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ABSTRACT: We investigate the reactive dynamics of the triatomic system
F + HCl → HF + Cl for total angular momentum equal zero and for
different low-lying rovibrational states of the diatomic molecule. For each of
the initial vibrational quantum numbers, the time evolution of the atom−
diatom collision process is investigated for a wide range of impact angles and
collision energies. To this purpose, the Quasi-Classical Trajectories (QCT)
method was implemented in a hyperspherical configuration space. The
Hamilton equations of motion are solved numerically in an intermediate
effective Cartesian space to exploit the relative simplicity of this intermediate
representation. Interatomic interactions are described by a London−Eyring−
Polanyi−Sato potential energy surface, specifically developed for the title
reaction, and the results of the QCT simulations are discussed in terms of
the time-evolution of the hyperangles. The analysis of the collision dynamics
using symmetric hyperspherical coordinates provides, in addition to the description in terms of a natural reaction coordinate (the
hyperradius), a more striking representation of the exchange dynamics, in terms of the time-dependent probability distribution
along the kinematic rotation hyperangle, and a precise distinction between direct and indirect mechanisms of the reaction.

1. INTRODUCTION

Since its inception in the 1950s, molecular dynamics has
evolved into a powerful and universal tool for the investigation
of the atomic motion underlying time-dependent phenomena
at the molecular scale. Progressively, new atomistic simulation
techniques have been developed and successfully applied to the
study of the dynamics of such systems. However, the computer
power and memory requirements increase with the size of the
system under study. Therefore, the size and complexity of
molecular systems that can be simulated at present are limited
by the current availability of computational resources. In spite
of the pace of increase in computer performance, there will be
also some limits in the future. As a consequence, there is a
considerable interest in developing more efficient and simple
representations of molecular motion.
A judicious choice of the coordinate system is usually of

crucial importance for both the classical and the quantum
treatments of the motion of several particles in space. Various
alternative sets of coordinates (e.g., the Jacobi and the Radau-
Smith vectors) have been employed in the description of the
internal motion in three-body problems in general and for
elementary chemical reactions particularly (see refs 1, 2, and
refs therein). In this sense, hyperspherical coordinates have
been successfully used for studying simple molecular systems,
while they are very appealing for the theoretical description of
polyatomic systems.3−9 Likewise, they have been extensively
applied in investigations in atomic10,11 and nuclear12,13 physics.
Within the hyperspherical formalism, the motion of N particles

in three-dimensional space is mapped into the motion of a
single particle along the hyperradius and 3N − 3 hyperangles,
once the motion of the center of mass has been separated out.
The hyperspherical coordinates are advantageous in the
description of the asymptotic reaction channels14 and
chirality.15−17

In this paper we address the relationship between Smith−
Whitten hyperspherical coordinates18 and the instantaneous
geometric distribution of three atoms (in their plane of motion)
during three-particle exchange reactions. As a numerical
application for triatomic systems, we investigate the time
evolution of Smith−Whitten hyperspherical coordinates for the
F + HCl reaction, with emphasis on the identification of the
different channels based on these generalized coordinates (and
especially on the so-called kinematic hyperangle). The target
reaction has received a lot of attention in recent years.19−27

This process belongs to the type heavy + light-heavy of atom−
diatom collisions, which are of interest in the design of chemical
lasers, due its low energy barrier, its exothermicity, and the high
vibrational excitation of the HF product.28

We are interested in the understanding of the collision
process at a microscopic, molecular level, that can be gained by
examining the time evolution of the hyperspherical coordinates,
rather than computing state-resolved reaction probabilities or
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rate constants. The detailed knowledge of the characteristics of
the molecular motion in the hyperspherical configuration space
may be used afterward in the design of new approximate
methodologies for the theoretical modeling of the reaction
dynamics in polyatomic systems. To this aim, the present study
extends previous investigations on the hyperspherical repre-
sentation of the potential energy function of triatomic
systems29−31 to the analysis of the time-dependent molecular
dynamics. To our knowledge, studies of the time-dependent
reaction dynamics in hyperspherical coordinates are scarce in
the literature.25,32−36 Most of the dynamical calculations
employing the hyperspherical formalism focused on the analysis
of reaction dynamics in the time-independent formula-
tion.9,37−46

