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Abstract

Because electroacoustic techniques are gaining interest in many fields of colloid science, a number of theories dealing with the phenomenon of
electrophoresis in high-frequency (on the order of the MHz) electric fields have been developed. In the present work we propose a straightforward
derivation of a simple formula for the dynamic mobility of colloidal particles in mildly concentrated systems. Starting with a simple expression
for the electrophoretic mobility in dilute suspensions, given as a function of the zeta potential and of the dipole coefficient, we introduce suc-
cessive corrections related to: (i) the back flow of fluid induced by the electrophoretic motion of the particles; (ii) the electrostatic interactions
among particles; (iii) the difference between the macroscopic and the external electric fields; (iv) the difference between the zero-momentum
and the laboratory reference frames. Considering furthermore that the frequency dependence of the dipole coefficient is due to the Maxwell–
Wagner–O’Konski double-layer relaxation, we obtain a mobility expression that compares well with other (semi)analytical models and (in proper
conditions) with numerical cell-model calculations. However, its main merit is that it allows to understand, to a large extent, the physical origin of
the frequency and volume fraction dependences of the dynamic mobility.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The quite recent availability of electroacoustic techniques
for the characterization of colloidal systems [1,2] and of theo-
retical developments allowing to relate the experimental quan-
tities (amplitude and phase of the acoustic wave generated by
an applied electric field and vice versa) has brought about
an increased interest in the concept of dynamic, or AC, elec-
trophoretic mobility, ud (a complex quantity, function of the
frequency) [3,4]. The dynamic mobility, equivalent to the clas-
sical electrophoretic mobility measured in DC fields in dilute
suspensions, contains a wealth of information on the main para-
meters governing the overall behavior of the dispersed colloidal
particles, namely, their size, shape, state of aggregation, and
zeta potential, ζ . However, it must be taken into account that
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electroacoustic techniques have found their widest range of ap-
plication when concentrated suspensions (volume fractions as
high as 40–50% or even more) are investigated. Probably, no
other electrokinetic technique makes it possible to investigate
such highly concentrated systems. This involves the solution of
two problems:

(i) obtain ud from the experimental signal;
(ii) deduce ζ (or any other physical information available)

from ud .

We will assume that the manufacturer of the commercial equip-
ment has solved problem i, so that we will be concerned here
with problem ii.

There are basically three approaches for the determination
of ud in concentrated suspensions, prompted by observations
that the zeta potential of suspended particles varied with the
particle concentration φ when theories corresponding to dilute

http://www.elsevier.com/locate/jcis
mailto:adelgado@ugr.es
http://dx.doi.org/10.1016/j.jcis.2006.05.042


S. Ahualli et al. / Journal of Colloid and Interface Science 301 (2006) 660–667 661
systems were used [5]. The first involves using an empirical
equation [6], that allows one to determine a so-called corrected
zeta potential, ζc, for concentrated dispersions, from the appar-
ent one, ζa , obtained from the single particle model:

(1)ζc = ζa exp

{
2φ

[
1 + 1

1 + (10φ)4

]}
.

This correction was found to be applicable for volume fractions
of up to 30%.

The second is a “first-principles” calculation, based on the
estimation of finite particle concentration effects by means of
a detailed evaluation of the interaction between a pair of parti-
cles [7]. Based on this, O’Brien et al. [8] found a semianalytical
solution considering additive pair interactions between a parti-
cle and its neighbors according to the Percus–Yevick equation.

The third approach is based on the cell model [9–12]. Here
the electroacoustic and hydrodynamic interactions are consid-
ered by setting appropriate boundary conditions for the electric
potential, fluid velocity and ionic concentrations on the surface
of a sphere of fluid centered on a single particle. The radius b of
the sphere is such that the volume fraction of solids inside the
spherical cell is identical to that in the whole suspension:

(2)b = a

φ1/3
,

where a is the radius of the particle.
In the present work we propose a straightforward derivation

of a simple formula for the dynamic mobility of colloidal par-
ticles in mildly concentrated systems. Our aim is to clarify the
main aspects of the behavior of the dynamic mobility found ei-
ther experimentally or in more elaborate theories and numerical
calculations.

