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Abstract Pore structures have a major impact on the transport and electrical properties of
electrochemical devices, such as batteries and electric double-layer capacitors (EDLCs). In
this work we are concerned with the prediction of the electrical conductivity, ion diffusivity
and volumetric capacitance of EDLC electrodes, manufactured from hierarchically porous
carbons. To investigate the dependence of the effective properties on the pore structures, we
use a structurally resolved parametric model of a random medium. Our approach starts from
3D FIB-SEM imaging, combined with automatic segmentation. Then, a random set model
is fitted to the segmented structures and the effective transport properties are predicted using
full field simulations by iterations of FFT on 3D pore space images and calculations based
on the geometric properties of the structure model. A parameter study of the model is used to
investigate the sensitivity of the effective conductivity and diffusivity to changes in the model
parameters. Finally, we investigate the volumetric capacitance of the EDLC electrodes with
a geometric model, make a comparison with experimental measurements and do a parameter
study to suggest improved microstructures.

Keywords Porous electrodes · Double-layer capacitor · FIB-SEM nanotomography ·
Stochastic modeling

1 Introduction

Porous carbon materials are widely used as electrode materials in energy storage devices,
such as electrical double-layer capacitors (EDLCs) (Conway 2013). These devices are used
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as alternatives or in combination with batteries. Yet, in general, they have a lower specific
capacitance per volume and per weight and a higher specific power. In EDLCs, the electric
energy is stored in a thin layer on the surface of the porous electrode which makes micro-
or nanoporous materials with their large specific surface area especially suitable, since this
results in a very high capacitance. Yet, the performance, measure in specific power and
capacitance depends on the specific pore shape and size of the electrode materials. Hence, to
predict the performance of an electrodematerial, knowledge andmodeling of themorphology
of the pore space is necessary, aside from the electrochemical modeling.

To this end, two nanoporous carbon-based materials, used in electrodes of EDLCs, are
investigated. The two samples are imagedwith FIB-SEM, and the images are segmented using
a new segmentation algorithm using mathematical morphology as in Prill et al. (2013). Using
the segmented microstructures, a stochastic model is defined for a two-phase heterogeneous
material. The first part of the modeling consists of defining a random set model depending
on a set of free parameters. Then the best fit parameters are identified by matching the
morphological characteristics of the observed microstructures to model realizations. The
second part of the paper consists of a model for the effective transport properties of the
modeled microstructures. Using the model, the specific conductivity and diffusion resistance
of bothmaterials are predicted by simulations using FFT-basedmethods. Then, we performed
a parameter study to estimate the sensitivity of the effective properties with respect to the
model parameters. Finally, we use geometric properties of the random set model to predict
the volumetric capacitance of the electrodes and make a comparison with measurements.

2 State of the Art

2.1 Image Analysis and Segmentation

Reconstruction of highly porous three-dimensional pore spaces from FIB-SEM imaging is
still in general an unsolved problem. Different methods have been tried, such as threshold-
ing approaches as in Nanjundappa et al. (2013) or surface evolution as in Jørgensen et al.
(2010). Other methods include the ones shown in Salzer et al. (2012), such as threshold
backpropagation or valley detection. In this study, we use the method presented in Prill et al.
(2013), based on mathematical morphology. Since it has been shown, that even accurately
segmented FIB-SEM data can lead to false transport properties, we combine the automatic
segmentation with stochastic modeling, as in Hutzenlaub et al. (2013). Hence, we define a
parametric stochasticmodel, which visually resembles the investigatedmaterials. This allows
for a better estimation of the transport propertied as well as a systematic alteration of the
model parameters and the optimization of the model with respect to performance measures,
such as capacitance and diffusion resistance.

2.2 Physical Modeling

Electrochemical double-layer capacitors are devices for the storage of electrical energy by
means of an electrical double-layer forming on the surface of the electrode. Physically, energy
is storedwhen charge carriers adsorb to the surface of the electrode and induce a strong electric
field across the boundary. This constitutes the so called electrical double layer. The earliest
theory of the formation of the double layer was developed by Helmholz in 1879. Later the
theory was amended by Stern and then Guy and Chapman. An historical overview can be
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found in Conway (2013). Modern approaches for modeling the double layer include the
theories by Bazant, starting with Bazant et al. (2004).

As the capacitance of the electrode increases with the specific surface area of the electrode,
micro- or nanoporous electrodes lend themselves as electrode materials. Different models
for porous electrodes for EDLCs have been developed. The simplest ones are based on
equivalent circuits, where an overview can be found in Barsoukov and Macdonald (2005). A
more detailed treatment of the porous electrode has been given inmacrohomogeneousmodels
pioneered by de-Levie (1963), and extended, e.g., in Paasch et al. (1993) and Roßberg et al.
(1998). A spatially resolving model is given, e.g., in Wang and Pilon (2012).

In the present paper, we will restrict ourselves to the most basic treatment of the double
layer as an areal capacitance and focus on the geometrical aspects of the porous electrode.
To this end, we are using a stochastic model to represent the morphology of the pore space.
The model is based on a Boolean Model of spheres combined with a convolution to achieve
a smoothing effect on the geometry.

3 Materials and Imaging

The starting point for the study in this paper is segmented FIB-SEM images of two samples
of porous carbon electrodes.