The paper is organized as follows. In Section 2, the Smith−
Whitten hyperspherical coordinates are briefly introduced, and
their properties relevant for the study of the three-particle
reaction dynamics are described. In Section 3, the Hamiltonian
and the equations of motion are presented, together with the
main characteristics of the potential energy surface (PES) and
the methodology employed in the quasi-classical trajectory
calculations. In Section 4, the results concerning the
representation of individual trajectories in the hyperspherical
configuration space and the time evolution of the probability
density distribution along the kinematic hyperangle are
presented and discussed. Finally, the key aspects of the
hyperspherical description of the time-dependent collision
dynamics are summarized in Section 5.

2. SMITH−WHITTEN COORDINATES AND THE
MAPPING OF THE GEOMETRICAL ARRANGEMENT
OF THREE-PARTICLE SYSTEMS

For triatomic systems, the symmetric hyperspherical coor-
dinates can be expressed as a function of the mass-scaled Jacobi
vectors r ⃗ and R⃗. In the present study, r ⃗ is chosen as the vector
from the Cl to the H atom, whereas R⃗ is set as the vector from
F atom to the center of mass of the HCl diatomics.
After separating the motion of the center of mass of the

triatomic system and the rigid body rotations of the system, the
remaining degrees of freedom are the hyperradius

ρ = +R r2 2 (1)

and the two hyperangles Θ and Φ, defined through the
relations

ρ
Θ = | ⃗ × |⃗R r

sin(2 ) 2 2 (2)

Φ =
⃗· ⃗

−
R r

r R
tan(2 ) 2 2 2 (3)

Among the many different possible parametrizations,2 the set
ρ, Θ, Φ, defined via the expressions (1)−(3), are considered
“democratic” generalized coordinates, since they have no
dependence on the particular choice of the ordering of the
three atoms.
The hyperradius has a straightforward interpretation: it takes

small values when the three particles are close to each other,
and it becomes larger as the particles move apart. These
properties single out the hyperradius as a natural reaction
coordinate, parametrizing the collision involving the three
particles.
One of the advantages of the hyperspherical formalism is the

nearly adiabatic separation between the motion along the
hyperradius and the hyperangular subspace. Such separation
has been exploited to study the scattering dynamics by
propagating along the hyperradius, using the eigenfunctions
of the hyperangular Hamiltonian as a basis.5,37,41,42,46,47

Moreover, some studies introduce a semiclassical integration
scheme where the motion along the hyperradial coordinate is
treated classically, while the Schrödinger equation was
integrated numerically to update the dynamical state in the
hyperangular subspace.48

To get a deeper insight into the physical meaning of
hyperangles, we exploit their scale invariance, that is, the fact
that the values of the hyperangles do not change if Jacobi
vectors are increased (decreased) by the same factor, as long as
the moduli of the Jacobi vectors remain different from zero. As
an illustration of the connection between the point occupied by
the system in the hyperspherical space and the geometrical

Figure 1. Variation of hyperangles Θ (expressed in units of π/4) and Φ (in units of π) as the position of F atom spans the plane of motion. The
larger dot represents the Cl atom, while the smaller dot represents the H atom. The unit of length is the distance between Cl and H atoms.