2. Basic aspects of the model

We start with the well-known result for the dynamic elec-
trophoretic mobility of spherical particles in dilute suspensions
[3,13]:

(3)ud = 2

3

εm

ηm

ζ(1 − C)G,

where εm and ηm are the absolute permittivity and viscosity of
the dispersion medium, C is the dipolar coefficient (correspond-
ing to the dipole moment induced in the particle by the applied
electric field), and

(4)G = 1 + λ

1 + λ + λ2

9 (3 + 2�ρ
ρm

)
.

In this expression,

(5)λ = (1 + i)

√
ωa2ρm

2ηm

,

i = √−1, ω is the angular frequency of the applied field, ρm is
the mass density of the dispersion medium, and

(6)�ρ = ρp − ρm,
where ρp is the mass density of the particles.
The evaluation of G is not straightforward. Briefly, it is the

result of assuming that (for a thin double layer) there are no
electrical forces on the particle and its double layer, so that
only the hydrodynamic component of the stress tensor acting
on the particle surface needs to be considered. This harmoni-
cally varying stress is evaluated from the problem of the drag
on a sphere performing oscillations in a viscous fluid [14], so
that G gives information about the inertial force on the particle.
For frequencies above ηm/a2ρm, the particle and fluid inertia
significantly hinder the electrophoretic motion, the mobility de-
creases in magnitude and lags the oscillating field.

We shall briefly review the main steps leading to this ex-
pression, in order to establish the main assumptions required
for its validity. The first is the condition that the double layer
surrounding the particles is thin compared to their radius a:

(7)κa � 1,

where

(8)κ =
√

103NA

∑n
i=1 z2

i e
2Ci

εmkT

is the reciprocal Debye length. In Eq. (8), n is the number of
ionic species in the solution, zi the valence number of the ith
species, and Ci its molar concentration. The other symbols have
their usual meanings: NA is the Avogadro number, e the ele-
mentary charge, k the Boltzmann constant, and T the absolute
temperature.

Under condition (7), the fluid velocity profile around a sin-
gle particle moving with electrophoretic velocity ve in the un-
bounded external medium can be derived from a velocity po-
tential that satisfies the Laplace equation. Therefore, it has the
following form in a coordinate frame centered on the particle
and moving together with it:

(9)�v(r, θ) = −ve

(
cos θ êr − sin θ êθ

) + pv

2 cos θ êr + sin θ êθ

r3
,

where pv is the hydrodynamic dipole moment, r , θ are the
radial and polar spherical coordinates, and êr , êθ the corre-
sponding unit vectors [14].

Using the condition that the normal component of the ve-
locity must vanish on the external boundary of the thin double
layer (r = a), leads to:

(10)pv = vea
3

2
,

(11)vθ (a, θ) = 3

2
ve sin θ.

Equation (11) makes it possible to calculate the electrophoretic
velocity in terms of the tangential fluid velocity at the outer
boundary of the thin double layer.

We now use the second assumption leading to Eq. (3),
namely that the frequency of the applied field E is sufficiently
high, so that there are no field-induced electrolyte concentration
gradients along the surface of the particle:

(12)ω � Deff/a
2,
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where Deff is an effective value of the diffusion coefficient of
the ions in the electrolyte solution. Under this condition, the
tangential fluid velocity at the outer boundary of the thin double
layer reduces to the electroosmotic velocity along a flat solid–
fluid interface:

(13)veo,θ = − εm

ηm

ζE‖.

For a spherical particle, the tangential field E‖ should be re-
placed by the tangential component of the total electric field in
the electrolyte solution:

(14)�Etot = E
(
cos θ êr − sin θ êθ

) + Ca3E
2 cos θ êr + sin θ êθ

r3

evaluated just outside the thin double layer

(15)E‖ = Etot,θ = −(1 − C)E sin θ

so that

(16)veo,θ = εm

ηm

ζ(1 − C)E sin θ.