3.1 Materials

In this work, there are two samples of different electrode materials under investigation,
denoted S12 and S14. Both have been synthesized by the same production process, yet with
a slightly different composition, leading to a difference in pore sizes. Both materials have a
hierarchical pore space, with mesopores, with a typical pore size of 2–50 nm andmicropores,
with a typical pore size smaller than 2 nm.

The samples have been produced by carbonization of resorcinol-formaldehyde (RF) gels
at 800 C in the presence of a cationic surfactant, cetyltrimethylammonium bromide (CTAB),
used as a pore stabilizer. As the RF nanoparticles are sintered together during carbonization
process, a pore stabilizer is added in order to avoid the collapse of the pores, leading to the
formation of a well-connected mesopore network (Balach et al. 2013). The samples S12 and
S14havebeenproducedusing aCTAB to resorcinolmolar ratio of, respectively, 0.12 and0.14,
leading to a difference in the morphology of the mesopore network. Based on Balach et al.
(2013), in this study it is assumed that themicroporemorphology is the same for both samples.

3.2 Imaging and Segmentation

The two samples were imaged by FIB-SEM Nanotomography (Balach et al. 2012), using
the secondary electron signal. The resolution of the SEM image stack of S12 was 3.57
nm×3.57 nm and the slicingwith the focused ion beamwas carried out with 10 nm thickness.
Additionally, the tilting of the sample by 52◦ leads to a larger resolution in y-direction. This
leads to a resulting voxel size in the three-dimensional image of 3.57 nm×3.62 nm×10
nm. A subwindow of the dimension 411×311×181 voxels was cropped from the original
image stack for the analysis. To improve the segmentation result, the image was magnified
by a factor of 1.5 yielding a data set of dimension 616×496×271 voxel with a voxel size
of 2.38 nm×2.41 nm×6.67 nm.

The sample S14 was imaged with a lateral resolution of 5 nm×5 nm, with a 10 nm
slicing thickness, leading to a voxel size of 5 nm×6.27 nm×10 nm. Analogously to S12, a
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Fig. 1 Slice views of the FIB-SEM image stacks for the samples S12 (left) and S14 (right)

Fig. 2 Slice views of the segmentations of the images of samples S12 (left) and S14 (right)

subwindow of dimension 611×293×123 voxels was cropped from the image stack. Figure
1 shows two slice views of the cropped FIB-SEM image stack of S12 (on the left) and S14
(right).

After imaging and cropping, the images stacks were segmented using the morphological
algorithm presented in Prill et al. (2013), which uses the shading effect present in the SEM
images, as the result of the large depth of field of the instrument. The segmentation parameters
were chosen manually to optimize the visual impression of the segmentation. Slice views
through the segmented images are shown in Fig. 2. The morphology of the porous network
shows two tortuous components of a bipercolating medium, requiring the choice of adequate
random textures models to generate a faithful description.

Finally, the images were scaled to yield an isotropic voxel edge length of 2.38 nm for S12
and 5 nm for S14.

4 Modeling the Morphology Nanoporous Carbon Electrodes

Since it has been shown, that computations of transport properties based on segmented FIB-
SEM images can lead to large errors in the estimated properties resulting from the lack
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of spatial resolution in the z direction (Hutzenlaub et al. 2013), it was decided to use a
model of random set for the generation of 3D computational domains used as input data for
estimation of the transport properties. This allows for correcting errors in the segmentation
by, e.g., by modeling an isotropic structure, and to explore systematic modifications of the
microstructure. Starting from the segmented images, morphological measurements were
made to estimate some probabilistic properties of the samples. This is the first step to generate
representative domains matching the material morphology as best as possible. The random
set model depends on a set of free parameters, which have to be determined by model
fitting. Since both samples are fitted to the same model, this results in two sets of parameters
representing the respective microstructures of the samples. It opens the possibility to make a
systematic study of the impact of themorphology of themesopores on the transport properties
of electrodes.

4.1 Principle of Random Set Modeling

A random set A is completely known and identified from a functional, its Choquet capacity,
defined on compact sets K inMatheron (1967, 1975), Serra (1982), and Jeulin (2000) defined
by

T (K ) = P(K ∩ A �= ∅)

where P is a probability. If we denote Kx the compact set K after translation to point x , we
get

T (Kx ) = P(Kx ∩ A �= ∅) = P{x ∈ A ⊕ Ǩ }
where A ⊕ Ǩ is the result of the dilation of set A by K :

A ⊕ Ǩ = {x, Kx ∩ A �= ∅} = ∪y∈K A−y = ∪x∈A,y∈K {x − y}
Similarly, we can define the erosion by K , A 	 Ǩ , from

A 	 Ǩ = {x, Kx ⊂ A} = ∩y∈K A−y = (Ac ⊕ Ǩ )c

where Ac is the complementary set of A. In principle, all types of compact sets should
be used for a complete characterization of A. In what follows, we will use pair of points
(K = {x, x + h}) and approximation of spheres in 3D by rhombo-cuboctaedra.