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.5b11525
J. Phys. Chem. A XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acs.jpca.5b11525


arrangement of the three particles, we show in Figure 1 the
values of the hyperangles Θ and Φ for each position of the F
atom, after fixing the positions of the Cl and the H atoms.
These contour plots are independent of the distance between
Cl and H atoms due to the aforementioned scale invariance.
The plots 1a,b become useful for understanding the time

evolution of the hyperangles Θ and Φ during collisions
between an atom and a diatomic molecule. For instance, Figure
1a shows that Θ vanishes if the three particles are aligned,
which is helpful in detecting rotations of a diatomic molecule
with respect to the third particle.
As we will show in the following, in this hyperspherical

parametrization, the hyperangle Φ carries substantial informa-
tion on the reaction branching among the different channels. If
Φ < π/2, then the F atom is placed in the right semiplane of
Figure 1b; otherwise, the F atom is located in the left
semiplane. This qualitative information aids to rationalize steric
effects in terms of the direction in which the F atom approaches
the HCl diatomic molecule.
Analyzing the time evolution of hyperangle Φ one can

distinguish among the various reaction channels. In the reactant
valley, corresponding to the stable configuration F + HCl, Φ
takes the asymptotic value ΦHCl = π/2 (for an infinite
separation between the F atom and the diatomic molecule).
For the remaining stable configurations, Cl + HF and H + ClF,
the hyperangle Φ takes the values ΦHF and ΦClF, respectively.
These limiting values are given by

μ μ
μ μ
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+ +
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where mCl, mF, and mH are the masses of the Cl, F, and H
atoms, and μ and μHCl are the reduced masses

μ =
+ +

m m m
m m m

Cl H F

Cl H F (6)

of the three-particle system, and

μ =
+

m m
m mHCl

Cl H

Cl H (7)

of the diatomics.
The hyperangle Φ constitutes a continuous generalization of

the traditional concept of the skewing angle, introduced in the
theory of reaction dynamics. During the dynamics, Φ varies
continuously between the values corresponding to the
configurations where the diatomic molecule of the system is
infinitely far from the isolated atom.

3. METHODOLOGY
3.1. Hamiltonian and Equations of Motion. To simplify

the propagation of the dynamical state of the system, the
Hamiltonian and the equations of motion were written in a
Cartesian space ξ, η, and ζ, first defined by Johnson:49

ξ ρ= Θ Φcos(2 )sin(2 ) (8)

η ρ= Θ Φcos(2 )cos(2 ) (9)

ζ ρ= Θsin(2 ) (10)

For the case of total angular momentum equal zero, the
resulting Hamiltonian reads:

μ
ξ η ζ
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where Pξ, Pη, and Pζ are the generalized momenta
corresponding to ξ, η, and ζ, and V is the potential energy of
the system. The equations of motion derived from this
Hamiltonian are

μ
̇ = −s P Ws

1
[4 3 ]s

(12)

μ
̇ = − − ∂

∂
P

W
P Ws

V
s

3
[ ]s s

(13)

where

ξ η ζ

ξ η ζ
=

+ +
+ +

ξ η ζW
P P P

2 2 2 (14)

and s = ξ, η, ζ. The classical equations of motion were solved
numerically in this effective Cartesian space, using the fourth-
order Adams−Moulton method with a time step of 1 × 10−2 ℏ/
Eh, started by a fourth-order Runge−Kutta integrator.
Individual trajectories were propagated until one of the
following criteria was met:

(i) the hyperradius became larger than 100a0, or
(ii) the total simulation time exceeded 4 ps.

For systems with total angular momentum J different from
zero, rotational kinetic energy and Coriolis coupling terms can
be expressed as functions of the symmetric hyperspherical
coordinates.49 However, the additional complexity of the
Hamiltonian makes the extension of the present methodology
for J > 0 a nontrivial task. Consequently, the results of the
simulations presented in Section 4 are restricted to J = 0.
Although the reaction dynamics can be different for nonzero J
values, preliminary investigations on the validity of the
proposed scheme (made on the basis of the comparison of
state-to-state reaction probabilities and reaction rate constants,
computed within the J-shifting approximation, with the
corresponding experimental values) confirm the advantages of
the hyperspherical formalism for the description of the quasi-
classical reaction dynamics in triatomic systems for J > 0.