Combining this result with Eq. (11) and taking into account
the difference in reference frames corresponding to Eqs. (3)
and (9), leads to

(17)ve = 2

3

εm

ηm

ζ(1 − C)E.

Finally, the last term in Eq. (3) can be deduced considering
the drag force on a spherical particle performing low-amplitude
translational periodic oscillations in a viscous fluid. The expres-
sion, presented in [14] requires that

(18)ω � ηm

ρma2
.

Moreover, its use to calculate the inertial correction to the dy-
namic electrophoretic mobility [3] further requires that:

(19)ω � κ2ηm

ρm

.

3. Dependence on the particle concentration

In what follows we shall generalize expression (3), origi-
nally deduced for an isolated particle, to mildly concentrated
suspensions.

3.1. Hydrodynamic interactions between particles: back flow

We first consider the influence of the hydrodynamic interac-
tions between particles on their electrophoretic velocity:

(20)ve = 2

3

εm

ηm

ζ(1 − C)GE.

We make use of the property that outside the thin double layer
the fluid flow can be derived from a velocity potential [15] that
satisfies the Laplace equation. The leading term of the solu-
tion is dipolar, so that each particle behaves as a hydrodynamic
dipole. Therefore, the hydrodynamic effect of neighboring par-
ticles on any given particle, can be calculated by evaluating the
Fig. 1. Relative positions of a generic particle carrying a hydrodynamic dipole
of strength pv , and the reference particle.

back flow fluid velocity created by these dipoles:

(21)�vbf =
∑

�vi.

In this expression the sum extends over all the particles sur-
rounding the considered one, and �vi are the velocity fields of
these particles calculated at the position of the considered par-
ticle:

(22)�vi = −∇i

(
pv

cos θi

r2
i

)
.

Here ri , θi are the spherical coordinates of the considered parti-
cle in the coordinate system fixed to particle i, as schematically
shown in Fig. 1. This expression can be also written as:

(23)�vi = −∇
(

pv

cos θ

r2

)
,

where r , θ are the spherical coordinates of particle i in the co-
ordinate system of the considered particle. In passing from the
velocity fields given in Eq. (22) to Eq. (23) one should take into
account that ri = r , θi + θ = π , êri = −êr , and êθi

= êθ .
The sum in Eq. (21) can be evaluated transforming it into an

integral:

(24)�vbf = − 3

4πb3

∫
V

∇
(

pV

cos θ

r2

)
dV,

where V is the volume of the suspension and b is defined in
Eq. (2). Making use of the identity

(25)
∫
V

∇ϕ dV =
∫
S

ϕn̂dS,

where S is the closed surface surrounding V and n̂ a unit vector
normal to this surface and pointing outward, Eq. (24) trans-
forms into

(26)�vbf = −pv

3

4πb3

∫
S

cos θ

r2
n̂dS.

The integration is performed over the planes which are assumed
to limit the suspension z = d , z = −d , and over the spherical
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surface of radius b surrounding the considered particle

�vbf = −pv

3

4πb3

∞∫
0

(d − z0)/
√

(d − z0)2 + ρ2

(d − z0)2 + ρ2
êz2πρ dρ

− pv

3

4πb3

∞∫
0

(−d + z0)/
√

(−d + z0)2 + ρ2

(−d + z0)2 + ρ2

× (−êz)2πρ dρ

(27)− pv

3

4πb3

π∫
0

cos θ

b2
(−êz cos θ)2πb sin θb dθ

so that

(28)�vbf = −2pv

b3
êz

or, using Eq. (10):

(29)vbf = −φve.