In addition to the Choquet capacity, size distributions of a random set can be accessed
through the use of the opening transformation by convex compact sets (like a sphere with
radius r , B(r)). This transformation starts from an erosion of the set by B(r) and is followed
by a dilation by B(r):

γB(r)(A) = (A 	 B(r)) ⊕ B(r)

Alternatively, the size distribution of Ac is accessed from the closing transformation of A
by convex sets. For spheres B(r), the transformation starts from a dilation of A by B(r) and
is followed by an erosion by B(r):

φB(r)(A) = (A ⊕ B(r)) 	 B(r)

It turns out that opening operations with spheres of increasing radius r progressively
removes details of the random set A until its complete suppression. Voxels disappeared for
size r correspond to details in Awith size less than r , so that a cumulative size distribution can
be easily obtained from the estimation of the probability for a point x to belong to γB(r)(A),
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Fig. 3 Realizations of a Boolean model of spheres (a), a smoothed indicator function Z(x) of the BSM (b)
and a random set A1 obtained by thresholding Z(x) (c)

obtained by its volume fraction. Similarly, closing operations by spheres of increasing radius
progressively fill the space, and removes details of Ac, giving access to a cumulative size
distribution of Ac, estimated from the measurement of the volume fraction of φB(r)(A).
Applied to the segmented binary images of the nanoporous carbon electrodes of this study,
both size distributions of the carbon phase and of the mesopores are estimated in 3D.

A typical size of A, namely a median radius rM , is obtained for

P{x ∈ γB(rM )(A)}/P{x ∈ A} = 0.5.

Similarly, a typical size of Ac, is obtained for

P{x ∈ φB(rM )(A)} − P{x ∈ A}/(1 − P{x ∈ A}) = 0.5.

The same operations and measurements are implemented on the 3D images of materials
and of 3D realizations of parametric random sets in an iterative process aiming to minimize
some distance between real and virtual specimens, as illustrated later.

4.2 Random Set Model

As a starting point for the modeling we use a Boolean model (Matheron 1967, 1975; Serra
1982; Jeulin 2000). It is built in two steps: a Poisson point process with intensity parameter
θ (average number of points per unit volume) generates random germs in the 3D space;
independent realizations of a random primary grains A′ are located on the Poisson points xk .
The random set A is obtained by the union of A′

xk :

A =
⋃

k

A′
xk (1)

For this model the Choquet capacity is known in closed form. In the 3D space, we have,
denoting V the mathematical expectation of the volume:

T (K ) = 1 − exp
(
−θV

(
A′ ⊕ Ǩ

)
(2)

In the present case, we can use a monodisperse Boolean Model of Spheres (BSM) for the
mesopores, the primary grain being a sphere of radius r , B(r). It turns out that for a volume
fraction of spheres larger than 0.3 and less than 0.95, this model is bipercolating (Jeulin and
Moreaud 2005), which is required for the present materials.

A slice view through a realization of the Boolean model used for the modeling is shown
in Fig. 3a.
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Yet, clearly the segmented sample images do not resemble the morphology of the Boolean
model, as the union of two spheres produces corners, which are not present in the segmented
images. Hence, it was decided to modify the BSM by smoothing its boundary. This is done
by using the indicator function of the BSM defined as

1A(x) =
{
1 if x ∈ A

0 if x ∈ Ac . (3)

To generate realizations of the modified model, the indicator function is convolved by a
centered Gaussian kernel with width σ and integral 1 over the 3D space,

N (0, σ )(x) = 1√
2πσ 2

e− x2

2σ2 . (4)

This yields a random function Z(x), with values in the interval [0, 1]:
Z(x) = 1A × N (0, σ ). (5)

A realization of Z(x) is shown on Fig. 3b. To obtain the indicator function of a random set
A1, a threshold C is applied, as shown on Fig. 3c:

A1 = {x, Z(x) ≥ C} (6)

The “convolution-thresholding” approach (Grzhibovskis and Heintz 2005) gives a good
approximation of the evolution of the boundaries of the initial random set A by motion with a
local velocity proportional to the local mean curvature in the present case. It has the effect to
smoothen the irregularities of the boundary, as would be the case for some reaction-diffusion
process.

In the present case, this sequence yields a random set depending on four parameters θ , r ,
σ and C .

The intensity θ can vary between zero and infinity but shows very small changes, when
the volume fraction is close to zero or to unity. This hampers the optimization involved in
the identification of parameters, which is based in a gradient descent. Hence, the parameter
θ is replaced by the volume fraction of the BSM p using the relation derived from Eq. (2):

p = 1 − exp

(
−θ

4

3
πr3

)
. (7)

The parameter p varies only between zero and unity and is hence more stable during the
identification. To further simplify the fitting, the threshold C is chosen such that the volume
fraction of the set A1 is equal to the volume fraction of the BSM on each realization. This
can be achieved by analyzing the histogram of realizations of the random function Z(x). This
eliminates C as a free parameter, the parameter p being directly estimated from the volume
fraction of segmented images.

4.3 Fitting Free Parameters to Images

To estimate the free model parameters giving the best match to the segmented images, a
distance was defined, in order to measure the morphological similarity between model real-
izations and the segmented images. The distance Y is the sum of the squared difference of
three morphological measurements (Serra 1982) performed on the segmented images and
on realizations of the model. These morphological measurements are the set covariance, the
opening curve and the closing curve.
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4.3.1 Set Covariance

The set covariance is given by the probability of two points, separated by a distance h, to be
included in the random set A:

Cov(h) = P(x ∈ A, x + h ∈ A) (8)

For a stationary random set with finite scale, the covariance reaches its sill (Cov(0))2 for
a finite length a, called its range. For the studied materials, the covariance is invariant by
rotation of vector h, so that their morphology is isotropic in 3D.