3.2. Potential Energy Surface. To expose the advantages
of Smith−Whitten coordinate system as an interpretative tool
for the exchange reaction dynamics, we performed several
simulations of the collision process between a F atom and a
HCl diatomic molecule. The interaction between the particles
is represented by a London−Eyring−Polanyi−Sato (LEPS)
PES.50,51 The parameter values, which determine the shape of
the LEPS PES, were taken from the literature.19 This particular
choice of the interaction potential was designed to optimize the
correspondence between the results of Quasi-Classical
Trajectory (QCT) calculations and the experimental data
available for the F + HCl reaction. Because of the fitting of the
experimental results, the possible role played by tunnelling (at
low collision energies) or quantum delocalization effects are
masked in the resulting potential landscape. Therefore, this PES
represents a natural starting point for a QCT study of the time
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evolution of the hyperangular variables during exchange
reactions.
The contour plots in Figure 2 illustrate the angular

dependence of the interaction potential. The potential energy
profile does not exhibit any significant barrier along the reaction
path. The reactant and product valleys are well-defined for T-
shape configurations, whereas the latter gets broader (along the
reaction coordinate) as the angle between Jacobi vectors varies
from 90° to 180° (collinear geometry).
A deeper insight can be gained from the inspection of the

PES represented as a function of the symmetric hyperspherical
coordinates (Figure 3). The dashed line at Φ = π/2 indicates

the value of this hyperangle at the initial point in time (ρ → ∞,
Φ = π/2). From this plot, it becomes striking that the two well-
defined minima of the intermolecular potential along the
coordinate Φ drive the splitting of the initial distribution in this
direction, as the molecular density approaches the inner turning
point (ρmin). The reaction may proceed by moving forward
along each well (approaching the asymptotic values ΦClF or

ΦHF of the hyperangle Φ) or by tracing back the incoming
trajectory (in this case, Φ(t → ∞) → ΦHCl).

3.3. Initial Conditions for the Quasi-Classical Trajec-
tory Calculations. Initial conditions were generated in Jacobi
coordinates by sampling the quantum-mechanical probability
distributions in configuration and momentum spaces. The
values of the HCl bond stretching coordinate r were generated
to sample the probability density corresponding to the solution
of the time-independent Schrödinger equation on the intra-
molecular potential. The latter is obtained as the limit of the
LEPS PES when the F atom is infinitely far from the HCl
diatomic molecule.
In Figure 4 we plotted the probability distribution

corresponding to the low-lying vibrational states |Ψ0⟩, |Ψ1⟩,
and |Ψ2⟩ of the HCl molecule. For these states, the probability
density profiles closely follow those of the corresponding
vibrational states |Υ0⟩, |Υ1⟩, and |Υ2⟩ in the harmonic
approximation. It can be noticed that the main difference
consists in a relative displacement between the distributions.
These spatial shifts do not modify the corresponding
distributions in momentum space, which are nearly identical
for the full potential and for the harmonic approximation.
Therefore, the harmonic oscillator eigenfunctions in momen-
tum space were used to sample initial conditions along Pr, while
the exact vibrational eigenfunctions were used to sample the
initial positions for the QCTs.
However, for every trajectory, the distance R between the

center of mass of the HCl molecule and the F atom is
generated using a Gaussian distribution centered at 10 Å with a
standard deviation of 0.5 Å. Finally, for the impact angle, which
is the initial angle between Jacobi vectors, we used a uniform
distribution corresponding to the rotational ground state.
Calculations are performed for different initial kinetic energies
of the F atom (in the range from 0 to 150 kcal·mol−1), and its
velocity is chosen in the direction of the center of mass of the
HCl molecule. For each collision energy, a swarm of 5000
trajectories sampling the aforementioned initial distributions
was propagated according to the classical equations of motion.
Observables such as the time-dependent probability density
distribution along the kinematic hyperangle are calculated as
histograms of this ensemble of nuclear trajectories.
In the hyperspherical picture, the initial probability density in

both configuration and momentum spaces mimic the nodal
structure of the vibrational wave function of the diatomic
molecule. The projections of the momentum distributions in
the PρPΘ plane, depicted in Figure 5, correspond to the

Figure 2. Contour plots of the potential energy of the triatomic system (in kcal·mol−1), as a function of the interatomic distances HF and HCl, for
various angles between the Jacobi vectors: (a) T-shape (90°), (b) 135°, and (c) collinear (180°) configurations.

