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Nowadays, conventional materials have been progressively replaced by composite mate-
rials in a wide variety of applications. Particularly, fiber reinforced composite laminates
are widely used. The appropriate design of elements made of this type of material re-
quires the use of constitutive models capable of estimating their stiffness and strength. A
general constitutive model for fiber reinforced laminated composites is presented in this
paper. The model is obtained as a generalization of classical mixture theory taking into
account the relations among the strains and stresses in the components and the composite
in principal symmetry directions of the material. The constitutive equations for the lami-
nated composite result from the combination of lamina constitutive equations that also
result from the combination of fibers and matrix. It is assumed that each one of the
components are orthotropic and elastoplastic. Basic assumptions of the proposed model
and the resulting equations are first presented in the paper. The numerical algorithm
developed for the implementation in a three-dimensional (3D) finite element nonlinear
program is also described. The paper is completed with application examples and com-
parison with experimental results. The comparison shows the capacity of the proposed
model for the simulation of stiffness and strength of different composite laminates.
�DOI: 10.1115/1.2200654�

1 Introduction
In recent years, considerable attention has been focused on the

modeling of composite materials as conventional materials are
continuously being replaced by a variety of composite materials.
Several approaches have been developed but there is still a strong
need of predicting models that can be used for stiffness and
strength assessment of this type of materials in actual situations
without the need of many empirical constants.

Constitutive models for fiber reinforced composite laminates
can be classified according to the scale in which they are defined
�1�. In macro-models the composite material is represented as a
unique material with average properties. This type of approach
generally results insufficient to describe the overall behavior in-
elastic and failure behavior of the laminate. In meso-models the
composite is assumed to be formed by unidirectional laminas for
which macroscopic equations are derived. The constitutive prop-
erties of individual laminas are obtained from experimental tests.
In contrast, micro-models use the constitutive equations of the
elemental constituents: Matrix, fibers, interfaces, etc. This ap-
proach has the advantage of allowing the identification of the
failure mode but requires accurate experimental data for the indi-
vidual components, which is not generally available. An alternate
approach is the use of multi-scale models �2�.

Many micromechanical models have been developed for fiber
reinforced composites but most of them have considerable limita-
tions. Theories are generally too complicated or, when they are
simple, they are only able to reproduce a few aspects of the be-
havior in fiber directions or they are only valid for composites in
which stiffness and strength of the fibers are significantly greater
than those of the matrix �3�.

Hinton and Soden recently organized a “failure exercise” to
compare the predictive capabilities of a number of the most im-
portant strength theories for laminated composites in current us-
age �4–8�. The results of that exercise �9–12� were used for the
assessment of the accuracy of current theoretical methods of fail-
ure prediction in composite laminates. According to Soden et al.
�12�, the most reliable theories for the designer are the theories of
Zinoviev et al. �13,14�, Bogetti �15�, Tsai �16,17�, Puck �18,19�,
and Cuntze �20�.

None of these five theories is based on a micromechanics analy-
sis. Huang �3� developed a micromechanical model to estimate the
strength of unidirectional fibre reinforced composites. Fibers and
matrix are considered to be elastoplastic with very simple linear
hardening laws defined for each direction. The stress in each com-
ponent is expressed in terms of the global stress using a bridging
matrix. Nevertheless, the accuracy of the strength predictions for
this theory is moderate �12�.

A numerical model for general composite materials, appropriate
for the mechanical analysis of fiber reinforced composite lami-
nates, is presented in this paper. The model is based on an analysis
at component materials level that allows obtaining, at a first stage,
the behavior of the lamina from the mechanical properties of ma-
trix and fibers, their volume ratio and their orientation. Then, the
behavior of the laminate can be obtained composing laminas with
different fiber orientations. The model is completely general and
can be used for other types of composites.

The model is based on very simple kinematical and equilibrium
assumptions that, properly handled, lead to composite constitutive
equation and the strain and stress tensors in all the components. In
this way, elastic properties of the laminate can be obtained. Non-
linear behavior and the progressive failure can be analyzed and
failure envelopes can be defined.

The novelty of the model presented is the development of a
formalism that allows dealing with equal stress or equal strain in
correspondence with each stress �or strain� component in a sys-
tematic way and that is applicable to various kinds of composite
topologies. The model can be interpreted as a generalization of
Reuss’ and Voight’s theories that can also deal with general ortho-
tropic elastoplastic models for each one of the constituents mate-
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rials. Moreover, resulting equations are very simple and resemble
those of mixing theory allowing a similar numerical treatment.

2 Proposed Model

2.1 Introduction. This model assumes that the composite can
be subsequently decomposed in sub-composites to arrive to com-
posites with simple structure for which simple kinematical and
equilibrium hypothesis relating stress and strain of the compo-
nents can be stated. Basically, for this composite with simple
structure it should be clear which strain components are common
to all components �parallel behavior� and which stress compo-
nents are common to all components �series behavior�.