4.3.2 Opening Curve

The opening curve Γ (r) is given by the volume fraction VV of the random set after a mor-
phological opening by the spheres B(r)

Γ (r) = VV [γB(r)(A)] (9)

4.3.3 Closing Curve

Analogously, the closing curveΦ(r) is defined by the volume fraction of the random set after
closing by the spheres B(r)

Φ(r) = VV [φB(r)(A)] (10)

For the identification, these functions were sampled at several distances hi and radii ri
yielding the distance Y , defined as (the subscripts d and m stating for experimental data and
for simulated model)

Y =
∑

hi

[Covd(hi ) − Covm(hi )]2

+
∑

li

[Γd(ri ) − Γm(ri )]2

+
∑

li

[Φd(ri ) − Φm(ri )]2. (11)

The covariance was sampled on 37 equidistant points, spanning the interval hi = [0, 76]
voxels. Each of the other two curves were sampled on 15 points covering the radii [0, 30]
voxels. This gives the covariance roughly twice the weight of the other data.

It is assumed that the best parameter fit is reached for a minimum of the distance Y . Since,
the measurements on the model are made on realizations, Y is prone to noise, and therefore
a stochastic minimization algorithm was used, the SPSA algorithm in Spall (1992) in the
present study.

The algorithm starts with a given set of parameters

θ0 = (r0, σ0). (12)

Then a random sequence of computed according to the update rule

θk+1 = θk − akgk(θk), (13)
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Table 1 Basic morphological
properties of the two samples:
solid volume fraction (p); range
of covariance (rc); median radius
solid (med(rs )); median pore
radius (med(rp))

Sample p (%) rc (nm) med(rs ) (nm) med(rp) (nm)

S12 67 47.6 23.8 14.28

S14 52 150 50 60

Table 2 Optimal parameters
obtained by fitting to the
observed structure of S12

Parameter Optimal value (voxel) Optimal value (nm)

p 0.67 0.67

r 7 16.7

σ 10 23.8

with the stochastic gradient

gk(θk) =

⎛

⎜⎜⎝

Y (θk+ckΔk )−Y (θk−ckΔk )
2ckΔk,1

...
Y (θk+ckΔk )−Y (θk−ckΔk )

2ckΔk,i

⎞

⎟⎟⎠ . (14)

The sequences (ak) and (ck) control the convergence of the sequence, while the sequence
(Δk) leads to a perturbation in parameter space, with the components of (Δk) following a
Bernoulli distribution, i.e., P(Δk,i = ±1) = 0.5.

In the present study, the sequences

ak = a

(k + 1)α
, a = 0.1, α = 0.101

ck = c

(k + 1)γ
, c = 0.03, γ = 0.602

(15)

have been used. This, leads to a slow but steady convergence to the minimum of the objective
function Y (θ).

4.4 Experimental Results

The main 3D morphological properties are summarized in Table 1, clearly showing the
differences in the scales of the two mesostructures.

4.5 Optimal Model Fit

For the model fitting, the stochastic optimization method presented in Spall (1992) was
performedwith the distance given inEq. (11). The realizations of themodifiedBSMdescribed
in Sect. 4.2 for the fitting were generated on a voxel grid with dimension 256×256×256.
The stochastic optimization converged to a minimum for each of the samples, leading to the
respective best fit parameters. Overall, the model fitting yielded the following results.

4.5.1 Fitting S12

Optimal parameters for a model representing the sample S12 are shown in Table 2.
A comparison between the segmented image and a microstructure realization is shown

in Fig. 4. As can be seen, the model reproduces the shape of the pores and the solid phase
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Fig. 4 Comparison between the observed structure (left) and the fitted model (right) of dataset S12

Fig. 5 Comparison between the covariance of the fitted model (red) and the observed structure (green) of
dataset S12

quite well. A slight difference can be observed in that the boundary of the model is slightly
coarser, yet this might be due to noise induced by errors in the segmentation.

To quantify the similarity, the curves for the morphological measurements on the seg-
mentation and on the model realizations are shown in Figs. 5, 6 and 7. As shown in Fig. 5
the covariance of the model realization is in good agreement with the one measured on the
segmented image. Also, the opening curves in Fig. 6 are in good agreement. Yet, a small
deviation can be observed in that the opening curve on the model shows a slightly lower
probability to find larger details in the solid phase. The closing curves of the model and
the segmentation (Fig. 7) virtually coincide, meaning that the size distribution of pores is
recovered in the simulations of the model.
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Fig. 6 Comparison between the opening curve of the fitted model (red) and the observed structure (green) of
dataset S12

Fig. 7 Comparison between the closing curve of the fitted model (red) and the observed structure (green) of
dataset S12

Table 3 Optimal parameters
obtained by fitting to the
observed structure of S14

Parameter Optimal value (voxel) Optimal value (nm)

p 0.52 0.52

r 10 50

σ 14 70

4.5.2 Fitting S14

Applying the samefitting procedure to themicrographof sampleS14, results in the parameters
given in Table 3. A visual comparison of model and segmented image is shown in Fig. 8.