Since the back flow velocity does not modify the electro-
osmotic velocity, it does not change the value of the electro-
phoretic velocity of the particle measured with respect to the
surrounding fluid. However, it does change the value of the
electrophoretic velocity measured with respect to the laboratory
frame of reference:

(30)v(1)
e = ve + vbf,

where v
(1)
e denotes the first correction to the expression for

the electrophoretic velocity. Combining this expression with
Eqs. (29) and (20) gives:

(31)vbf = − φ

1 − φ
v(1)
e

and

(32)v(1)
e = 2

3

εm

ηm

ζ(1 − C)(1 − φ)GE.

3.2. Electrostatic interactions between particles

For a dilute suspension, the field acting on a particle is unam-
biguously defined as being equal to either the macroscopic field
�E or the external field �Eex, since both have the same value when
φ → 0. However, when the particle concentration increases,
these two fields start to differ from one another and also from
the local field �E′ that acts upon each particle. The external and
the macroscopic fields, �Eex and �E, can be defined with the help
of Fig. 2, which represents a parallel plate capacitor. The vol-
ume between z = −d and z = d is filled with the suspension,
while the remaining volume is filled with the electrolyte solu-
tion. Then the fields �Eex and �E are defined as

(33)�Eex = −U(−d) − U+

h
êz = −U− − U(d)

h
êz,

(34)�E = −U(d) − U(−d)

2d
êz.
Fig. 2. Schematic representation of the ideal system devised to evaluate the
difference between the external and macroscopic electric fields. The region be-
tween z = −d and z = +d is occupied by the suspension. The slabs of thickness
h on both sides of the suspension are particle-free electrolyte regions.

As for the local field �E′, calculated at the position of a given
particle, it is equal to the external field plus the sum of the fields
generated by all the remaining particles, Fig. 2:

(35)�E′ = �Eex +
∑ �Ei.

The fields due to the different particles have the general
form:

(36)�Ei = −∇i

(
pe

4πεm

cos θi

r2
i

)
= −∇

(
pe

4πεm

cos θ

r2

)
,

where pe is the electric dipole of particle i together with its dou-
ble layer, ri , θi are the spherical coordinates of the considered
particle in the coordinate system of particle i, and r , θ are the
spherical coordinates of particle i in the coordinate system of
the considered particle, Fig. 1.

The sum in Eq. (35) can be evaluated by transforming it into
an integral:

(37)�E′ = �Eex − 3

4πb3

∫
V

∇
(

pe

4πεm

cos θ

r2

)
dV,

where V is the volume of the suspension and b is defined in
Eq. (2). The integral has the same form as that given in Eq. (24),
so that the solution is (see Eq. (28)):

(38)�E′ = �Eex − 2 �pe

4πεmb3
.

Now, considering the relationship between the dipole moment
and both the dipolar coefficient and the local field

(39)�pe = 4πεmCa3 �E′

and using Eq. (2), finally gives

(40)�E′ = �Eex

1 + 2φC
.

While the hydrodynamic and electrical interactions are for-
mally similar, it is worth noting an important difference: the
back flow velocity vbf is calculated as a function of the elec-
trophoretic velocity ve, Eq. (29), and not of its corrected value
v

(1)
e , Eq. (30). On the contrary, the electric dipole �pe is calcu-

lated as a function of the local electric field �E′, Eq. (39), rather
than the external field �Eex. The reason for this difference is
that a change in the electric field acting on a particle changes
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its electroosmotic velocity, whereas this velocity remains unal-
tered by the presence of the back flow velocity.

Combining Eqs. (32) and (40) leads to the second correction
to the expression for the electrophoretic velocity:

v(2)
e = 2

3

εm

ηm

ζ(1 − C)(1 − φ)GE′

(41)= 2

3

εm

ηm

ζ
(1 − C)(1 − φ)

(1 + 2φC)
GEex.

The two concentration dependent terms are closely related to
the classical expression [16] deduced for the interaction be-
tween two spherical particles. For large, weakly charged par-
ticles at relatively low frequencies, C → −1/2, these factors
exactly compensate each other [17].