Successive decompositions are generally required in order to
state these assumptions. Particularly, in the case of reinforced fiber
laminated composites, the laminate should be separated in laminas
and each lamina should be analyzed first. It will be noted later in
application examples that even the precise analysis of one indi-
vidual unidirectional lamina should require more than one decom-
position.

2.2 Constitutive Model for the Components. It is well
known that fibers present a strong anisotropic behavior, generally
assumed as transversely isotropic, characterized not only by the
elastic orthotropy like in the case of carbon fibers but also by the
marked difference of strength in principal directions. Another im-
portant property of fibers is their slightly lower strength in com-
pression than in tension �21�.

In general, epoxy resins have lower tension than compression
strength like brittle materials. In the case of polymeric matrix the
material itself can be supposed to be isotropic. Nevertheless, as
the fiber/matrix interface is not explicitly modeled, the constitu-
tive model of the matrix is modified including the interface con-
stitutive model �22,23�. Orthotropic elastoplastic or damage inter-
face models can be used to simulate fiber debonding or
delamination. As a result, the constitutive model of the matrix
including interface exhibits a tension strength much lower in per-
pendicular direction to fiber than in longitudinal direction.

Taking into account the above considerations, each one of the
basic components is supposed to have a general orthotropic elas-
toplastic behavior covering the case of fibers, matrix, and inter-
face included in matrix.

The orthotropic model used is based on the assumption that
there are two spaces �24–26�: �a� A real anisotropic space and �b�
a fictitious isotropic space. The problem is solved in the fictitious
isotropic space allowing the use of elastoplastic models originally
developed for isotropic materials. The isotropic elastoplastic
model used in this paper includes energy-based criteria to make it
suitable for brittle materials �27�.

Stress tensors in both spaces are related by a tensor transforma-
tion that can be written as,

� = A��,�p�:� �1�

where � and � are the stress tensors in spaces �a� and �b�, respec-
tively, and A is a fourth-order transformation tensor that contains
the information about strength anisotropy depending on material
symmetry. In the most general case, this tensor varies with the
stress state and the evolution of the inelastic process represented
by the isotropic plastic hardening variable �p �26�. In this paper,
all the components materials are assumed initially orthotropic
with 3 axes of material symmetry. There are different alternatives
to define tensor A for this case �25,26,28–30�. The simplest way is
a diagonal fourth-order tensor �27�,

Aijkl = �im� jn�km�ln�̄/�̄mn �2�

where �̄ is the strength in the fictitious isotropic space and �̄mn is
the actual strength in the direction m in the plane with normal n. A
better approach has been proposed by Oller et al. �30�.

The model is thermodynamically consistent and it is based on

the assumption of uncoupled elasticity. The free energy density
can be supposed to be formed by two independent parts: An elas-
tic part �e and a plastic part �p,

� = �e + �p �e = 1
2�e:C:�e �3�

where C is the stiffness tensor and �e is the elastic strain tensor.
The secant constitutive equation can be deduced from the free

energy density as follows,

� = ��e/��e = C:�e = C:�� − �p� �4�

where � is the strain tensor and �p is the plastic strain tensor.
The plastic threshold is defined through a yielding function,

F��;�� = F̄��;�̄� = 0 �5�

where F and F̄ represent the yielding function in the real aniso-
tropic space and the fictitious isotropic space, respectively; � and
�̄ are internal variables in correspondence with both spaces.

The transformation defined by Eq. �1� allows the use of yield-

ing functions F̄ defined for isotropic materials in the fictitious
isotropic space. It should be noted that this space is isotropic with
respect to yielding thresholds and strength but not necessarily
with respect to other properties like elastic stiffness.

Evolution of plastic strain in real space is defined with the
well-known flow rule,

�̇p = �̇��G/��� �6�

where G is the plastic potential function defined in the real stress
space. Instead of working with this function that should be aniso-

tropic, function Ḡ defined in the fictitious isotropic space could be
used.

G��,�� = Ḡ��,�̄� �7�
Equation �5� can be then rewritten as,

�̇p = �̇��Ḡ/��� = �̇��Ḡ/���:���/��� = �̇��Ḡ/���:H = �̇h̄

with H = ��/�� and h̄ = ��Ḡ/���:H �8�

where H is a fourth-rank tensor and h̄ is a second-rank tensor and
represents the plastic flux in the real orthotropic space.

2.3 Kinematical and Equilibrium Assumptions. In a com-
posite with a simple structure there are three orthogonal directions
referred to which some strain components are common to all con-
stituents �parallel behavior� and the rest of the components are
associated to equal stress in all constituents �series behavior�. A
parallel behavior in correspondence with one component means
that all the composite constituents have the same value for this
strain component. A series behavior in correspondence with one
component means that all the composite constituents have the
same value for this stress component. As an example, consider a
composite with the representative structure shown in Fig. 1�a�. It
is clear that �11 is common for both components �series behavior�
while �22 and �33 are common for both components �series behav-
ior�. For a more complex structure like that represented in Fig.