The fitted model to S14 shows even better agreement in the measured characteristics.
The covariances plotted in Fig. 9 and the opening curves plotted in Fig. 10 coincide almost
perfectly, while a small deviation can be observed in the closing curves (Fig. 11), this time
the model tending to less larger pore sizes.
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Fig. 8 Comparison between the observed structure (left) and the fitted model (right) of dataset S14

Fig. 9 Comparison between the covariance of the fitted model (red) and the observed structure (green) of
dataset S14

Overall, as previouslymentioned, themicrostructure of S14 ismuch coarser than the S12s,
as the fitted radii of the initial spheres as well as the width of the filter mask is about a factor
2–3 times larger. Although the volume fraction is larger in S12, the amount of coarsening
necessary to reproduce the microstructure for both samples is similar. This is indicated by the
fact that the ratio between the initial radii and the width of the filter mask is about σ

r = 1.4,
for both materials.

Finally, the surface area of both samples has been measured on the segmented images, as
well as on the modeled microstructures. This is an important feature since the surface area of
the mesopores plays an important role in capacitance of the materials. The resulting values
are shown in Table 4. As can be seen, the values differ by up to 18% for the sample S14. This
discrepancy is attributed to errors in the segmentation, since is known that the segmentation
algorithm does not reconstruct the surface of objects perfectly.
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Fig. 10 Comparison between the opening curve of the fitted model (red) and the observed structure (green)
of dataset S14

Fig. 11 Comparison between the closing curve of the fitted model (red) and the observed structure (green)
of dataset S14

Table 4 Specific surface area
measurement on the segmented
images and the modeled
structures

Sample aseg
[
cm2

cm3

]
amod

[
cm2

cm3

]

S12 3.1 × 105 3.28 × 105

S14 7.15 × 104 6.02 × 104

5 Estimating the Effective Transport Properties

5.1 Method of Numerical Homogenization

In order to predict the transport properties of the different mesopore structures, the effective
conductivity and the effective diffusivity of the samples were estimated by numerical homog-
enization (Papanicolau et al. 1978; Sánchez-Palencia 1980), starting frommodel realizations
of the modified BSM described in Section 4.2. In this study, the porous material is modeled
as a two-phase heterogeneous material as shown in Fig. 12. The main difficulty concerns the
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Fig. 12 A sample domain on
which the effective conductivity
and diffusivity are computed

contrast between the properties of components, which is infinite in the present case. There-
fore, other estimation techniques like bounds derived from variational techniques can only
provide an upper bound, the lower bound being equal to zero.

It is assumed that the localmaterial properties are given by a constant conductivityσ1 in the
solid phase and a zero conductivity in the pore space. To estimate the effective conductivity
of the material, we have to compute the electric field E(x) deriving from the potential Φ(x)
in realizations of the medium, by solving the problem

∇ · [σ(x)∇Φ(x)] =0, (16)

∇ × E(x) =0, (17)

with periodic boundary conditions on the domain boundaries and the condition 〈E(x)〉 = E ,
〈E(x)〉 meaning the space average of the electric field. The problem is numerically solved
using the “accelerated” Fourier scheme (Eyre and Milton 1999). It is an efficient method,
which directly applies to images and does not require any meshing of the microstructure.
The method is based on rewriting Eq. (16) as the implicit integral equation

E(x) = E −
∫

Γ (x ′)P(x − x ′)dx ′, (18)

where Γ is the (second-rank, periodic) Green operator associated with the homogeneous
conductivity σ0 (Duffy 2001) and P(x) = J (x)−σ0E(x) is the polarization field associated
with σ0.

In the accelerated FFT method, (18) is solved by a Neumann series, which is computed
by an iterative fixed-point algorithm. Using explicit formula for the Green operator, the
convolution product in the right-hand-side of (18) is determined in the Fourier domain.
The use of fast Fourier transforms greatly reduces computation times. Additionally, for the
Green operator, use is made of the “finite-difference” discretization proposed in Willot et al.
(2014), which improves the convergence rate and also leads to more precise local fields. In
FFT algorithms, the convergence rate generally depends on the reference conductivity σ0. In
the present method, its optimal value is unknown. Based on numerical experiments, we set∣∣∣ σ0
σ1

∣∣∣ = 0.36 for all computations. We stress that this value is not necessarily optimal.
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The effective conductivity σeff is estimated using:

σeff 〈Ei (x)〉 = 〈σ(x)Ei (x)〉 = 〈Ji (x)〉, (19)

where a macroscopic potential gradient 〈∇φ(x)〉 is applied along the direction ei .
The diffusivity is estimated by the same approach, since we consider a steady state for the

diffusion, so that the time derivative of the concentration is equal to zero. For this problem, the
diffusivity of the solid phase is equal to zero, while the diffusivity of pores, filled with some
electrolyte, is set to one. Therefore, the conductivity problem and the diffusivity problems
are solved on the same mesostructure, after exchanging the roles of pores and of the solid
phase.

5.2 Predicting Effective Transport Properties

5.2.1 Bounds of Effective Properties

As a first estimate for the effective transport properties, the Wiener, Hashin–Shtrikman,
and third-order upper bounds are computed for the effective conductivity as well as the
effective diffusivity. Since one component has a vanishing transport property, the lower
Wiener, Hashin–Shtrikman and third-order bounds vanish.

