# Solubility of Two Stable Iminium Salts in $\mathbf{1 2}$ Polar Solvents 

María C. Grande, ${ }^{\dagger}$ Carmen R. Barrero, ${ }^{\dagger}$ Carlos M. Marschoff, ${ }^{*, \ddagger}$ J uan B. Rodríguez, ${ }^{\S}$ and Eduardo G. Gros ${ }^{\text {n, }}$

Department of Chemistry, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, (1063) Buenos Aires, Argentina, and Department of Chemical Engineering, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, (1063) Buenos Aires, Argentina, and Department of Organic Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, (1428) Buenos Aires, Argentina


#### Abstract

Despite their biol ogical importance, little is known about the physicochemical properties of iminium salts due to their high reactivity with water. Our group has synthesized several iminium salts that are unusually stable to hydrolysis. In the present work, solubility data are reported as a function of temperature for two of these compounds, namely, 8-acetamide-2,4,4,8-tetramethyl-3-azabicyclo[3.3.1]non-2-ene perchlorate and 8 -benzamide-2-phenyl-4,4,8-trimethyl-3-azabicyclo[3.3.1]non-2-ene perchlorate, in 12 different polar solvents. Thermodynamic quantities related to the solution process are calculated.


## Introduction

Many workers have devoted efforts to study the chemistry of iminium salts because of the important role they play in a number of biological processes. ${ }^{1,2}$ However, little is known regarding the physicochemical and clinical or pharmaceutical properties of these compounds, since the iminium group ( $\mathrm{R}-\mathrm{NH}^{+}=\mathrm{R}^{\prime}$ ) is readily hydrolyzed under normal atmospheric conditions and is consequently unmanageable for practical applications.

By the mid-1980s our group found that reactions of limonene with nitriles in the presence of perchloric acid yield, through a Ritter mechanism, bicyclic iminium perchlorates which do not undergo hydrolysis even when dissolved in acid or neutral solutions. ${ }^{3-5}$ Furthermore, X-ray measurements performed on single crystals showed that these salts might possess interesting dielectric properties ${ }^{6,7}$ while preliminary tests performed on tissue samples and on mice indicate that these compounds have a significant depressive action on the cardiac muscle.

Consequently, it was decided to begin a systematic study of the properties of these compounds and their solutions. In this paper we report the solubility values of 8-acetamide-2,4,4,8-tetramethyl-3-azabicyclo[3.3.1]non-2-ene perchlorate (ATABNEP) and 8-benzamide-2-phenyl-4,4,8-trimethyl-3-azabicyclo[3.3.1]non-2-ene perchlorate (BETABNEP) in the solvents listed in Table 1 as a function of temperature.

[^0]Table 1. Solvents Used in This Worka

| solvent | dielectric | density |  |
| :---: | :---: | :---: | :---: |
|  | constant | $\overline{\mathrm{g} \cdot \mathrm{mL}^{-1}}$ | source |
| water | 78.3 | 0.997 | bidistilled |
| methanol | 32.7 | 0.787 | Merck 99.6\% |
| ethanol | 24.6 | 0.785 | Merck 99.8\% |
| 1-propanol | 20.3 | 0.799 | Merck 99.7\% |
| 2-propanol | 19.4 | 0.781 | Merck 99.7\% |
| 1-butanol | 17.5 | 0.810 | Mallinckrodt 99.6\% |
| 1,2-propanediol | 32.0 | 1.036 | Aldrich > 99\% |
| 2-ethoxyethanol | 13.4 | 0.930 | Aldrich > 99\% |
| propanone | 20.7 | 0.785 | Fluka > 99\% |
| ethanonitrile | 36.0 | 0.777 | Aldrich > 99\% |
| propanonitrile | 29.7 | 0.772 | Fluka > 99\% |
| propenonitrile | 33.0 | 0.806 | Carlo Erba > 99\% |

a Densities correspond to data given at $25^{\circ} \mathrm{C}$.

## Experimental Section

ATABNEP was prepared as previously described, ${ }^{3}$ employing 2.80 g of (+)-limonene (Merck) in 120 mL of acetonitrile (Aldrich) containing 3.80 mL of concentrated perchloric acid (Merck). The obtained solid was recrystallized several times from absolute ethanol, yielding 2.0 g of the pure salt, as confirmed by IR, NMR, and mass spectroscopy.