Figure 3. Contour plots of the LEPS PES (in kcal·mol−1) as a function
of the hyperspherical variables ρ (in atomic units) and Φ. The
hyperangle Θ is set to zero, corresponding to an infinite atom−diatom
separation.
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histograms of the initial conditions of the QCTs generated for
each vibrational level of the molecule. They show that the
conjugate momenta along the directions ρ and Θ are nearly
proportional. Further, the vibrational excitation is reflected by
the population of the regions in the hyperspherical phase space
corresponding to higher momenta.

4. RESULTS

4.1. Quasi-Classical Trajectories in Hyperspherical
Space. In this section, we will discuss the geometrical
representation of characteristic trajectories, corresponding to
the most important channels, in the hyperspherical config-
uration space.
In Figure 6 we show the time evolution of Smith−Whitten

coordinates for an inelastic scattering trajectory. The fact that
no exchange reaction is taking place can be inferred from the
analysis of the asymptotic behavior of the hyperangle Φ at long
times (Φ(t → ∞) = Φ(t → 0) = ΦHCl). It becomes apparent
that the collision takes place at t ≈ 60 fs, since the hyperradius
attains its minimal value at this point of time. After the
collision, the hyperangle Θ vanishes periodically, indicating the
translational to vibrational energy transfer that causes the HCl
molecule to rotate with respect to the position of F atom, in
agreement with the trajectory displayed on the left panel.
Finally, fingerprints of the intramolecular vibrations of the HCl

diatomic molecule can be identified in the time evolution of
both hyperangles.
While the trajectory represented in Figure 6 corresponds to a

direct inelastic scattering, Figure 7 shows the time evolution of
the symmetric hyperspherical coordinates for a typical indirect
inelastic scattering. After the first collision, the F atom moves
around the HCl diatomics for a relatively long time (in the
picosecond time-scale). From the behavior of the hyperangle Θ,
it becomes apparent that the intermediate complex formed by
the three atoms lasts ∼15 rotational periods. After it orbits
around the diatomic molecule during ∼1 ps, a second collision
takes place, and the fluorine atom moves away from the
hydrogen chloride.
A comparison between the frequencies of rotation during the

collision and after it may shed some light on the nature of the
energy redistribution process inside the intermediate triatomic
complex. For instance, the rotation frequency of the HCl
diatomic molecule during the intermediate phase is larger than
its rotation frequency at longer times. From the energy
conservation theorem, it follows that the F atom has less kinetic
energy while orbiting around the HCl molecule than when it
moves away from the vicinity of the diatom.
Figure 8 corresponds to another possible outcome of the

collision: an exchange of the H atom, as it is indicated by the
limiting value of the kinematic angle Φ. The time evolution of
the hyperradius depicted in Figure 8 indicates that the collision

Figure 4. Potential energy curve along the HCl bond stretching coordinate (solid curve), obtained as the limit of the LEPS PES when the F atom is
infinitely far from the diatomic molecule and its harmonic approximation (dashed curve). The probability densities corresponding to the ground, first
excited, and second excited vibrational states on the LEPS potential (solid lines), and the corresponding harmonic oscillator solutions (dashed) are
also shown.