The upperWiener bound is valid for anymicrostructure of a heterogeneousmaterial, while
the upper Hashin–Shtrikman bound are valid for isotropic microstructures. Both depend only
on the volume fractions of the phases p1 and p2 and the bulk properties of the respective
phases, σ1 and σ2. The upperWiener bounds for a two-phasematerial with vanishing property
for σ2 are given by

σ u
W = p1σ1 (20)

For a two-phase material, the upper Hashin–Shtrikman bounds are given by:

σ u
HS = σ1

(
1 + p2

1 + p2
3

)
. (21)

The third-order bounds (Beran 1965)make use of the 3-points probability functions P{x ∈
A, x + h1 ∈ A, x + h2} and are generally model dependent. For practical applications to
two-components media with an isotropic geometry, they depend separately on a function
calculated by some integral of the 3-points probability and on the property of each component
(Milton 1982). This probability is not known in a closed form for the present “convolution-
thresholding” model, but it can be approximated by the corresponding function for the BSM
model:

P{x ∈ A, x + h1 ∈ A, x + h2}
= exp

(−θV
(
B(r) ∪ B(r)−h1 ∪ B(r)−h2

))

This expression was used to estimate the function involved in the calculation of the third-
order upper and lower bounds σ u

BSM and σ l
BSM of the BSM (Torquato and Stell 1985), which

depends linearly on the volume fraction of spheres p. Many other models of random media
show a similar behavior (Jeulin 2005).

For the upperWiener, Hashin–Shtrikman, and third-order bounds for the effective conduc-
tivity and diffusivity of themodeledmicrostructures are shown in Tables 5 and 6, respectively.
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Table 5 Upper Wiener,
Hashin–Shtrikman and
third-order bounds of the
conductivity of the two samples

Sample σ u
W σ u

HS σ u
BSM

S12 0.67 0.629 0.557

S14 0.52 0.428 0.3914

Table 6 Upper Wiener,
Hashin–Shtrikman and
third-order bounds of the
diffusivity of the two samples

Sample Du
W Du

HS Du
BSM

S12 0.33 0.137 0.117

S14 0.48 0.37 0.244

5.2.2 Effective Conductivity

The effective conductivities were predicted by solving the problem in Eqs. (16–19) with
the software morphhom (Willot et al. 2014). Hence, the conductivities are computed for
the electrostatic case (i.e., at frequency ω = 0). This is justified, by the low frequency the
capacitances being measured in the EIS measurement.

For the determination of the effective conductivities, 20 model realizations with different
dimensions between 1283–5123 voxels were generated for each of the parameter sets in
Tables 2 and 3. Then, the effective conductivities were computed for each realization. From
the statistical dispersion of conductivities, it is possible to estimate the representativeness
of the computed values with respect to variations in the model realizations. A study on the
statistical representative volume element [as defined in Kanit et al. (2003)] for the model
for S12 is shown in Fig. 13. To characterize the statistical dispersion of the conductivity,
the mean and the empirical standard deviation were computed for the 20 realizations of the
model for each edge length of the volume. Figure 13 shows the mean and twice the standard
deviation of the effective conductivity as error bars. Hence, the error bars correspond to the
95% confidence interval of the individual realizations. As can be seen, the realizations with
edge length greater than 256 voxel, corresponding to a physical volume with edge length
of about l ≈ 0.6µm, show no bias (there is no edge effect for this size) and have a relative
precision of less than ±2%.

When combining the 20 realizations with the largest edge length of 512 voxels, the con-
fidence interval of the effective conductivity for the model for S12 is estimated as

(
σeff,S12

σbulk

)
= 0.4976 ± 0.0034. (22)

where the errors indicate the ≈ 95% confidence interval of the average given by the sample
mean±2 SD√

n
, where both quantities were estimated form the 20 realizations with edge length

512.
The corresponding study for the sample S14 is shown in Fig. 14. Due to the larger structure

size, the RVE for S14 is slightly larger, yet for an edge length for about 384 voxel corre-
sponding to a physical volume with edge length ≈ 1, 9µm, the edge effects are negligible
and the relative precision on 20 realizations is about ±2%.

The average effective conductivity for S14 estimated from a volume of 5123 voxels is
(

σeff,S14

σbulk

)
= 0.308 ± 0.0044. (23)

With the error again being the ≈ 95% confidence interval of the average.
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Fig. 13 Study on theRVEof the conductivity themodelwith parameters for S12. The error bars corresponding
to the 95% confidence interval for the individual realizations

Fig. 14 Study on theRVEof the conductivity themodelwith parameters for S14. The error bars corresponding
to the 95% confidence interval for the individual realizations

The estimated conductivities of the two samples are much lower than their upper
Wiener and Hashin–Shtrikman bounds (Table 5), which would provide poor estimates.
Third-order bounds provide better estimates, but still with an overestimation of the con-
ductivity.