Fig. 1 Schematic representation of composite structure. „a…
Simple structure, „b… More complex structure.
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1�b�, this type of conclusions can not be stated a priori, but the
composite can be considered to be formed by the sub-composites
with simple structure indicated with dashed lines.

Based on this analysis, stress and strain components could be
rearranged. All the stress and strain components that are common
to all components are grouped in tensor �*, while all the stress and
strain components that will be obtained as a superposition of the
contribution of all constituents are grouped in tensor �*.

In order to express this rearrangement the following fourth or-
der tensors are defined,

�ijkl
� = �ir� js�kr�lsH�prs�

�ijkl
� = �ik� jl − �ijkl

�

with prs = �1 if the rs component works in parallel

0 if the rs component works in series
�

�9�

H: Threshold function.
According to Eq. �9�, the product �� :� preserves the stress

components that are assumed to have a parallel behavior and
make the other components zero.

Stress and strain components are rearranged as follows,

�* = ��:� + ��:�

�* = ��:� + ��:�
and

� = ��:�* + ��:�*

� = ��:�* + ��:�* �10�

where �* contains stress components in correspondence with di-
rections of parallel behavior and strain components in correspon-
dence with directions of series behavior. Tensor �* contains strain
components in correspondence with directions of parallel behav-
ior and stress components in correspondence with directions of
series behavior

2.4 Alternative Way of Writing Constitutive Equations of
the Components. An alternative way of writing constitutive
equations of the components that makes the development of the
constitutive equation of the composites easier is proposed in this
section.

Combining Eqs. �3� and �10�, the following secant constitutive
relation can be obtained,

�* = C*:�* − �p*
�11�

where,

C* = ���:C + ���:���:C + ���−1 �12�

�p*
= �C*:�� − ���:�p �13�

2.5 Composite Constitutive Equation. First, the case of a
composite with simple structure where principal directions and
tensors �� and �� are coincident for all the constituents is ana-
lyzed. In such composite, the following condition is verified,

�c
* = �* �14�

where c indicates an arbitrary component material.
Assuming that the plastic strain of the composite in the direc-

tions in which the material works in series can be obtained as the
sum of the plastics strains of the components multiplied by their
respective volume fractions, the following secant equation is ob-
tained,

�* = C*:�* − �p*
�15�

where,

C* = � kcCc
* �p*

= � kc�Cc
*:�� − ���:�c

p �16�

And kc represents the volume fraction of a generic constituent

material.
Equation �15� can be rearranged with the aid of Eqs. �10� to

give,

� = C:� − �p �17�

where,

C = ���:C* + ���:���:C* + ���−1

�p = − C:��:�p*
+ ��:�p*

= ��� − C:���:�p*
�18�

Numerical implementation in a finite element program requires
the evaluation of the strain tensor for each one of the components
from the composite strains. In this way, once the strains are
known, constitutive equations can be independently integrated for
each constituent and information at the constituents material level
�fiber and matrix� level can be recorded through the corresponding
internal variables.

Starting from condition �14� and Eqs. �10� and �17�, the follow-
ing relation can be written,

�c = 	c:� + �̃c
p �19�

where,

	c = ���:Cc
* + ���:���:C* + ���−1

�̃c
p = 	c:�

�:�*P − ��:�c
*P �20�

The elastoplastic tangent tensor can be obtained from the deri-
vation of Eq. �16�

�̇ = C:�̇ − �̇p = CT:�̇ �21�

and results,

CT = C − ��� − C:���:� kc�Cc
*:�� − ���:�I − Cc

−1:Cc
T�:	c

�22�

where Cc
T is the elastoplastic tangent tensor of component c.

All the preceding equations are only valid in the composite
local system of reference coincident with its principal symmetry
directions. For an arbitrary reference system, all tensors must be
rotated.

2.6 More Complex Composites. The constitutive equations
for a laminated composite or for a composite material with a more
complex structure, where the tensors �� and �� are not the same
for all components, can be obtained in different steps. The com-
posite must be decomposed in more simple sub-composites for
which the correspondent constitutive equations can be obtained as
described above. Then, the constitutive equation of the composite,
can be written with a similar approach, composing the constitutive
equations already found for the sub-components. For example, the
constitutive equation of a laminate composed by n fiber reinforced
laminas with different properties, in principal directions of the
laminate would look like Eqs. �17� and �18� where the tensors ��

and �� are related to the laminate structure and the tensors C* and
�p* are calculated as follows,

