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Thiswork evaluates the use of transfer of classificationmodels for identifying adulteration of extra virgin olive oil
(EVOO) samples involving, separately, two analytical techniques: fluorescence spectroscopy and digital imaging.
The chemometric procedures, including development of classification models and application of classification
transfer methods, were performed individually for each analytical technique. Methods of direct standardization
(DS) and piecewise direct standardization (PDS)were applied to transfer samples sets in order to estimate an ad-
justment function and apply it to a samples set measured by the secondary instrument. For purposes of compar-
ison, classification models were built based on linear discriminant analysis (LDA) with previous selection of
variables by the successive projections algorithm (SPA), and partial least squares discriminant analysis (PLS-
DA). The performance of the classification models was evaluated according to the number of errors and correct
classification rate (CCR) for the prediction set measured by the secondary instrument. Before standardization,
SPA-LDA and PLS-DAmodels achieved the same CCR using two analytical techniques: 54% for fluorescence emis-
sion spectra and 47% for histograms of digital images. After the standardization, a substantial increase of the CCR
was observed. For the SPA-LDAmodels, a CCR of 88%was obtained for the fluorescence emission spectra and 82%
for the histograms of the digital images. The PLS-DA classification models reached 85% and 76% of CCR for the
fluorescence and imaging data, respectively, after standardization. These results demonstrate the efficiency of
standardization procedures applied to multivariate classification models developed from fluorescence spectros-
copy and digital images.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Multivariate classification models have been widely used in qualita-
tive analysis involving conformity assessment and identification of
adulteration in a variety of matrices [1–6]. Usually, the information ob-
tained is used to discriminate samples into categories, according to sim-
ilarity standards [7].

A number of supervised classification methods are reported in liter-
ature, including: soft independent modeling of class analogy (SIMCA)
[8], k-nearest neighbors (k-NN) [9], partial least squares discriminant
analysis (PLS-DA) [10] and linear discriminant analysis (LDA) [11].
Among these, LDA and PLS-DA have been constantly employed in clas-
sification problems [12–15]. Complications emerge when the classifica-
tion models built from an instrument or laboratory condition cannot
aíba, Departamento de Química
ímica Analítica/Quimiometria

. Pontes).
correctly classify samples analyzed under new conditions or by a differ-
ent instrument [16]. The differences between the spectral responses
may be related to changes in the chemical and/or physical composition
of the samples or changes in the instrumental response, normally
caused by maintenance irregularities, repairs, changes in the environ-
ment of the instrument or even natural wear [17].

A solution to this problem is a fullmodel recalibration froma data set
acquired under the new analytical conditions. However, this requires
time, money and rigorous control of the experimental conditions [18].
Alternatively, the classification transfer could be undertaken using stan-
dardization methods of spectral responses.

Standardization methods include direct standardization (DS) and
piecewise direct standardization (PDS) [16]. In both cases, the response
from a secondary instrument is adapted to correspond to the response
from a primary instrument [19]. For this purpose, spectra of a represen-
tative samples set, known as transfer samples, are recorded in the two
instruments and used in the standardization procedures [20].

Themathematical manipulations involved in transfer procedure can
be carried out along the entire spectral range (in direct standardization)
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or in windows of variables within the spectrum (in piecewise direct
standardization) [20]. Considering the matrices XP (Ntransf × q) and XS

(Ntransf × p) containing the spectra of theNtransf transfer samples record-
ed in the primary and secondary instruments, respectively, standardiza-
tion tries to relate them linearly as shown below:

XP¼XS�F ð1Þ

where F is a transformation matrix of dimension (p × q). In the DS
method, F is obtained as follows:

F¼ XS
� �−1

�XP ð2Þ

where ðXSÞ is the generalized inverse ofXS. Once the number of spectral
variables is greater than the number of transfer samples andXS is a rect-
angularmatrix, F is normally determined using principal component re-
gression (PCR) or partial least square (PLS). In these methods, the XP

and XS spectral matrices are projected onto the column space of XP, cal-
culated from singular value decomposition. The scores obtained in these
projections are used in the standardization and calibration procedures
[21].

The PDS method considers that spectral correlations may be limited
to small regions. Thus, a moving window is used to relate each wave-
length j of XP to wavelengths contained in a small region around j of
the XS spectrum [16]. In PDS method, F is estimated by calculating re-
gression vectors f for each window using PCR and PLS [21]. The regres-
sion vectors f are arranged in a diagonal matrix F according to:

F¼diag fT1 ; fT2 ;…; fTj ;…; fTk

� �
ð3Þ

where k is the number of wavelengths. The use of the moving window
may cause edge effects, which can be corrected truncating the ends of
the spectrum or estimating them by extrapolation [21].