5.2.3 Effective Diffusivity

The other important transport property considered in this work is the effective diffusivity in
the pore space. Since the charge carriers in the electrolyte are transported by diffusion in
the electrolyte, which in turn is filling the pore space, the effective diffusivity has a major
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Fig. 15 Study on the RVE of the effective diffusivity of the model with parameters for S12. The error bars
corresponding to the 95% confidence interval for the individual realizations

impact on the charging speed of the EDLC electrode. The effective diffusivity is estimated
using the same procedure as for the effective conductivity. In the model, it was assumed,
that the solid phase is impregnable for charge carriers and hence the diffusivity of the solid
phase vanishes. The diffusivity of the pore space was set to one. RVE studies for the effec-
tive diffusivity for both samples are shown in Figs. 15 and 16. Both studies show, that for
edge lengths of the computational domain of more than 256 Voxels, edge effects essentially
vanish and the relative precision reduces to less than ±1%. This corresponds to a represen-
tative volume with an edge length of about l ≈ 0.6µm for S12 and l ≈ 1.2µm for S14,
respectively.

For the parameter set representing themodel for S12, the effective diffusivitywas estimated
from 20 realization with edge length of 512 Voxels to

(
Deff,S12

Dbulk

)
= 0.097 ± 0.0048. (24)

For the parameter set representing S14, the effective diffusivity was estimated to

(
Deff,S14

Dbulk

)
= 0.24 ± 0.0042. (25)

In both cases, the errors represent the ≈ 95% confidence interval of the average, computed
as for the effective conductivity.

Comparison to the bounds in Table 6 shows that the simulated values are closest to the
BSM bounds.

Additionally, the diffusivities of the samples have been measured by electroimpedance
spectroscopy resulting in the values in Table 7. A comparison shows that the qualitative
behavior of the two samples is reproduced, yet quantitatively the level of agreement is low.

123



Prediction of Effective Properties of Porous Carbon…

Fig. 16 Study on the RVE of the effective diffusivity of the model with parameters for S14. The error bars
corresponding to the 95% confidence interval for the individual realizations

Table 7 Measured and simulated
diffusivities of the two samples,
assuming a bulk diffusivity of

Dbulk = 1.08 ∗ 10−6 cm2

s

Sample DExp DSim

S12 1.07 × 10−6 cm2

s 0.097 cm
2

s

S14 4.89 × 10−6 cm2

s 0.24 cm
2

s

6 Parametric Study

Finally, a parametric study was performed, to assess the impact of the different model param-
eters on the effective conductivity and diffusivity of the resulting microstructures. To this
end, the realizations of the model were generated with pore volume fractions ranging from
10 to 90%. Due to the linear nature of the conductivity problem, the absolute size of the
radii and filter masks do not affect the effective properties. Thus, we limited the study to the
estimation of the influence of the ratio between the radii of the spheres of the Boolean model
and the size of the filter mask. The resulting effective conductivity and diffusivity are shown
in Figs. 17 and 18.

As can be seen, the ratio between the initial sphere radius and size of the filter mask
has only a minute influence on the effective conductivity. Hence, it should in most cases be
sufficient, to fit a Boolean model of spheres to the microstructure and estimate the effective
conductivity and diffusivity on its realizations.

7 Comparison with Experiment

Experimentally, the gravimetric capacitance for both materials were measured using
electroimpedance-spectroscopy. The corresponding capacitance values for both materials
are:
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Fig. 17 Parameter study of the effective conductivity of the model described in Sect. 4.2

Fig. 18 Parameter study of the effective diffusivity of the model described in Sect. 4.2
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CG,S12 = 157
F

g
, (26)

CG,S14 = 113
F

g
. (27)

To compare the measurements with the calculated values, we calculate the ratio of the
volumetric capacitances of the two samples through

CV,S12 = CG,S12 pS12ρ, (28)

CV,S14 = CG,S14 pS14ρ. (29)

Where pS12 and pS14 are the volume fractions and ρ is the density of the microporous phase
of the two samples in g

cm3 .
Since, the density of themicroporous phase (ρ) is not known, only the ratio of the volumet-

ric capacitances of the two materials can be compared. The ratio of the measured volumetric
capacitances is given by

CV,S12

CV,S14
= CG,S12 pS12ρ

CG,S12 pS14ρ
= 1.79, (30)

where the density ρ cancels out. By comparison, the ratio between the capacitances of the
modeled structures is

pS12
pS14

= 1.288.

If the charge was stored only on the micropore surface, these ratios should be the same.
Possible reasons for this discrepancy are that a double layer is forming on the mesopore
surface, which has not been considered in the simulation. Also, the bulk volumetric capaci-
tances of the solid phase might differ between the two samples, due to the possible presence
of micropores with different volume fractions, unresolved by the FIB-SEM images. Since
the sample S12 has a larger measured capacitance relative to S14 and also a larger surface
area of the mesopores, which would explain a larger discrepancy if a double layer would be
formed on the mesopore surface, the first possibility is further explored in this study.

8 Prediction of the Volumetric Capacitance Including a Double Layer on
the Mesopore Surface

It is assumed, that the total volumetric capacitance is a linear combination of the volumetric
capacitance and the areal capacitance of the mesopore double layer multiplied by the specific
surface area of the mesopores

CV,S12 =pS12CV + aS12CA,

CV,S14 =pS14CV + aS14CA.
(31)

The specific surface areas were measured on the segmented images as well as on the
modeled microstructures. The resulting values are given in Table 8.