C* = �
c=1

n

kcCc
* �23�

Cc
* = ���:Rc . Rc . Cc . Rc

t . Rc
t + ���:���:Rc . Rc . Cc . Rc

t . Rc
t + ���−1

�24�

Cc = ��c
�:�

i=1

2

kciCci
* + �c

�	:��c
�:�

i=1

2

kciCci
* + �c

�	−1

�25�

Cci
* = ��c

�:Cci + �c
��:��c

�:Cci + �c
��−1 �26�
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�p*
= �

c=1

n

kc�Cc
*:�� − ���:Rt−1 . �c

p . R−1 �27�

�c
p = Cc

−1:�c
p = Cc

−1:��c
� − Cc:�c

��:�c
p*

�28�

�c
p*

= �
i=1

2

kci�Cci
* :�c

� − �c
��:�ci

p �29�

where Rc is the rotation matrix from lamina c principal coordi-
nates to laminate principal coordinates, the tensors �c

� and �c
� are

related to the lamina c, kc is the volume fraction of lamina c, kci is
the volume fraction of the component i in lamina c, Cci is the
secant stiffness tensor of the same component in lamina local
coordinates, and �ci

p is the permanent strains tensor of component
i in lamina c in local lamina coordinates.

Delamination can be included in the model presented using an
approach similar to that used for fiber debonding �22,23�. A term
due to differential strains among laminas, depending on interlami-
nar stress, should be added in Eq. �27�.

3 Numerical Implementation

The model presented can be implemented in a nonlinear finite
element program using the iterative scheme presented in Fig. 2. A
composite with simple structure strains in each component can be
evaluated with Eq. �19� if plastic strains are known. In case of a
more complex composite, this scheme must be used to decompose
the composite in sub-composites and again inside each sub-
composite to arrive to each one of the constituents.

In any case, plastic strains of all components are required for
the evaluation of the strains in each component. As a result, the
problem cannot be explicitly solved and, for example, an iterative
scheme must be used. The algorithm schematized in Fig. 2 is
based on a predictor-corrector iterative procedure using the norm
of plastic strains as convergence measure.

Once the strains of each one of the constituents have been ob-
tained, the correspondent constitutive equations can be integrated
using well-known procedures like Euler backward or return map-
ping algorithms.

Failure envelopes can be obtained with a finite element pro-
gram loading an element with different stress combinations up to

Fig. 2 Numerical scheme for the solution of a nonlinear problem
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failure. Each stress ratio gives a point of the failure envelope.
Alternatively, failure envelopes for composites with simple struc-
ture can be analytically obtained writing the yielding criteria of
each component, Eq. �5�, in terms of the composite stress tensor.
In this type of composites it is simple to analyze which is the
failure mechanism without any nonlinear calculation.

4 Application Examples

4.1 Introduction. A scheme of a laminated is shown in Fig. 3
where the principal directions used as references are also indi-
cated. In the case of unidirectional laminas, the components can
be supposed to work in parallel in fiber directions 1 and 3 �the
same strain for all components� and in series in direction 2 �the
same stress for all components�. The way in which shear is re-

sisted is not so clear and depends, among other factors, on the
shape of the fibers transverse section. In general, a more complex
combination is required to accurately reproduce shear transfer in-
side the composite.

In the case of the laminate, principal directions X and Y are
contained in the laminate plane and direction Z is orthogonal to
that plane. Each lamina can exhibit a different fiber orientation
that is defined through the angle 
 that forms lamina principal
direction 1 with principal direction X of the laminate �see Fig. 4�.
It can be assumed that laminas work in parallel in the laminate
plane and in series in the orthogonal direction.

In general, structures are not designed with all the fibers aligned
in a unique direction if the structure is expected to be exposed to
stresses in the orthogonal direction. However, unidirectional lami-
nas constitute the basic elements of the laminate and, inside it,
they can be exposed to stresses normal to the fiber direction and
shear stresses. It is important then to know first if the models are
able to reproduce the behavior of individual laminas.

4.2 Elastic Properties of an Unidirectional Lamina. Elastic
properties of an epoxy lamina with carbon fibers are studied in
this section. Elastic properties of each one of the constituents are
the following,

E1f = 232 GPa; E2f = 15 GPa; �12f = 0.279;

�23f = 0.49; G12f = 30.2 GPa;

Fig. 3 Fiber reinforced laminated composite

Fig. 4 Elastic properties of the lamina as a function of fiber fraction. „a… E1, „b… E2, „c…
G12, „d… G23, „e… �23.
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Em = 5.35 GPa; �m = 0.22

The variations of longitudinal and transverse Young modulus
E1 and E2, longitudinal and transverse shear modulus G12 and G23
and Poisson ratio �23 as a function of fiber volume fraction kf are
shown in Fig. 4. The experimental results obtained by Kriz and
Stinchcomb �31� and analytical results by Huang �3� are also plot-
ted on Fig. 4. In all cases, a good agreement between the proposed
model and experimental results is obtained. It should be noted that
in this case where fibers are supposed to be orthotropic, elastic
modulus E2 can be accurately estimated with the assumption of
series behavior in direction 2. In contrast, for transverse elastic
modulus G12 and G23 a series/parallel combination gives better
results.