BETABNE P was synthesized by dissolving 14.0 g of (+)limonene (Merck) in 600 mL of benzonitrile (Aldrich) containing 3.80 mL of concentrated perchloric acid (Merck). The resulting solid was also recrystallized from absolute ethanol, and finally, 8.83 g of pure BETABNEP was obtained. The salt was characterized through its IR, NMR, and mass spectra.
Solubility measurements were carried out by the following method: (a) Flasks containing saturated solutions of each salt-solvent pair were thermostated and shaken

Table 2. Solubility Values in Molar Fraction Units $X_{s}$ for ATABNEP in Each Solvent

|  | $\mathrm{X}_{\mathrm{s}} \times 10^{3}$ |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| solvent | 298.15 K | 303.15 K | 308.15 K | 313.15 K | 318.15 K |
| water | 1.197 | 1.415 | 1.595 | 1.822 | 2.099 |
| methanol | 9.454 | 10.259 | 11.099 | 12.235 | 14.206 |
| ethanol | 1.531 | 1.843 | 2.109 | 2.441 | 2.840 |
| 1-propanol | 1.436 | 1.712 | 1.960 | 2.282 | 2.642 |
| 2-propanol | 1.338 | 1.551 | 1.819 | 2.142 | 2.429 |
| 1-butanol | 1.382 | 1.641 | 1.909 | 2.194 | 2.566 |
| 1,2-propanodiol | 19.730 | 20.624 | 22.031 | 23.228 | 25.083 |
| 2-ethoxyethanol | 1.845 | 2.172 | 2.484 | 2.824 | 3.223 |
| propanone | 3.589 | 3.879 | 4.115 | 4.445 | 4.935 |
| ethanonitrile | 25.734 | 26.541 | 27.479 | 29.181 | 30.516 |
| propanonitrile | 3.924 | 4.156 | 4.401 | 4.769 | 5.259 |
| propenonitrile | 4.423 | 4.585 | 4.865 | 5.280 | 5.812 |

Table 3. Solubility Values in Molar Fraction Units $X_{s}$ for BETABNEP in Each Solvent

|  | $\mathrm{X}_{\mathrm{s}} \times 10^{3}$ |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| solvent | 298.15 K | 303.15 K | 308.15 K | 313.15 K | 318.15 K |
| water | 0.038 | 0.057 | 0.077 | 0.099 | 0.115 |
| methanol | 2.887 | 3.267 | 3.805 | 4.455 | 5.341 |
| ethanol | 1.497 | 1.816 | 2.226 | 2.644 | 3.160 |
| 1-propanol | 1.300 | 1.602 | 1.926 | 2.319 | 2.882 |
| 2-propanol | 0.845 | 1.032 | 1.324 | 1.630 | 1.989 |
| 1-butanol | 0.928 | 1.126 | 1.461 | 1.783 | 2.211 |
| 1,2-propanodiol | 12.242 | 13.208 | 14.654 | 16.416 | 18.698 |
| 2-ethoxyethanol | 2.558 | 2.972 | 3.476 | 4.103 | 4.799 |
| propanone | 2.749 | 3.080 | 3.633 | 4.247 | 4.948 |
| ethanonitrile | 3.071 | 3.499 | 4.211 | 4.884 | 5.718 |
| propanonitrile | 1.864 | 2.153 | 2.541 | 3.047 | 3.461 |
| propenonitrile | 5.915 | 6.614 | 7.426 | 8.556 | 10.376 |

Table 4. Enthalpy, Gibbs Energy, and Entropy of Dissolution of ATABNEP in Each Solvent, Assuming Ideal Behavior

| solvent | $\Delta H^{\circ}$ | $\Delta \mathrm{G}^{\circ}$ | $\Delta \mathrm{S}^{\circ}$ |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ | $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ | $\mathrm{kJ} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$ |
| water | 43.4 | -0.931 | 0.149 |
| methanol | 30.8 | -11.0 | 0.140 |
| ethanol | 47.9 | -2.16 | 0.168 |
| 1-propanol | 47.6 | -1.82 | 0.166 |
| 2-propanol | 47.8 | -1.42 | 0.165 |
| 1-butanol | 48.2 | -1.63 | 0.167 |
| 1,2-propanediol | 18.9 | -14.7 | 0.113 |
| 2-ethoxyethanol | 43.5 | -3.08 | 0.156 |
| propanone | 24.3 | -6.30 | 0.103 |
| ethanonitrile | 13.7 | -16.1 | 0.100 |
| propanonitrile | 22.8 | -6.71 | 0.099 |
| propenonitrile | 21.6 | -7.26 | 0.097 |

continuously during several days. (b) Samples were taken and weighed in a clean vial; afterward the vial was put into a vacuum oven where the solvents were evaporated at temperatures below $60^{\circ} \mathrm{C}$ until constant weight of the solid was attained. (c) Step b was repeated until three solubility measurements coincided within $0.03 \%$

At least three independent measurements of the solubility were performed for each salt-solvent pair. In all cases the repeatability was better than $0.05 \%$. Mass measurements had an uncertainty of $\pm 0.01 \mathrm{mg}$, while the amount of salt dissolved was always greater than 100 mg . Temperature was kept constant within $\pm 0.05^{\circ} \mathrm{C}$.