Figure 5. Probability density in the hyperspherical momentum space, corresponding to the initial distribution of the QCTs for the vibrational (a)
ground, (b) first, and (c) second excited states. The values of the conjugate momenta Pρ and PΘ are expressed in atomic units.
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takes place during a time interval of ∼30 fs, rather than being
instantaneous as in the direct inelastic scattering analyzed
previously (cf. Figure 6). In this case, the collision is followed
by a backward scattering (i.e., it proceeds through the rebound
reaction mechanism).52 The process does not take place in a
single step, but it consists of the following phases instead. First,
a HF + Cl arrangement is adopted at t = 50 fs (as indicated by
the instantaneous value of the kinematic hyperangle), and the
reaction continues with the formation of a rotationally excited
HCl molecule, before the H atom exchange takes place and the
final HF product is formed. It can be noticed, that the F atom is
initially placed in the right half plane of Figure 1b, and it
remains in this region during the total time of the simulation.
Figure 9 depicts another possible reaction channel; that is,

the time evolution of the hyperangle Φ indicates that the
exchange of the Cl atom takes place during the reaction. Heavy-
atom exchange is characterized by a larger variation of the

position of the system in the hyperspherical configuration
space, specifically along the coordinate Φ. However, the sudden
change in the oscillation frequency of the hyperangle Θ
indicates that the HCl bond breaks simultaneously with the
formation of the ClF molecule (the marked reduction in the
frequency of oscillation is associated with the larger reduced
mass of the chlorine monofluoride, compared to the reactant
diatomic molecule). The Cl-atom exchange also follows the
rebound reaction mechanism. In this particular case, since the
new molecule carries most of the mass of the system,
oscillations can also be observed in the time evolution of the
hyperradius. Finally, by inspecting the time evolution of the
hyperangle Θ, we conclude that the vibrational excitation of the
product molecule is not accompanied by rotations around the
H atom, or at least the ClF diatom does not complete a 2π
rotation during the total time of the simulation.

Figure 6. Time evolution of Smith−Whitten coordinates (right panels) for a representative inelastic scattering trajectory (displayed on the left), with
a collision energy of 10 kcal·mol−1. Initially, the HCl molecule is in the lowest vibrational state. The configuration displayed on the left correspond to
the point in time marked by the vertical dashed line. The horizontal dashed lines in the undermost panel indicate the values corresponding to the
stable configurations (from top to bottom, H + ClF, F + HCl, and Cl + HF). The hyperangles Θ and Φ are expressed in units of π/4 and π,
respectively.

Figure 7. Time evolution of Smith−Whitten coordinates for an inelastic scattering trajectory proceeding via the formation of an intermediate
complex, with a collision energy of 0.1 kcal·mol−1. The HCl molecule is initially in its second excited state. (c) The horizontal dashed lines indicate
the values corresponding to the stable configurations (from top to bottom, H + ClF, F + HCl, and Cl + HF). The hyperangles Θ and Φ are
expressed in units of π/4 and π, respectively.
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If the initial energy of the F atom is high enough, the

triatomic system may undergo a different channel in which all

particles move apart from each other. A typical collision-

induced dissociation trajectory is displayed in Figure 10. This

type of reaction may be easily distinguished from the others

because, in general, the hyperangle Θ does not vanish as the

hyperradius goes to infinity. Moreover, since molecular

vibrations are no longer present after the collision event, no

Figure 8. Time evolution of Smith−Whitten coordinates (right panels) for a representative H atom exchange trajectory (displayed on the left),
corresponding to a collision energy of 10 kcal·mol−1. The HCl molecule is initially in its second excited vibrational state. The configuration displayed
on the left corresponds to the point in time marked by the vertical dashed line. The horizontal dashed lines in the undermost panel indicate the
values corresponding to the stable configurations (from top to bottom, H + ClF, F + HCl, and Cl + HF). The hyperangles Θ and Φ are expressed in
units of π/4 and π, respectively.

