarly to the errors εj (Eqs. 13), differences δj,GC are defined
as

=
−

δ 100
r r

r
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1,GCγ
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1,GC
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δ 100
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where r j,GC
eff , is the average value from both models, 1D-GCγ and 1D-

GCΓ. The difference δj,GC
max with a maximum absolute value in the whole

range of Thiele moduli are reported in Table 6. The significance of δj,GC
max

will be discussed in Sections 4.2.4.4 and 4.3.

4.2.4.1. Effect of the concentration of 1BE on the pellet surface. Although
the case y1BE,S= 0 is not practically significant for actual operating
conditions in the process of selective hydrogenation, it is of interest in
kinetic studies when the hydrogenation of BD is intended to be isolated.
For y1BE,S= 0, the only source of 1BE is the hydrogenation of BD and
1BE is accumulated in the inner part of the pellet. The fraction y1BE is
anyway low and once BD is depleted, 1BE can be rapidly hydrogenated
in a short distance. The maximum errors are of the type I defined above
and they are only slightly larger than for the base case (Table 6).

4.2.4.2. Effect of the concentration of H2 on the pellet surface. The
diffusion limitations of H2 were suppressed for the base-case
conditions. In practice, however, typical concentrations of dissolved
H2 are less than 1% (this corresponds roughly to about 10 bars of partial
pressure) and therefore yH2 can diminish significantly inside the
catalytic pellet. Three levels of yH2,S were considered to assess the
impact of this variable on the precision of the 1D-models:
yH2,S= (0.0025, 0.005, 0.01). The lowest level, yH2,S= 0.0025,
corresponds to the limiting value that allows the full consumption of
BD inside the pellet, by recalling that yBD=0.01 for the base case and
DH2/DBD= 4. Due to the H2 limitation and the fact that both
hydrogenation reactions are linearly dependent on yH2, the reaction
rates are faster close to the pellet surface. This effect explains that, in
general, the errors made by the 1D models are lower the lower yH2,S.
Furthermore, due to the BD inhibition, the 1BE hydrogenation is mainly
affected by the shortage of H2, low values of r2

eff arise and as a
consequence of the definition of ɛ2, considerable lower values of ε2

max

than for the base case are produced by every 1D model.

4.2.4.3. Effect of the kinetic coefficient ratio (k2/k1). When the ratio (k2/
k1) is changed, the ratio of Thiele moduli according to Eq. (15) becomes

=ϕ /ϕ 0.032(k /k )2 1 2 1
0.5. Including the results for the base case, Table 6

displays the results for three values of (k2/k1): 0.2, 1, 5 and 20. As
expected from the features of the present example, the ratio (k2/k1)
shows practically no effect on ε1

max, but a large impact is observed on
ε2

max. At the lowest value (k2/k1)=0.2, type I errors prevail and the low
values of r2

eff lead to significantly lower values of ε2
max than for the base

case. For (k2/k1)= 5, the errors ε2
max also correspond to type I, they take

place in a tight range 1.4 < ϕ1 < 1.6 for the three 1D models, but
their values are substantially larger than for the base case. This
situation occurs because k2 is large enough to make =r rref 2

eff (Eq.
(13c)) in the definition of ɛ2 and, therefore, very large type I errors
arise, as it was advanced in Section 4.2.2 (it is recalled that in this case
the approximate expression ε2= −100(ζ ζ )/ζGCΓ

BD BD BD applies).
Comparing the values of ε2

max for (k2/k1)= 5 and 20, it can be
concluded that the 1D-GCΓ model has reached the maximum level of
error, while the maximum level when (k2/k1)→∞ has not been
reached for the 1D-VD and 1D-GCγ models. Two aspects should be
stressed. First, the error ε2

max of the 1D-VD model at the very high value
(k2/k1)= 20 can be still acceptable. Second, it is recalled that if k2/k1
and KBD/K1BE are simultaneously raised, any approximate model will
eventually produce values of ε2

max →−100% or +∞, as it was discussed
in Section 4.2.2.

4.2.4.4. Effect of the kinetic adsorption-constant ratio (KBD/K1BE). Results
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of ε j
max for values of the ratio KBD/K1BE lower than in the base case are

displayed in Table 6. The ratio X=[(K /K )(y /y )]BD 1BE BD 1BE was
introduced in section 3 to quantify the inhibition exerted by the
presence of BD upon the 1BE hydrogenation. When evaluated at
surface conditions X=1/4 is obtained for KBD/K1BE= 5. This means
that 1BE hydrogenation is barely inhibited by BD and, instead, the
opposite effect is more important, although still moderate. BD and 1BE
can react simultaneously with rates r1≈ 5 k1yH2(yBD/y1BE) and
r2≈ k2yH2, respectively. The errors ε1

max are low and similar to those
for a single first order reaction. The errors ε2

max are noticeably lower
than for the base case and correspond closely to that for a single zero
order reaction [14].