4.3 Strength and Nonlinear Behavior of an Unidirectional
Lamina. The nonlinear behavior of a lamina composed of unidi-
rectional SiC brittle fibers and a Titanium matrix is analyzed in
this section. The mechanical properties of the constituent materi-
als are the following,

Ef = 400 GPa; � f = 0.25; Y f
u = 1000 MPa;

Em = 106 GPa; Em
T = 7.6 GPa; Ym

y = 850 MPa;

Ym
u = 1000 MPa; �m = 0.33

where Ym
y and Ym

u are the matrix yield stress and ultimate
strength, respectively, and Y f

u is the fibers ultimate strength.
The stress-strain behavior in the direction of the fibers for two

different fiber volume fractions is presented in Fig. 5. Numerical
results are compared with experimental ones obtained by Gundel
�32� and analytical ones given by �3�. A good agreement with
analytical and experimental results is obtained.

4.4 Composite Laminates. Material data and the different
types of analysis presented in this section correspond to the failure
exercise previously mentioned �5,7�. All the laminates studied are
formed by laminas composed of a soft matrix with continuous
unidirectional fibers. The mechanical properties of four types of
epoxy resins and four types of glass and carbon fibers are pre-
sented in Tables 1 and 2, respectively. The determination of the
mechanical properties is not always straightforward. As a conse-

quence, variability and inaccuracy are expected to be found.
Almost all experimental results used were derived from tests on

tube specimens. Numerical results were all obtained for a
100 mm�100 mm model with the lamina or laminate thickness
and a three-dimensional analysis was performed. The use of these
models is justified by the fact that in tube specimens a global
plane stress state for the lamina or the laminate is obtained.

4.4.1 Unidirectional Laminas. Before analyzing the behavior
of the laminate it is interesting to analyze the behavior of unidi-
rectional laminas under biaxial tension tests to obtain the corre-
sponding failure envelopes. In all cases, a Mohr Coulomb failure
criterion was used for the matrix while a Drucker Prager criterion
was used for the fibers failure.

Figure 6 shows the comparison of the failure envelope obtained
using the proposed model with experimental results �7� and with
other numerical models �12� for an unidirectional glass fiber rein-
forced lamina �E-Glass/LY556/HT907/DY063�, with a fiber vol-
ume fraction kf =0.62, under shear stresses and normal stresses
orthogonal to fiber direction. Experimental results correspond to
tubes of 60 mm internal diameter and 2 mm thick. It can be ob-
served that the model closely reproduces the experimental failure
envelope. For this particular example, the failure is always pro-
duced by the matrix failure.

Figure 7 shows the comparison of failures stresses obtained
using the model proposed and other numerical models �11� with
experimental ones �7� for an unidirectional carbon fiber reinforced
lamina �T300/BSL914C epoxy�, with a fiber volume fraction kf
=0.60, under shear stresses and normal stresses in the direction of
the fibers. Experimental results were obtained from tubes tested
under combined axial tension or compression and torsion. The
tubes were 32 mm diameter and 1.9–2.3 mm thick. In this ex-

Fig. 5 Stress-strain behavior in the fiber direction. „a… kf
=0.20, „b… kf=0.35.

Table 1 Matrix mechanical properties †3‡

Type of Matrix
3501-6
epoxy

BSL914C
epoxy

LY556/HT9
07/DY063
epoxy

MY750/HY917
/DY063
epoxy

Young modulus,
Em �GPa�

4.2 4.0 3.35 3.35

Shear modulus,
Gm �GPa�

1.567 1.481 1.24 1.24

Poisson ratio,
�m

0.34 0.35 0.35 0.35

Tension strength,
Ymt �MPa�

69 75 80 80

Compres. strength,
Ymc �MPa�

250 150 120 120

Shear strength,
Sm �MPa�

50 70 ¯ ¯

Ultimate tension strain.,
�mt �%�

1.7 4 5 5

Table 2 Fibers mechanical properties †3‡

Type of fiber AS4 T300

E-Glass
21�43
Gevetex

Silenka
E-Glass
1200 tex

Long. Young modulus, Ef1 �GPa� 225 230 80 74
Transv. Young modulus, Ef2 �GPa� 15 15 80 74
Long. shear. modulus, Gf12 �GPa� 15 15 33.33 30.8
Poisson ratio � f12

0.2 0.2 0.2 0.2
Transv. shear modulus., Gf23 �GPa� 7 7 33.33 30.8
Long. tensile strength, Xft �MPa� 3350 2500 2150 2150
Long. compres. strength, Xfc �MPa� 2500 2000 1450 1450
Ultimate tensile strain, � f1T �%� 1.488 1.086 2.687 2.905
Ultimate compres. strain, � f1c �%� 1.111 0.869 1.813 1.959
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ample, failure is generated by the failure of the fibers for moder-
ated shear stresses or by the matrix failure for greater shear
stresses. It could be seen that the model approximately reproduces
the lamina failure envelope but does not result conservative in the
zone corresponding to compression in fiber direction because it is
not able to capture buckling and associated failure.