3.3. Expression in terms of the macroscopic field

The expression obtained for the electrophoretic velocity,
Eq. (41), is written in terms of the external field �Eex. However,
the experimentally accessible field value is the macroscopic
field �E since, for a plane capacitor filled with the suspension
(Fig. 2 with h = 0), this field is equal to the applied voltage
divided by the electrode spacing, Eq. (34).

Using the definition given in Eq. (34), the macroscopic field
E can be related to the external field Eex as follows

(42)E = Eex −
∑

Ui(d) − ∑
Ui(−d)

2d

(the arrows over the field symbols are not needed since both
fields are parallel to one another). In this expression, the first
sum represents the potential due to all the particles in the sus-
pension calculated at any point on the plane z = d , while the
second corresponds to the potential at z = −d . The first sum
can be evaluated transforming it into an integral:

∑
Ui(d) = 3

4πb3

∞∫
ρ=0

d∫
z=−d

pe

4πεm

cos θ

r2
dz 2πρ dρ

= pe

4πεm

3

4πb3

×
∞∫

ρ=0

d∫
z=−d

(d − z)/
√

(d − z)2 + ρ2

(d − z)2 + ρ2
dz 2πρ dρ

(43)= 3ped

4πεmb3
.

Since, by symmetry,

(44)
∑

Ui(−d) = −
∑

Ui(d)

it follows, using Eq. (42), that

(45)E = Eex − 3pe

4πεmb3
.

Combining this expression with Eqs. (39), (40) and (2), leads to
the final result

(46)E = Eex
1 − φC

,

1 + 2φC
which coincides with the well-known Maxwell–Wagner for-
mula [18]. Combining Eqs. (41), (46) makes it possible to ex-
press the electrophoretic velocity in terms of the macroscopic
field E:

(47)v(3)
e = 2

3

εm

ηm

ζ
(1 − C)(1 − φ)

(1 − φC)
GE.

3.4. Frame of reference

In all of the preceding deduction, the velocity of the parti-
cle was defined with respect to the laboratory reference frame.
However, the proper definition for the calculation of the elec-
trophoretic mobility requires that the velocity should be re-
ferred to the zero-momentum frame of reference. The reason for
this is that the total electrical force acting on the system is zero
because of electroneutrality, so that the center of mass should
not move. Therefore, if it does move, this movement must be
due to other forces, which should not influence the value of the
electrophoretic mobility.

In the laboratory frame, the velocity of the center of mass
vcm is:

(48)vcm = φρpv
(3)
e + (1 − φ)ρf vbf

φρp + (1 − φ)ρf

.

Using Eq. (31) for the back flow velocity, substituting in that ex-
pression v

(3)
e for v

(1)
e (since the same corrections must be made

to that velocity as to ve), and combining with Eq. (48) gives:

(49)vcm = φv
(3)
e (ρp − ρf )

φρp + (1 − φ)ρf

.

Therefore, the particle velocity with respect to the zero-
momentum reference frame is:

(50)v(4)
e = v(3)

e − vcm = v
(3)
e

1 + φ�ρ/ρf

,

which leads to the final expression for the electrophoretic mo-
bility:

(51)u
(4)
d = 2

3

εm

ηm

ζ
(1 − C)(1 − φ)

(1 − φC)(1 + φ�ρ/ρf )
G.

4. Frequency dependence

In view of Eq. (51), the mobility u
(4)
d depends on the fre-

quency through the dipolar coefficient C and the factor G,
which is related to inertial effects. The expression for the dipo-
lar coefficient C, valid for high frequencies (condition (12)), is
well known [18]:

(52)C = Kp − Km

Kp + 2Km

,

where Kp and Km are the complex conductivities of the particle
and the surrounding medium. These parameters are defined as:

(53)Kp,m = σp,m + iωεp,m,
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Fig. 3. Frequency dependence of the real and imaginary parts of the dipole
coefficient, C, for spherical particles with Du = 2.41 and εp = 2ε0 in a medium
with permittivity εm = 78ε0 and conductivity σm = 1.49 mS/m.

where σp (σm) is the equivalent conductivity of the particle
(medium) and εp (εm) its absolute permittivity. Both parame-
ters can be considered to be independent of ω in the frequency
range of interest. Assuming, furthermore, that the particle is in-
sulating, as is usually the case, σp is only due to the electrical
double layer, that is to the surface conductivity κσ [18]:

(54)σp = 2κσ

a
.