Figure 9. Time evolution of Smith−Whitten coordinates (right panels) for a representative Cl-atom exchange trajectory (represented on the left),
with a collision energy of 10 kcal·mol−1. The HCl molecule is initially in its second excited vibrational state. The configuration displayed on the left
corresponds to the point in time marked by the vertical dashed line. The horizontal dashed lines in the undermost panel indicate the values
corresponding to the stable configurations (from top to bottom, H + ClF, F + HCl, and Cl + HF). The hyperangles Θ and Φ are expressed in units
of π/4 and π, respectively.
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oscillatory patterns appear in the time evolution of any of the
hyperangles. Finally, it can also be noticed that the hyperangle
Φ does not evolve toward any of the asymptotic values
corresponding to the (atom + diatom) stable configurations
discussed above.
However, the trajectory displayed in Figure 11 does not

correspond to a new channel, but it illustrates the occurrence of
a peculiar kind of intermediate state. The reaction mechanism
involves three collisions, before the system enters the product

valley. After the first and the second encounters at t = 170 and
250 fs, the system exhibits configurations typical of an inelastic
scattering trajectory (see the bottom panel in Figure 11).
However, the resulting motion explores a different path, and it
drives the system into the H atom exchange channel after the
third collision takes place. This phenomenon has been termed
as roaming, and it has attracted a lot of attention in recent
years.53,54 Roaming dynamics can be easily distinguished using
Smith−Whitten coordinates, since the hyperradius remains

Figure 10. Time evolution of Smith−Whitten coordinates (right panels) for a typical collision-induced dissociation trajectory (represented on the
left), with a collision energy of 100 kcal·mol−1. The HCl molecule is initially in its first excited state. The horizontal dashed lines in the undermost
panel indicate the values corresponding to the stable configurations (from top to bottom, H + ClF, F + HCl, and Cl + HF). The hyperangles Θ and
Φ are expressed in units of π/4 and π, respectively.

Figure 11. Time evolution of Smith−Whitten coordinates (right panels) for an inelastic scattering trajectory exhibiting a roaming behavior
(displayed on the left), with a collision energy of 0.1 kcal·mol−1. The HCl molecule is initially in its second excited vibrational state. The horizontal
dashed lines in the undermost panel indicate the values corresponding to the stable configurations (from top to bottom, H + ClF, F + HCl, and Cl +
HF). The hyperangles Θ and Φ are expressed in units of π/4 and π, respectively.
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approximately constant, while the triatomic system explores
regions of the kinematic configuration space corresponding to
several asymptotic stable configurations.
Finally, the behavior of a stable triatomic compound is

investigated by artificially placing the F atom at a distance of 5
Å from the center of mass of the HCl molecule, with zero initial
velocity. The resulting dynamics is shown in Figures 12a−c.
The hyperradius undergoes bound oscillations indicating that
the three particles remain close to each other. In contrast to the
previous cases, the time evolution of the hyperangle Θ in Figure
12b reveals the presence of three, rather than two, oscillation
frequencies. The three oscillation frequencies correspond to the
three internal vibrational modes of the triatomic complex.
4.2. Time-Dependent Probability Density along the

Kinematic Hyperangle. While a significant amount of
information can be retrieved from the analysis of the time
evolution of the hyperspherical variables along individual
trajectories, the branching probabilities among the different
channels are computed as statistical averages over a swarm of
QCTs. In particular, the probability of hydrogen- or chlorine-
atom exchange can be obtained from the integration of the
density distribution along the coordinate Φ.
The time-evolution of the histogram of the hyperangles Φ,

for trajectories starting with the HCl diatomics in its the ground
vibrational state and with a collision energy of 10 kcal·mol−1, is
depicted in Figure 13. It can be observed that the potential
energy maximum located at Φ = π/2 (the maxima of the PES
along this coordinate are indicated by the vertical planes in the
upper panel) causes the early splitting of the molecular
distribution. Each portion of density evolves subsequently in
one of the adjacent potential wells (cf. Figure 3). During the
first 130 fs, the density profile remains nearly symmetrical with
respect to Φ = π/2 as the two components of the distribution
separate from each other, moving apart from the initial value
ΦHCl.
At t = 130 fs, the inner tail of the density profile reaches the