For the intermediate ratio KBD/K1BE= 100, the inhibition of BD
upon 1BE hydrogenation is already strong. The behavior of the system
and consequently the errors ε j

max approach those of the base case. The
value ε2

max corresponds in this case to type II errors.
As commented on in Section 4.2.3, the solution for the 4-holed ring

could not be achieved for very large values of KBD/K1BE. Thus, there
remains some uncertainty if values of KBD/K1BE higher than 1000 can
modify the level of errors made by the 1D models. However, there are
reasons to believe that values ε j

max for the base case have approximately
reached their highest levels, as regards the ratio KBD/K1BE. In first place,
it is noted that the errors ε1

max from the 1D models with KBD/
K1BE= 1000 are already completely similar to those for a single zero
order reaction [14], i.e. KBD/K1BE= 1000 allows approaching closely to
the behavior as KBD/K1BE→∞, as concerns BD hydrogenation. Then, as
the errors ε2

max are strongly subject to BD hydrogenation (section 4.2.2),
it can be expected that the limiting values of ε2

max have been also ap-
proximately reached at KBD/K1BE= 1000. Furthermore, as results from
the 1D models can be obtained for larger values of KBD/K1BE without
numerical difficulties, the difference δj,GC (Eqs. 18) have been evaluated
for KBD/K1BE= 10,000 (Table 6). It will be discussed in the next section
that δj,GC

max quantifies with reasonable precision an upper bound for the
errors ε j

max of either the 1D-GCγ or the 1D-GCΓ model. The fact that the
values of δ2,GC

max for KBD/K1BE= 1000 and 10,000 are quite similar to
each other, as shown in Table 6, provides further evidence that the
error ε2

max has reached very approximately its limiting value for KBD/
K1BE= 1000.

4.3. The choice of a 1D model

The results discussed in Sections 4.1–4.2 and in previous contribu-
tions for single reactions [14,16] clearly show that the 1D-VD model is
by far the most accurate and safest 1D model, particularly for rather
singular shapes [16], for single reactions with a maximum rate inside
the catalyst, due to thermal or self-inhibition effects [14] or due to an
inhibition effect by other reactant, as in the selective hydrogenation
example treated here. Nonetheless, the 1D-GC model will be accurate
enough for a vast range of shapes and kinetics. Thus, for most 3D pellet
shapes (e.g. cylinders with any cross-section shapes and finite heights)
the 1D-GC model can be used safely for single reactions provided the
“effective” reaction orders are non-negative [10]. The results presented
here also indicate that the 1D-GC model can be used successfully for
multiple reactions, as in the example of first-order series-reactions ex-
ample or even for some conditions in the selective hydrogenation ex-
ample.

The 1D-GC is believed to be more appealing than the 1D-VD model.
Its single parameter σ keeps a clear geometric meaning in relation of the
well known cases of a slab (σ=0), an infinitely long cylinder (σ=1) or
a sphere (σ=2). Also, the effectiveness factors for isothermal first
order reactions can be expressed in terms of fractional-order modified
Bessel functions of the first kind. Instead, the 1D-VD does not enjoy
these features. Its parameters are introduced by means of locally de-
pendent diffusion fluxes and they cannot be easily related to actual
geometric properties. Although the evaluation of the three parameters
does not involve a particularly complex numerical procedure, two of

them should be evaluated iteratively [16].
Having defined the pellet shape and the type of kinetics, a pre-

liminary numerical study involving results for the actual pellet can be
made to decide if the 1D-GC will provide an acceptable precision.
However, as discussed in Section 4.2.3, obtaining a numerical solution
for 2D or 3D problems may be at least laborious. Then, it can be useful
to have a criterion to decide if the use of the 1D-GC can be suitable
without having to carry out such a task. To this end, the difference δj,GC
between both versions, 1D-GCγ and 1D-GCΓ, can be employed. It is
shown in Table 6 that the values δj,GC

max very closely behave as an upper
bound for the errors ε j

max of either the 1D-GCγ or the 1D-GCΓ version. If
δj,GC

max is large, say>25%, the use of the 1D-GC model can be ruled out.
Provided δj,GC

max is tolerable, it cannot identify which version is better
(clearly, in the selective hydrogenation example with the 4-holed ring
and b∗=0, the 1D-GCγ is more precise), but in our experience a
combination σ=0.7σγ+0.3σΓ is frequently suitable for using the 1D-
GC model, if no further evidence is available.