With the transformation matrix F, the spectrum of a new sample
measured on the secondary instrument can be adjusted to Xa, so as to
resemble the spectra obtained by the primary instrument as expressed
in Eq. (4). The correction of the spectrum obtained in the secondary in-
strument allows it to be properly classified in the model developed for
the primary instrument.

Xa ¼ XS � F ð4Þ

Few studies involving standardization methods have been directed
towards classification problems [22–25]. Our work evaluates the use
of transfer of multivariate classificationmodels for identifying adultera-
tion of extra virgin olive oils. For this, were employed two data sets, one
obtained by fluorescence spectroscopy and the other by digital imaging.
SPA-LDA and PLS-DA classification models were built and their results
were compared before and after standardization procedures in terms
of the number of misclassification and correct classification rate (CCR)
for the prediction set as measured by the secondary instrument. Direct
standardization (DS) and piecewise direct standardization (PDS) were
performed using different numbers of transfer samples and window
sizes.

2. Materials and methods

2.1. Samples

Two classes of extra virgin olive oil (EVOO) samples were used in
this work: unadulterated and adulterated. The unadulterated samples
were acquired in local commerce with different batches from the
samemanufacturer. The manufacturer was chosen based on an investi-
gation performed by a Brazilian Association of Consumer Protection
[26], which evaluates the quality of commercially available products
(more details regarding this investigation can be found in http://
www.proteste.org.br/azeite).

In order to evaluate the authenticity of the unadulterated EVOO
samples used in this study, the determination of specific extinction
(K) by absorption in the ultraviolet region (AOCS Official Method Ch
5-91) was performed using cyclohexane of spectrophotometric grade
as solvent, as described in [27].

This method uses the ultraviolet region to obtain information on the
quality, state of conservation and changes by processing. The conjugat-
ed diene and triene systems, whose presence in EVOO can be attributed
to oxidation and/or refining, are evaluated at the wavelengths of 232
and 270 nm [27]. The values of the specific extinction (K232 and K270)
and specific extinction variation (ΔK) obtained at these wavelengths
are compared with the previously established limits and can be used
to differentiate the EVOO from the other oil categories [28].

The results demonstrated that all unadulterated EVOO samples pre-
sented values of specific extinction at the wavelengths of 232 and
270 nm (K232 and K270) and specific extinction variation (ΔK) equal or
lower than the limits established by International Olive Council [28], re-
inforcing the results obtained by [26].

All samples were stored in amber glass bottles, protected from light
and kept at a temperature of approximately 23±2 °C until time of anal-
ysis. No sample pretreatment was performed.
2.2. Fluorescence spectroscopy

The first data set consisted of 88 extra virgin olive oil (EVOO) sam-
ples (48 unadulterated samples and 40 adulterated samples). The adul-
terations were prepared by addition of soybean oil at different levels
(1.0%, 5.0%, 10.0%, 15.0%, 20.0%, 25.0% and 30.0% mm−1).

The fluorescence spectra were recorded under the same experimen-
tal conditions using a Jasco FP-6500 Spectrofluorometer, which was
considered as the primary instrument, and an Aminco Bowman Serie
2 Spectrofluorometer, used as the secondary instrument. In both instru-
ments, the slit widthwas 3 nm for excitation and 5 nm for emission. The
acquisition interval and integration time was maintained at 1 nm and
0.5 s, respectively. A PMT lamp 400W and a quartz cell 10 × 10 × 45 mm
were used for right-angle geometry.

The fluorescence emission spectra were collected between 350
and 600 nm. The excitation wavelength of 330 nm was selected for
development of the multivariate classification models. The excita-
tion wavelength range from 280 to 480 nm was evaluated in 10 nm
steps.
2.3. Digital images

A total of 54 EVOO samples were measured by digital images (un-
adulterated samples: 21 and adulterated samples: 33). In this case, the
adulterations were prepared by addition of soybean oil in the propor-
tion of 0.5%, 1.0%, 2.0%, 3.0%, 4.0%, 5.0%, 6.0%, 7.0%, 8.0%, 9.0% and
10.0% (mm−1).