Using this result together with Eqs. (52), (53):

(55)C = 2Du + iω(
εp−εm

σm
) − 1

2Du + iω(
εp+2εm

σm
) + 2

,

where Du is the Dukhin number that relates the surface and the
medium conductivities [18]:

(56)Du = κσ

aσm

.

For low frequencies, C is controlled by the Dukhin num-
ber: the dipole coefficient shifts from C ≈ −1/2 for low Du to
C ≈ 1 if Du is very high. On the contrary, the permittivity val-
ues control the overall behavior of C at high frequencies. These
two regimes are separated by the Maxwell–Wagner–O’Konski
frequency given by:

(57)ωMWO = 2σm

εp + 2εm

(Du + 1).

Fig. 3 illustrates the frequency dependence of the real and imag-
inary parts of C, corresponding to the MWO relaxation, for the
case Du = 2.41, εp = 2ε0, εm = 78ε0, σm = 1.49 mS/m; for
this parameter selection ωMWO = 1.16 MHz.

5. Results and discussion

We will now check the validity of our evaluation of ud by
comparing it to existing models for the mobility in concentrated
suspensions, specifically: O’Brien et al.’s formula based on the
evaluation of the interactions of the particle with its nearest
neighbors [8] and a numerical solution of the cell-model equa-
tions [19]. We will carry out the comparison for a fixed zeta
potential (ζ = 100 mV) and different κa values, corresponding
to several KCl concentrations.

The O’Brien et al.’s formula [8] was deduced for particles
with thin double layer and dipolar coefficient C = −1/2:

(58)

uOB
d |C=−1/2 = εmζ

ηm(2 + φ)

(2 − 2φ) − 3φ(F − 1) − 2λ2

3+3λ+λ2

1 + �ρ
ρf

[
φF + 2λ2

3(3+3λ+λ2)

] ,

where

(59)F = 2

3

{
1

2
+ [

4λ2I + (1 + 2λ)e−2λ
]
J 2

}
,

(60)J = eλ

1 + λ + λ2/3
,

(61)I =
∞∫

1

[
g(r) − 1

]
re−2λr dr

and g(r) is the Percus–Yevick pair distribution function.
In order to include situations where C = −1/2, the follow-

ing correction is made [20]

(62)uOB
d = uOB

d |C=−1/2

1 + Kp(1−φ)

Km(2+φ)

.

Our expression (51) can be written in a form that is similar
to O’Brien’s equation (58)

(63)u
(4)
d = εmζ

ηm

(1 − C)(1 − φ)

(1 − φC)(1 + φ�ρ
ρf

)

2(1+λ)

3+3λ+λ2[
1 + �ρ

ρf

2λ2

3(3+3λ+λ2)

] .

Separating the factors that depend on the dipolar coefficient C

and using Eq. (52) leads to the result:

(64)u
(4)
d = u

(4)
d |C=−1/2

1 + Kp(1−φ)

Km(2+φ)

,

which shows that Eqs. (62) and (64) have exactly the same de-
pendence on the dipolar coefficient. Furthermore, taking the
low frequency limit (ω → 0, λ → 0, F → 1) of Eqs. (62)
and (64), leads to a common result:

uOB
d |ω=0 = u

(4)
d |ω=0

(65)= εmζ

ηm

(2 − 2φ)

(2 + φ)

1[
1 + Du (2−2φ)

(2+φ)

]
(1 + φ�ρ

ρf
)
.