Also, values of δj,GC
max can provide information for the precision of the

1D-VD model. Table 6 reveals that values of ε j
max from the 1D-VD model

are always less than (1/5) of δj,GC
max .

The information provided by δj,GC is not fortuitous. On one hand,
δj,GC

max quantifies the loss of precision resulting for choosing either the
high or low Thiele-moduli criterion to evaluate the parameter σ of the
1D-GC model. On the other hand, as the 1D-VD satisfies both limiting
conditions, it can be reasonable expected that ε j

max for this model can be
estimated as a small fraction of δj,GC

max .

5. Conclusions

The results obtained by the use of two geometric 1D models to
approximate the behavior of 3D catalytic pellets when multiple reac-
tions take place have been analyzed. One of models, identified as
Generalized Cylinder (1D-GC) model, employs a single parameter that
is either evaluated at the limit of low (1D-GCγ model) or high (1D-GCΓ
model) reaction rates, while the second model, named Variable
Diffusivity model (1D-VD), makes use of three parameters. Both models
have been introduced in previous contributions and tested for single
catalytic reactions. The precision of the 1D models was evaluated by
comparing values of effective reaction rates with the results of solving
the mass conservation equations on the actual geometry of four dif-
ferent pellet shapes: circular cylinder, trilobe, wagon wheel and 4-holed
ring. The former two shapes are regarded as standard shapes, while the
two later shapes were chosen because they proved to be a severe test for
1D models in the case of single reactions. The examples taken to check
the precision of the 1D models are a system of first-order series reac-
tions and the selective hydrogenation process of butadiene in the pre-
sence of 1-butene, in both cases under isothermal conditions. The ex-
amples were chosen because they lead to the existence of maximums in
the rate of some of the reactions, somewhere inside the catalytic pellet.
This poses a challenging feature for the 1D approximations, since the
relevant maximum reaction rate cannot be identified beforehand and its
magnitude and location will depend on properly predicting the con-
centration profiles inside the pellet.

In the example of first-order series reactions, the 1D-GC model
produces maximum errors (identified by changing the Thiele moduli) in
the estimation of the effective reaction rates of up to around 7%, which
are regarded as being acceptable. A much better precision can be
reached with the 1D-VD model, for which the errors kept below 1%.

The selective hydrogenation example was considered within the
frame of the actual values of kinetic parameters. The hydrogenation of
1–3 butadiene (BD) on Pd catalysts proceeds closely as a zero-order
reaction with respect to BD and the same happens for 1-butene (1BE)
hydrogenation when BD is absent. However, BD strongly inhibits 1BE
hydrogenation, a fact that introduces the main distinguishing feature of
this example. Considering the usual range of composition, the 1D-GC
model introduces errors of up to 20%, while the 1D-VD keeps errors
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below 4%. A level of errors higher than in the first example is caused by
the nonlinearity of the kinetics, in which the inhibition effect is of
paramount significance. When the kinetic parameters of this example
are freed to vary, the possibility of a rather singular behavior was
identified. Thus, keeping the strong BD inhibition effect, but increasing
the specific rate of 1BE hydrogenation, a large and thin peak of 1BE
hydrogenation rate will appear in the innermost part of the pellet for
some conditions. Any small deviation in the estimation of transport
properties will cause a failure in evaluating, or not, such a peak. As a
consequence, a geometric approximation for the pellet, regardless of
how precise it may be, will inherit this feature and large and significant
errors can appear.

This sort of cases, although believed to be infrequent in actual re-
action systems, cannot be ruled out. Besides, it would be almost un-
affordable trying to classify them in the frame of multiple reactions. It
has been shown that employing and comparing both versions of the 1D-
GC model (1D-GCγ and 1D-GCΓ) can provide a useful test to identify
singular cases, as well as assessing its own level of precision.

Finally, it is worth remarking that, from a numerical point of view,
the examples studied in this contribution revealed the significance of
employing 1D approximations to deal with multiple reaction systems.
Even when the actual pellet involves a 2D numerical solution, it fre-
quently demanded a very careful setting of the calculation mesh, dif-
ferences in computation time with respect to 1D evaluations of orders of
magnitudes can arise and frequent convergence limitations were also
faced in the course of the work here reported.
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