The images were recorded using a webcam with HD (1280 × 720)
resolution (primary instrument) and a smartphone with resolution of
1536 × 2560 (secondary instrument). The system employed in the dig-
ital images acquisition and the procedures for obtaining the histograms
are described in [13]. The smartphone captured images at a distance of
20 cm from the quartz flow cell.

The RGB model (R - red, G - green and B - blue) for pixel color was
used in this study. Each color component of the model is composed of
256 color levels, varying from 0 to 255 for each channel. The datamatrix
is formed by samples located in rows, while the columns are constituted
of variables corresponding to the color levels obtained for each color
component. All color components were employed to develop the SPA-
LDA and PLS-DA classification models.

http://www.proteste.org.br/azeite
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Table 2
Classification results obtained by SPA-LDA and PLS-DA models in the prediction set. The
numbers of variables employed in the SPA-LDA model and latent variables used in the
PLS-DA model are indicated in parenthesis. N indicates the number of prediction samples
employed in this study.

Parameters N Classification results for
fluorescence data

SPA-LDA (8) PLS-DA (4)

Prediction P
P errors 26 3 3

Prediction S
P errors (raw data) 26 12 12

Prediction S
P errors (preprocessed data) 26 12 12

Fig. 2. (a) Average spectrum with the wavelengths selected by the SPA for fluorescence
data. (b) Average histograms with the color levels selected by the SPA for digital images
data.

Table 1
Number of training and prediction samples in each class for the two data sets. N indicates
the number of samples in each class.

Class N Fluorescence data set N Digital images data set

Subsets Subsets

Training Prediction Training Prediction

Unadulterated 48 34 14 21 14 7
Adulterated 40 28 12 33 23 10
Total 88 62 26 54 37 17
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2.4. Chemometric procedures and software

The chemometric procedures described belowwere performed indi-
vidually for each analytical technique. For both data sets, the samples
analyzed in the primary instrument were divided into training (70%)
and prediction (30%) sets using the classic Kennard-Stone (KS) algo-
rithm [29]. Table 1 presents the number of training and prediction sam-
ples in each class for both data sets.

The training samples were used in the modeling procedure
(cross-validation), including SPA variable selection for LDA and de-
termination of factors (latent variables) in PLS-DA, whereas the pre-
diction set (measured on both instruments) were used in the final
evaluation of the classification models. The LDA models were devel-
oped based on the variables selected by the successive projections
algorithm (SPA) adapted for internal validation [30]. For the PLS-
DA model, a threshold value of 0.5 was adopted. When a value
above 0.5 is predicted, the sample is considered as belonging to the
class under study, while a value below 0.5 indicates that the sample
does not belong.

In order to select subsets of transfer samples from the training set
measured on both instruments, the KS algorithm was also used. Differ-
ent numbers of transfer samples (4, 6, 8 and 10) were investigated.

Two strategies of standardization were employed: direct stan-
dardization (DS) and piecewise direct standardization (PDS) of the
prediction set measured on the secondary instruments. The PDS al-
gorithm was run with different window sizes (3, 5, 7, 9 and 11). DS
and PDS algorithms were performed using PLS Toolbox (version
3.5) for Matlab.

The results obtained by the SPA-LDA and PLS-DA models developed
from the primary instrument were compared in terms of the number of
errors and correct classification rate (CCR) for the prediction set mea-
sured on secondary instruments before and after standardization. In ad-
dition, the numbers of transfer samples employed in each model were
also evaluated.

In the discussions of the results, the abbreviation prediction P
P will

be used to represent the prediction set measured on the primary instru-
ment, while prediction S

P to prediction set measured on the secondary
instrument data.
Fig. 1. Fluorescence spectra of the EVOO samples acquired in the (a) primary and (
The analytical information contained in the histograms of the digital
images was obtained using a graphic interface coded inMatlab® 7.1. KS
and SPA-LDA algorithms were coded in Matlab (Mathworks, USA). PLS-
DA was carried out using Unscrambler X.1 (CAMO S/A).
b) secondary instruments. Unadulterated ( ) and adulterated ( ) samples.