maximum at ΦHF, and this portion of the distribution
subsequently crosses to the region Φ < ΦHF. The fraction of
the trajectories in the hemispace Φ < π/2 evolves under the
influence of the potential well in the neighborhood of ΦHF.
During the next 50 fs, it results in a rapidly oscillating density
distribution, characterized by the presence of several small-
amplitude ripples with varying positions and widths, which
spreads over the kinematic hyperangular range around the Cl +
HF and F + HCl configurations. After t = 180 fs, two well-
defined maxima appear in the probability density in this region:
the first one at Φ ≲ ΦHCl and a notably less intense one

centered at Φ ≈ 2π/5, indicating the formation of a HF
molecule (the height of the former peak is twice as large as that
of the latter). In the meantime, the direction of motion of the
primary density peak gets reversed, and it approaches π/2 from
above.
The final probability distribution shows that inelastic

scattering is the dominant pathway (85.7% of the QCTs
evolved into this channel), while the hydrogen exchange
reaction has a markedly smaller probability of occurrence

Figure 12. Time evolution of Smith−Whitten coordinates for a triatomic compound. The horizontal dashed lines in the undermost panel indicate
the values corresponding to the stable configurations (from top to bottom, H + ClF, F + HCl, and Cl + HF). The hyperangles Θ and Φ are
expressed in units of π/4 and π, respectively.

Figure 13. (a) Time evolution of the probability density along the
hyperangle Φ. The vertical planes indicate the maxima of the LEPS
PES in this direction, corresponding to the asymptotic stable
configurations Cl + HF (Φ = 2π /5) and F + HCl (Φ = π/2). (b)
Contour plots of the density distribution represented in the top panel.
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(13.7%). However, the fraction of trajectories following the
heavy-atom exchange channel is negligible (0.7%) for the range
of collision energies investigated in this work.

5. CONCLUSIONS

We presented a QCT study of the collision process between a
HCl diatomic molecule and an impinging F atom using Smith−
Whitten hyperspherical coordinates, for total angular momen-
tum equal zero. The hyperspherical formalism provides not
only a flexible and efficient framework for the numerical
integration of the equations of motion, but also a very appealing
representation of the molecular dynamics wherein partitioning
the hyperspherical configuration space results in a useful tool to
discriminate the different channels or mechanisms.
The time dependence of the hyperspherical variables can be

interpreted in terms of the modification of the molecular
geometry along the reaction path. In particular, the time of
occurrence and the duration of the molecular collision are
directly indicated by the time-evolution of the hyperradius.
However, collision-induced dissociation trajectories can be
identified from the long-time behavior of the hyperangles:

1. the area-related variable Θ does not evolve to its linear
configuration limit (Θ = 0), and

2. the kinematic angle Φ does not approach any of the
asymptotic values corresponding to the stable config-
urations.

The complete breakup of the triatomic complex is also
characterized by the absence of oscillations in the time
evolution of the hyperangles, indicating that there are no
vibrating molecules in the system. Likewise, the remaining
reaction channels can be identified from the long-time behavior
of the hyperangle Φ.
The analysis of the time evolution of the hyperangles can be

further exploited to extract more detailed information, such as
from where the incident atom approaches the diatomics, or
how the atoms rearrange during the collision event. The
relationship between the rearrangement of the triatomic system
during the course of the reaction, and the point occupied in the
hyperspherical space, paves the way to the development of a
geometrical intuition specific of the hyperspherical description.
The latter may lead, for instance, to the development of new
control strategies to steer chemical reactions in specific
directions.
Furthermore, we performed a statistical analysis over swarms

of QCTs representing specific initial states, from which the
corresponding branching probabilities can be computed. In
particular, the time-dependent yield of nondissociative channels
is chiefly determined by the molecular distribution along the
kinematic hyperangle Φ, and it can be calculated by integrating
the projection of the density on this direction.
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