## Results and Discussion

Tables 2 and 3 show the measured solubility values for the two salts in the different solvents in molar fraction units at five temperatures.

Table 5. Enthalpy, Gibbs Energy, and Entropy of Dissolution of BETABNEP in Each Solvent, Assuming Ideal Behavior

| solvent | $\Delta \mathrm{H}^{\circ}$ |  | $\Delta \mathrm{G}^{\circ}$ |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ |  | $\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ |  |
| $\mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$ |  |  |  |  |
| water | 87.4 | 15.4 | 0.241 |  |
| methanol | 48.5 | -5.15 | 0.180 |  |
| ethanol | 60.3 | -1.94 | 0.209 |  |
| 1-propanol | 55.2 | -1.62 | 0.191 |  |
| 2-propanol | 68.4 | 0.877 | 0.227 |  |
| 1-butanol | 69.3 | 0.435 | 0.231 |  |
| 1,2-propanediol | 33.5 | -12.3 | 0.154 |  |
| 2-ethoxyethanol | 49.8 | -4.61 | 0.183 |  |
| propanone | 47.2 | -4.91 | 0.175 |  |
| ethanonitrile | 50.1 | -5.47 | 0.186 |  |
| propanonitrile | 50.0 | -3.04 | 0.178 |  |
| propenonitrile | 38.8 | -8.91 | 0.160 |  |

From these data $\Delta H^{\circ}, \Delta G^{\circ}$, and $\Delta S^{\circ}$ values for the dissolution of the salts in the different solvents were calculated, assuming ideal behavior, through the following relationships:

$$
\begin{gather*}
\partial \ln K_{s} / \partial T=\Delta H^{\circ} / R T^{2}  \tag{1}\\
-R T \ln K_{s}=\Delta G^{\circ}  \tag{2}\\
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \tag{3}
\end{gather*}
$$

where $K_{s}$ is the solubility product of the salt. The resulting values are shown in Tables 4 and 5.

## Literature Cited

(1) Böhme, H., Viehe, H. G., Eds. Iminium salts in organic chemistry. Part 1; J ohn Wiley \& Sons: New York, 1976.
(2) Böhme, H., Viehe, H. G., Eds. Iminium salts in organic chemistry. Part 2; J ohn Wiley \& Sons: New York, 1979.
(3) Caram, J. A.; Martins, M. E.; Marschoff, C. M.; Cafferata, L. F. R.; Gros, G. E. Ritter reaction on terpenoids. I. Stereospecific preparation of ( $1 \mathrm{~S}, 5 \mathrm{R}, 8 \mathrm{R}$ ) and ( $1 \mathrm{R}, 5 \mathrm{~S}, 8 \mathrm{~S}$ ) 8-acetamido-2,4,4,8-tetramethyl-3-azabicyclo[3.3.1]non-2-ene perchlorate. Z. Naturforsch. 1984, 39b, 972-974.
(4) Samaniego, W. N.; Baldessari, A.; Ponce, M. A.; Rodríguez, J . B.; Gros, E. G.; Caram, J. A.; Marschoff, C. M. Ritter reaction on terpenoids. III. Stereospecific preparation of [3.3.1] substituted piperidines. Tetrahedron Lett. 1994, 35, 6967-6968.
(5) Rodríguez, J. B.; Gros, E. G.; Caram, J. A.; Marschoff, C. M. Ritter reaction on terpenoids. IV. Remarkable tendency to produce 3-azabicyclo[3.3.1]non-2-ene systems from mono and sesquiterpenes. Tetrahedron Lett. 1995, 36, 7825-7826.
(6) Viturro, H. R.; Rivero, B. E.; Piro, O. E.; Caram, J. A.; Martins, M. E.; Marschoff, C. M. Crystal and molecular structure of 8-acetamido-2,4,4,8-tetramethyl-3-azaniumbicyclo[3.3.1]non-2ene perchlorate. Can. J. Chem. 1987, 65, 2000-2003.
(7) Caram, J. A.; Rivero, B. E.; Piro, O. E.; Gros, E. G.; Marschoff, C. M. On the unusual hydrolysis reaction of 8 -acetamido-2,4,4,8-tetramethyl-3-azaniumbicyclo[3.3.1]non-2-ene perchlorate. Can. J. Chem. 1990, 68, 334-338.

Received for review September 26, 2001. Accepted September 14, 2002.

J E0102630


[^0]:    * To whom correspondence should be addressed. E-mail: cmarschoff@ hotmail.com/citybe@satlink.com. Fax: 00-54-221-472-0393.
    † Department of Chemistry, Facultad de Ingeniería, Universidad de Buenos Aires.
    ₹ Department of Chemical Engineering, Facultad de Ingeniería, Universidad de Buenos Aires.
    § Department of Organic Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
    ${ }^{11}$ Deceased.