Figure 8 shows the comparison of the failure envelope obtained
using the model and other numerical models �12� with experimen-
tal results �7� for an unidirectional glass fiber reinforced lamina
�Silenka E-Glass 1200 tex MY750/HY917/DY063 epoxy�,l with a
fiber volume fraction kf =0.60 under normal stresses in the direc-
tion of the fibers and in the orthogonal one. Most of the experi-
mental results were obtained from testing nearly circumferentially
wound tubes under combined internal pressure and axial load. The
specimens were 100 mm inner diameter, 300 mm long and ap-
proximately 0.95 mm or 1.2 mm thick. In this case, the failure is
produced by the fibers failure when the stress in fiber direction is
prevalent or by the matrix failure in the directional perpendicular
to the fibers.

4.4.2 Laminates

4.4.2.1 �90 deg/ ±30 deg�s Laminate (E-Glass/LY556/HT907
/DY063). The structure of this laminate is indicated in Fig. 9.
Soden et al. �5� use a different nomenclature but refer to a
�90/ ±30 deg�s laminate. The angle indicated corresponds to the
angle of the fibers to axe X that is coincident with the axe of the
tubes experimentally tested. The total thickness of the laminate is
2 mm, while h1=0.172 mm and h2=0.414 mm. As a conse-
quence, laminas at ±30 deg represent 82.8% of the total thickness
and laminas at 90 deg represent the remaining 17.2%. The lami-
nate is not isotropic and, therefore, different types of failure under
biaxial stresses can take place, not only those due to fibers failure.
The fiber volume fraction of each lamina is kf =0.62. Experimen-
tal results were obtained from 60 mm inside diameter and 2 mm
thick tubes tested under combined pressure and axial load and
combined torsion and axial load.

Figures 9�a� and 9�b� show the failure envelopes obtained with
the model for this laminate under biaxial stresses and their com-

Fig. 6 Failure envelope for a unidirectional lamina „E-Glass/LY556/HT907/DY063…

Fig. 7 Failure envelope for a unidirectional lamina „T300/BSL914C epoxy…
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parison with experimental results �7� and other theories �11�. Fig-
ure 9�a� corresponds to different combinations of normal stresses
in the plane. Failure is due to matrix failure in the compression-
compression zone and it is caused by fiber failure for most of the
other stress combinations. Figure 9�b� represents a combination of

normal and shear stresses. Composite failure is due to matrix fail-
ure in compression zone and it is mostly due to fiber failure in
pure shear and tension zones. In general, the model reproduces
experimental results but leads to nonconservative results under
biaxial compression stress states.

Fig. 8 Failure envelope for a unidirectional lamina „Silenka E-Glass 1200 tex MY750/
HY917/DY063 epoxy…

Fig. 9 Failure envelope for a „90 deg/ ±30 deg…s laminate „E-Glass/LY556/HT907/DY063….
„a… x� versus �y; „b… �xy versus �x.
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4.4.2.2 �90 deg/ ±45 deg/0 deg�s Laminate AS4/3501-6. The
structure of this quasi isotropic laminate is shown in Fig. 10. The
total thickness of the laminate is 1.1 mm and all the laminas have
the same thickness. The fiber volume fraction of each lamina is
kf =0.60. The tests were carried out by subjecting 96 mm inside
diameter tubular specimens to pressure and axial loads.

Figure 10 shows the failure envelope obtained with the model
and its comparison with experimental results �7� and other theo-
ries �12� for biaxial stress states. In general, the tests have shown
failure by fibers fracture being the failure controlled by fibers
strength. Experimental results in the compression-compression
quadrant represent structural failure produced by buckling of the
laminate and not by crushing of the material. Numerical results
confirm that composite failure is due to fiber failure and depen-
dent on fibers compressive and tensile strength. In general, the
model results are close to experimental ones except those in the
compression-compression zone where the model is not able to
reproduce buckling failure.

4.4.2.3 �±55 deg�s Laminate (Silenka E-Glass 1200 tex
MY750/HY917/DY063 epoxy). The structure of this laminate is
shown in Fig. 11. The total thickness of the laminate is 1 mm and
all the laminas have the same thickness. The fiber volume fraction
of each lamina is kf =0.60. Experimental results were obtained
from tubes with 100 mm inner diameter and 1 mm thick.

Figure 11 also shows the failure envelope obtained with the
model and its comparison with experimental results �7� and other
theories �12�. Numerical results show that failure is mostly due to
fiber failure, except for the zone where the failure envelope nar-
rows that corresponds to matrix tensile failure. A good agreement
between numerical and experimental results is achieved.