Since the volumetric capacitances are known, only up to a factor ρ, Eqs. (31), (28) and (29)
can be solved for the ratio of bulk volumetric capacitance coming from the micropores and
volumetric surface capacitance coming from themesopores. Using themeasured surface area
of the modeled microstructures, this leads to the following areal capacitance and volumetric
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Table 8 Specific surface of the
samples measured on the
segmented images aseg as well as
on the modeled microstructures
amod

Sample aseg amod

S12 3.1 × 105 cm
2

cm3 3.18 × 105 cm
2

cm3

S14 7.1 × 104 cm
2

cm3 6.02 × 104 cm
2

cm3

capacitances depending on ρ

CV = 99.3ρ
F

g
,

CA = 1.12 × 10−4ρ
Fcm

g
.

(32)

For the sample S12, this yields the following contributions to the capacitance:

CV,S12 = CV pS12 = 66.6ρ, (33)

CA
V,S12 = CAaS12 = 38.6ρ. (34)

Hence, in the sample S12 with a total capacitance of CS12 = 105.9ρ F
cm3 , 36% of the

total volumetric capacitance arises from the double layer on the mesopore surface and the
remaining 66.6% from the micropores. For the sample S14, the corresponding relations are:

CV,S12 = CV pS12 = 51.7ρ, (35)

CA
V,S12 = CAaS12 = 7.09ρ. (36)

Hence, in the sample S14, 12% of the capacitance of CS14 = 58.76ρ F
cm3 comes from

the mesopores and 87.9% comes from the microspores.
In order to estimate the optimal properties of the mesopore morphology, a parameter study

was done to estimate the dependence of specific surface area on the model parameters. For
the parameter study, ten realizations with dimension 256×256×256 voxels were generated
of themodel for the same parameter values as in Sect. 6, i.e., with r+σ = 30 voxel. Then, the
surface area has been rescaled for a model with unit spheres of radius one, i.e., the expected
surface area within a unit cube. The resulting specific surface areas are shown in Fig. 19.

For physical structures, the specific surface area for the radius r can be derived by the
scaling law:

A(r) = A(r = 1)

r
(37)

Hence, for a sphere radius of 20 nm, the maximal specific surface area is

SA ≈ 1 voxel2

voxel3

20 × 10−9m
= 0.05 × 109

m2

m3 = 5 × 105
cm2

cm3 (38)

To improve the microstructural properties using the model, we use Eqs. 31, 32, 37 and the
computed data in Fig. 19 for a ratio of r

σ
= 1.5, which is close to the fitted value for both

microstructures of r
σ

≈ 1.4. Then, we can compute the volumetric capacitance depending
on d = r + σ between 10 and 50 nm and the volume fraction p between 0.1 and 0.9. The
resulting capacitances are shown in Fig. 20.

As can be seen, the largest capacitance is reached for the smallest radius, i.e., the smallest
structure size of the model. This is due to the scaling in Eq. (37). For larger structures, the
specific surface area is small, meaning that the volumetric term is dominant. Hence in the
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Fig. 19 Parameter study of the effective surface area of the model described in Sect. 4.2 with spheres of
radius one

Fig. 20 Parameter study of the total capacity of a structure of the model described in Sect. 4.2, with spheres
of radius d, the volumetric and areal capacities from Eq. (32) and r

σ = 1.5

large structure regime, the maximal capacitance is computed for the largest volume fraction
p. Yet, for smaller structures, the surface term dominates. This means, that the maximal
capacitance is reached for a maximal surface area.

As shown in Fig. 19, the maximal surface area is reached for a volume fraction of p = 0.6
and minimal to no smoothing. For these parameters, the specific surface area peaks at around
a(p = 0.6, r

σ
→ ∞) ≈ 1.
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9 Conclusion

In this paper, nanoporous materials for EDLC electrodes are investigated using FIB-SEM
Nanotomography imaging, combinedwith automatic segmentation and random setmodeling.
It could be shown that transport properties could be predicted combining the structural model
with simulation using the FFT method. The results agree qualitatively with experimental
measurements. Furthermore, it could be shown that the capacitance values can be predicted
when combining thementioned techniquesmodeling based on the geometrical characteristics
of themodel. In this case, the experimental values do coincide verywell with the experimental
results. Finally, by varying the parameters of the structural model, improvements to the
microstructure could be suggested. In conclusion, it was shown that by combining techniques
ofmicroimaging, image processing, stochastic modeling and simulations, material properties
of EDLC electrodes could be predicted theoretically.

10 Outlook

The research presented in this paper focuses on the context of energy storage in EDLC’s
but can similarly be applied to lithium ion batteries or other nanoporous materials. In both
cases, batteries as well as EDLC’s the electrodes comprise mostly of a micro- or nanoporous
carbon structure filled with an electrolyte. Furthermore, the techniques demonstrated here
can be amended and improved individually. As the FIB technology improves, the image
quality of finer structures like the ones investigated here can be improved, yielding a better
segmentation. Also, since automatic segmentation for FIB-SEM images is a relatively new
field, improved algorithms can improve the accuracy of the segmentation. Concerning the
structural modeling, replacing the Boolean model, which serves as a basis for the modified
model by a cherry-pit model, can improve the modeling of the sphere packing. Finally,
improved physical simulations asmentioned in the introduction can be used to further enhance
the prediction of the capacitance.
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