Fig. 3.Results obtained by SPA-LDA (a and b) and PLS-DA (c and d)models applied to the raw (a and c) and preprocessed (b and d) spectra of the prediction S
P samples before (Ntransf= 0)

and after performing the DS and PDS, respectively. The window sizes employed in the PDS standardization method is indicated in parenthesis.
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3. Results and discussion

3.1. Fluorescence spectroscopy

Fig. 1 presents the fluorescence spectra of EVOO samples acquired
in each instrument. Comparing the two spectra (Fig. 1a and b), we
Fig. 4. Score plots obtained by SPA–LDAmodel for theprediction S
P samples before (a) and after (

the prediction S
P samples before (c) and after (d) DS of the raw data using Ntransf = 6. Unadu

horizontal lines are the decision boundaries established by SPA-LDA and PLS-DA models.
can observe a substantial difference in signal quality, which for the
secondary instrument (Fig. 1b) is noisy and has low signal intensity.
In the spectral range investigated, the fluorescence of EVOOs
has been attributed mainly to the oxidation products of fatty
acids (two smooth peaks at 445 and 475 nm) and vitamin E
(525 nm) [31].
b) DS of thepreprocessed data usingNtransf=4. Values estimated by the PLS–DAmodel for
lterated (■) and adulterated (●) samples measured by fluorescence spectroscopy. The



Table 3
Classification results obtained by SPA-LDA and PLS-DA models in the prediction set. The
numbers of variables employed in the SPA-LDA model and latent variables used in the
PLS-DA model are indicated in parenthesis. N indicates the number of prediction samples
employed in this study.

Parameters N Classification results for digital
images data

SPA-LDA (5) PLS-DA (6)

Prediction P
P errors 17 2 2

Prediction S
P errors 17 9 9
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Fig. 2a shows the wavelengths selected by SPA algorithm applied to
the data set of the primary instrument. Thesewavelengthswere used to
build models based on linear discriminant analysis (LDA). As can be ob-
served in Fig. 2a, wavelengths were selected along the entire spectral
range used.

Table 2 shows the number of errors obtained by SPA-LDA and PLS-
DAmodels applied to the prediction set measured on both instruments.
For the prediction set measured by a secondary instrument, prediction
S
P, the results were evaluated for the raw and preprocessed data. The
pre-processing performed was the first-derivative using smoothing by
a Savitzky–Golay filter [32] with a second-order polynomial and a 25-
point window.

As can be seen in Table 2, when the primary models are applied to
the secondary instrument data, there is an increase of the number of
prediction S

P errors both in the raw and preprocessed data, indicating
the need for a classification transfer procedure.

Fig. 3 presents the results, in terms of the number of errors, obtained
by the SPA-LDA (Fig. 3a and b) and PLS-DA (Fig. 3c and d) models ap-
plied to the raw (Fig. 3a and c) and preprocessed (Fig. 3b and d) spectra
of the prediction S

P samples before and after performing the standardi-
zation procedures. The bars indicate the number of prediction S

P errors.
The first bar, in Ntransf = 0, correspond to classification results obtained
before standardization. The remaining bars correspond to results ob-
tained byDS and PDS, respectively. In this case study, the PDS algorithm
was run with window sizes 3, 5, 7 and 9.

As can be seen in Fig. 3, for both models, different results were ob-
tained when different Ntransf and window sizes were employed. For
SPA-LDA model, the best performance was obtained after the DS of
the preprocessed data (Fig. 3b) usingNtransf=4,with only 3 samples in-
correctly classified. The PLS-DA model achieved the best classification
result (2 misclassifications) for the raw data (Fig. 3c) also after the DS,
with Ntransf = 6 and Ntransf = 8.

Fig. 4 compares the score plots obtained by the SPA–LDA (Fig. 4a and
b) and estimated values by PLS–DAmodels (Fig. 4c and d) applied to the
prediction set measured by the secondary instrument before and after
standardization. Fig. 4b and d correspond to DS of the preprocessed
(for SPA-LDA) and raw (for PLS-DA) data usingNtransf = 4 and Ntransf =
6, respectively. As can be seen, the classification models performed bet-
ter when standardized spectra were employed.
Fig. 5. RGB histograms of the EVOO samples acquired in the (a) primary and (b) secondary i
component, while the adulterated are represented by lighter shades. The values listed for the R
3.2. Digital images

Fig. 5 shows the RGB histograms obtained for the 54 EVOO samples
measured on both devices. For each color component, 256 color levels
can be obtained varying from0 to 255. However,many of these present-
ed a response equal to zero (not participating in the image color compo-
sition). These color levels were removed from the data set so that only
the resulting histograms are shown (Fig. 5a and b) and used in the che-
mometric procedure. In Fig. 5, the total number of color levels after re-
moval is presented on the x-axis, while their corresponding values on
the 0–255 scale are listed for the RGB components.