5 Conclusions
A general model for composite materials that starts from a

simple idealization of the behavior at individual constituents level
has been presented in this paper. The model gives the behavior of

Fig. 10 Failure envelope for „90 deg/ ±45 deg/0 deg…s laminate „AS4/3501-6…

Fig. 11 Failure envelope for „±55 deg…s laminate „Silenka E-Glass 1200 tex MY750/
HY917/DY063 epoxy…
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a composite material from the constitutive models of the compo-
nents, their location in the composite and volume fraction. Due to
its assumptions the model is especially appropriate for the treat-
ment of fiber reinforced composite laminates. It allows the aniso-
tropy and nonlinear behavior of the materials to be considered.

The resulting model describes the behavior and the failure of
the composite taking into account what is happening in each com-
ponent and it is able to identify the failure mode of the composite
produced by the failure of one or more components. It is capable
of reproducing complex failure modes that change from the ma-
trix to the fibers depending on the type of stress state.

In contrast to most existing models for laminated composites,
the model presented is of relatively simple numerical implemen-
tation in a nonlinear finite element program and it is able to re-
produce nonlinear behavior of laminates. The model approxi-
mately reproduces the stiffness of the laminas and the failure of
unidirectional laminas and composite laminates. The differences
with experimental results are not greater than those obtained with
the best-ranked models at the failure exercise �9–12�.

Acknowledgment
The author wishes to thank the economical support of

CONICET and CIUNT and Mrs. Amelia Campos for the English
revision.

References
�1� Chaboche, J. L., Lesne, O., and Pottier, T., 1998, “Continuum Damage Me-

chanics of Composites: Towards a Unified Approach,” Damage Mechanics in
Engineering Materials, Studies in Applied Mechanics 46, Elsevier Voyiadjis,
Ju and Chaboche, Elsevier, Vol. 46, pp. 3–26.

�2� Oller, S., Miquel, J., and Zalamea, F., 2005, “Composite Material Behavior
Using a Homogenization Double Scale Method,” J. Eng. Mech. Div., Am. Soc.
Civ. Eng., 131, pp. 65–79.

�3� Huang, Z., 2001, “Micromechanical Prediction of Ultimate Strength of Trans-
versely Isotropic Fibrous Composites,” Int. J. Solids Struct., 38, pp. 4147–
4172.

�4� Hinton, M. J., and Soden, P. D., 1998, “Predicting Failure in Composite Lami-
nates: The Background to the Exercise,” Compos. Sci. Technol., 58, pp. 1001–
1010.

�5� Soden, P. D., Hinton, M. J., and Kaddour, A. S., 1998, “Lamina Properties,
Lay-Up Configurations and Loading Conditions for a Range of Fibre-
Reinforced Composite Laminates,” Compos. Sci. Technol., 58, pp. 1011–
1022.

�6� Hinton, M. J., Kaddour, A. S., and Soden, P. D., 2002, “Evaluation of Failure
Prediction in Composite Laminates: Background to “Part B” of the Exercise,”
Compos. Sci. Technol., 62, pp. 1481–1488.

�7� Soden, P. D., Hinton, M. J., and Kaddour, A. S., 2002, “Biaxial Test Results
for Strength and Deformation of a Range of E-Glass and Carbon Fiber Rein-
forced Composite Laminates: Failure Exercise Benchmark Data,” Compos.
Sci. Technol., 62, pp. 1489–1514.

�8� Hinton, M. J., Kaddour, A. S., and Soden, P. D., 2004, “Evaluation of Failure
Prediction in Composite Laminates: Background to “Part C” of the Exercise,”
Compos. Sci. Technol., 64, pp. 321–327.

�9� Soden, P. D., Hinton, M. J., and Kaddour, A. S., 1998, “A Comparison of the
Predictive Capabilities of Current Failure Theories for Composite Laminates,”
Compos. Sci. Technol., 58, pp. 1225–1254.

�10� Kaddour, A. S., Hinton, M. J., and Soden, P. D., 2004, “A Comparison of the
Predictive Capabilities of Current Failure Theories for Composite Laminates:
Additional Contributions,” Compos. Sci. Technol., 64, pp. 449–476.

�11� Hinton, M. J., Kaddour, A. S., and Soden, P. D., 2004, “A Further Assessment
of the Predictive Capabilities of Current Failure Theories for Composite Lami-
nates: Comparison with Experimental Evidence,” Compos. Sci. Technol., 64,
pp. 549–588.

�12� Soden, P. D., Kaddour, A. S., and Hinton, M. J., 2004, “Recommendations for
Designers and Researchers Resulting from the World-Wide Failure Exercise,”
Compos. Sci. Technol., 64, pp. 589–604.

�13� Zinoviev, P., Grigoriev, S. V., Labedeva, O. V., and Tairova, L. R., 1998,
“Strength of Multilayered Composites Under Plane Stress State,” Compos. Sci.
Technol., 58, pp. 1209–1224.