Therefore, Eqs. (62) and (63) only differ in their treatment of
the inertial and short range interaction effects.

Fig. 4 shows the results of the comparison between our ex-
pression and both numerical and O’Brien’s calculations of the
dynamic mobility in the case κa = 10, for particles with a zeta
potential equal to 100 mV and mass density ρp = 2.4 g/cm3,
for volume fractions of 2, 10 and 20%. Note that whatever the
model chosen:
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Fig. 4. Modulus of the dynamic mobility of suspensions containing 2, 10 and
20% volume fraction of spherical particles, as a function of the frequency of
the macroscopic field. Solid lines: this work; open symbols: O’Brien’s formula;
full symbols: numerical cell model. In all cases, ζ = 100 mV, ρp = 2.4 g/cm3,
particle radius a = 100 nm, and 10−3 mol/l KCl electrolyte concentration
(κa = 10).

(i) Increasing the volume fraction brings about a reduction of
|ud | for all frequencies.

(ii) At sufficiently high frequencies, inertia effects (repre-
sented by the G function) dominate, and the mobility de-
creases with the frequency of the field.

(iii) |ud | goes through a maximum prior to its inertial de-
crease, a manifestation of the Maxwell–Wagner–O’Konski
(MWO) relaxation in C (Fig. 3).

Considering now the comparison between the different cal-
culations, it is clear that while our Eq. (51) and O’Brien’s
expression coincide exactly for low frequencies, as Eq. (65)
predicts, as the frequency is increased beyond the MWO rise,
the trends of the two expressions differ, the more so the more
concentrated is the suspension. This is a consequence of the
fact that the G function used in our simple model (Eq. (44))
corresponds to dilute suspensions, and constitutes only a first
approximation for concentrated ones.

This behavior is confirmed by the results in Figs. 5 and 6,
corresponding to κa = 31.2 and 69, respectively. Note that al-
ready for κa = 31.2, and better for κa = 69, the three calcula-
tions differ basically in that the frequency marking the begin-
ning of inertial effects is lower in our model. This is again a
manifestation of the limited validity of Eq. (44) for G at high
concentrations. It is also worth mentioning that the MWO in-
crease in the dynamic mobility found in Fig. 4 is absent in
Figs. 5 and 6. This occurs because the characteristic frequency
associated to that relaxation increases with the electrolyte con-
centration, Eq. (57), so that in Figs. 5 and 6 it falls beyond
the beginning of the inertial decrease. Considering the low fre-
quency range, note that both our model and O’Brien’s approach
slightly differ from the cell calculations. This is due to the
phenomenon of concentration polarization (formation of a gra-
dient of neutral electrolyte around the particle because of the
different transport numbers of coions and counterions in the
double layer), which is not taken into account in the semian-
Fig. 5. Same as Fig. 4, but for a = 300 nm and 10−3 mol/l KCl electrolyte
concentration (κa = 31.2).

Fig. 6. Same as Fig. 4, but a = 300 nm and 5 × 10−3 mol/l KCl electrolyte
concentration (κa = 69).

alytical models but is included in the numerical cell calcula-
tions [19].

6. Conclusion

Using simple arguments based on the evaluation of hy-
drodynamic and electrostatic interactions among particles in
concentrated suspensions, as well as on the inertia of fluid and
particles when the field frequency increases, we deduced an
easy to use formula for the dynamic mobility ud . The resulting
expression exactly coincides with O’Brien et al.’s semianalyti-
cal model at low frequencies and has, furthermore, exactly the
same dependence on the dipolar coefficient. The validity of our
calculation has been checked against other evaluations of ud .
Good agreement is found with O’Brien et al.’s results (except
at high frequencies and for large particle concentrations) and
with a numerical cell model (as long as κa � 1). However, its
main merit lays in its ability to qualitatively explain the depen-
dences of ud on ω and φ, somewhat hidden in more elaborate
treatments.
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