As can be seen in Fig. 5, different numbers of color levels were ob-
tained in each instrument. In addition, it is possible to observe that the
difference between the two samples classes is more evident in the pri-
mary instrument, especially for R and G components.

Fig. 2b shows the color levels selected by SPA algorithm applied to
the data set of the primary instrument. As can be seen in Fig. 2b, most
of the selected color levels are in theG component, where the difference
between the two classes of samples is more evident.

Table 3 presents the detailed classification results obtained by SPA-
LDA and PLS-DA models applied to the prediction set measured on
both instruments. Comparing the prediction P

P errors with prediction
S
P errors, an increase of the value when the models are applied to the
secondary instrument data can be observed.

Fig. 6 presents the results in terms of the number of errors obtained
by the SPA-LDA and PLS-DAmodels applied to prediction S

P samples be-
fore (Ntransf = 0) and after performing the standardization procedures.
nstruments. The unadulterated samples are represented by darker shades of each color
GB components correspond to the color levels present in the histograms.



Fig. 6.Results in terms of prediction S
P errors obtained by the SPA–LDA (a) and PLS–DA (b)

models before (Ntransf = 0) and after performing the DS and PDS, respectively. The
window sizes employed in the PDS standardization method is indicated in parenthesis.
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In this case study, the PDSmethodwas evaluate forwindow sizes 3, 5, 7,
9 and 11. Different from the previous data set, the best classification re-
sult involving digital images was obtained after piecewise direct
Fig. 7. Score plots obtained by SPA–LDAmodel for the prediction S
P samples before (a) and after

the prediction S
P samples before (c) and after (d) PDS with 7-point window using Ntransf = 4. U

lines are the decision boundaries established by SPA-LDA and PLS-DA models.
standardization (PDS), with Ntransf = 6 and a 5-point window for the
SPA-LDA model. The least number of errors obtained after the PDS for
the digital images can be related to the fact that this data set is formed
by discrete variables. Given this, the standardization of the windows
of the variables proved to be more efficient.

Fig. 7 shows the score plots of the discriminant function (DF1) ob-
tained by SPA-LDA (Fig. 7a and b) and estimated values by PLS-DA
(Fig. 7c and d) models applied to the prediction S

P set before and after
standardization. As can be seen, the classification models performed
better when standardized spectra were employed.

Table 4 summarizes the classification results obtained bymodels ap-
plied to the prediction S

P samples before and after standardization pro-
cedure. When the transformed spectra and histograms are employed, a
substantial increase in the correct classification rate (CCR) can be ob-
served for both models.
4. Conclusion

In this paper, we evaluated the use of transfermultivariate classifica-
tion models to identify adulteration of extra virgin olive oils by fluores-
cence spectroscopy and digital imaging. The final results of the SPA-LDA
and PLS-DA classification models were compared before and after stan-
dardization procedures in terms of the correct classification rate (CCR)
for the prediction set measured by the secondary instrument. Direct
standardization (DS) and piecewise direct standardization (PDS) were
performed using different number of transfer samples and window
sizes.

A CCR for the SPA-LDA classification models, before standardization,
achieved 54% for fluorescence emission spectra and 47% for histograms
of digital images. After the standardization, a substantial increase of the
CCR was observed, obtaining 88% for the fluorescence emission spectra
and 82% for the histograms of the digital images.

The PLS-DA classificationmodels found the same CCR as obtained by
the SPA-LDA models before standardization using the two analytical
(b) PDSwith 5-point window usingNtransf= 6. Values estimated by the PLS–DAmodel for
nadulterated ( ) and adulterated ( ) samplesmeasured by digital images. The horizontal



Table 4
Correct classification rate obtained by SPA–LDA and PLS–DAmodels applied to prediction
S
P set measured by the secondary instruments before and after standardization.

Models Correct classification rate

Fluorescence data set Digital images data set

Before
standardization

After
standardization

Before
standardization

After
standardization

SPA-LDA 54% 88% 47% 82%
PLS-DA 54% 92% 47% 76%
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techniques. After standardization, the values were exceeded, reaching
85% and 76% CCR for the fluorescence and image data, respectively.

These results demonstrate the efficiency of standardization proce-
dures applied tomultivariate classificationmodels developed fromfluo-
rescence spectroscopy and digital images.
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