�14� Zinoviev, P., Labedeva, O. V., and Tairova, L. R., 2002, “Coupled Analysis of
Experimental and Theoretical Results on the Deformation and Failure of Lami-
nated Composites Under a Plane State of Stress,” Compos. Sci. Technol., 62,
pp. 11711–11724.

�15� Bogetti, T. A., Hoppel, C. P. R., Harik, V. M., Newill, J. F., and Burns, B. P.,
2004, “Predicting the Nonlinear Response and Progressive Failure of Compos-
ite Laminates,” Compos. Sci. Technol., 64, pp. 477–485.

�16� Liu, K. S., and Tsai, S. W., 1998, “A Progressive Quadratic Failure Criterion of
Alaminate,” Compos. Sci. Technol., 58, pp. 1023–3102.

�17� Kuraishi, A., Tsai, S. W., and Liu, K. A., 2002, “A Progressive Quadratic
Failure Criterion Part B,” Compos. Sci. Technol., 62, pp. 1682–1696.

�18� Puck, A., and Schurmann, H., 1998, “Failure Analysis of FRP Laminates by
Means of Physically Based Phenomenological Models,” Compos. Sci. Tech-
nol., 58, pp. 1045–1068.

�19� Puck, A., and Schurmann, H., 2002, “A Failure Analysis of FRP Laminates by
Means of Physically Based Phenomenological Models—Part B,” Compos. Sci.
Technol., 62, pp. 11633–11672.

�20� Cuntze, R. G., and Freund A, A., 2004, “The Predictive Capability of Failure
Mode Concept-Based Strength Criteria for Multidirectional Laminates,” Com-
pos. Sci. Technol., 64, pp. 343–377.

�21� Oller, S., Oñate, E., Miquel, J., and Botello, S., 1996, “A Plastic Damage
Constitutive Model for Composite Materials,” Int. J. Solids Struct., 33�17�,
pp. 2501–2518.

�22� Luccioni, B., and López, D., 2002, “Modelo Para Materiales Compuestos Con
Deslizamiento de Fibras,” Análisis y Cálculo de Estructuras de Materiales
Compuestos, CIME, Barcelona, España, Chap. 13 pp. 411–431.

�23� Luccioni, B., López, D., and Danesi, R., “Bond Slip in Reinforced Concrete
Elements,” J. Struct. Eng., ST/2002/023537, �in press�.

�24� Betten, J., 1988, “Application of Tensor Functions to the Formulation of Yield
Criteria for Anisotropic Materials,” Int. J. Plast., 4, pp. 29–46.

�25� Oller, S., Botello, S., Miquel, J., and Oñate, E., 1995, “An Anisotropic Elasto-
Plastic Model Based on an Isotropic Formulation,” Eng. Comput., 12, pp.
245–262.

�26� Luccioni, B., Oller, S., and Danesi, R., 1995, “Plastic Damaged Model for
Anisotropic Materials,” Appl. Mech. Eng., 1, pp. 124–129.

�27� Luccioni, B., Oller, S., and Danesi, R., 1996, “Coupled Plastic-Damaged
Model,” Comput. Methods Appl. Mech. Eng., 129, 81–89.

�28� Car, E., Oller, S., and Oñate, E., 1999, “A Large Strain Plasticity Model for
Anisotropic Material—Composite Material Application,” Int. J. Plast., 17�11�,
pp. 1437–1463.

�29� Oller, S., Car, E., and Lubliner, J., 2003, “Definition of a General Implicit
Orthotropic Yield Criterion,” Comput. Methods Appl. Mech. Eng., 192, pp.
895–912.

�30� Luccioni, B., and Martín, P. E., 1997, “Modelo Elastoplástico Para Materiales
Ortótropos,” Rev. Int. Mét. Num. Dis, Cálc. Ing., 13�4�, pp. 603–614.

�31� Kriz, R. D., and Stinchomb, W. W., 1979, Exp. Mech., 19, 41.
�32� Gundel, D. B., and Wawner, F. E., 1997, “Experimental and Theoretical As-

sessment of the Longitudinal Tensile Strength of Unidirectional SiC-Fiber/
Titanium-Matrix Composites,” Compos. Sci. Technol., 57, pp. 471–481.

10 / Vol. 73, SEPTEMBER 2006 Transactions of the ASME

  PROOF COPY [JAM-05-1183] 018605AMJ  



  PROOF COPY [JAM-05-1183] 018605AMJ  

  PRO
O

F CO
PY [JAM

-05-1183] 018605AM
J  

AUTHOR QUERIES — 018605AMJ

#1 Au: Please check

NOT FOR PRINT! FOR REVIEW BY AUTHOR NOT FOR PRINT!

  PROOF COPY [JAM-05-1183] 018605AMJ  


