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Southern Africa and Southern South America have experienced recent extremes in dry and wet rainy
seasons which have caused severe socio-economic damages. Selected past extreme events are here
studied, to estimate how human activity has changed the risk of the occurrence of such events, by ap-
plying an event attribution approach (Stott et al., 2004)comprising global climate models of Coupled
Model Intercomparison Project 5 (CMIP5). Our assessment shows that models' representation of mean
precipitation variability over Southern South America is not adequate to make a robust attribution
statement about seasonal rainfall extremes in this region. Over Southern Africa, we show that unusually
dry austral summers as occurred during 2002/2003 have become more likely, whereas unusually wet
austral summers like that of 1999/2000 have become less likely due to anthropogenic climate change.
There is some tentative evidence that the risk of extreme high 5-day precipitation totals (as observed in
1999/2000) have increased in the region. These results are consistent with CMIP5 models projecting a
general drying trend over SAF during December–January–February (DJF) but also an increase in atmo-
spheric moisture availability to feed heavy rainfall events when they do occur. Bootstrapping the con-
fidence intervals of the fraction of attributable risk has demonstrated estimates of attributable risk are
very uncertain, if the events are very rare. The study highlights some of the challenges in making an
event attribution study for precipitation using seasonal precipitation and extreme 5-day precipitation
totals and considering natural drivers such as ENSO in coupled ocean–atmosphere models.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Human activity is affecting the occurrence and intensity of
extreme weather events due to induced changes to the climate
system (IPCC, 2013). Extreme events are of particular relevance to
society because of their high impact on public and private sectors.
The question therefore arises as to what degree human activity has
contributed to a particular event (Allen, 2003). Recent studies have
begun to address this question of event attribution by estimating
how much particular extreme events can be explained by the
changing climate (e.g. Stott and Allen, 2004; Pall et al., 2011;
Rahmstorf and Coumou, 2011; Dole et al., 2011; Christidis et al.,
2011; Lott et al., 2013). Approaches to attribute events remain
B.V. This is an open access article u

).
diverse and there is an ongoing effort to synthesise attribution
statements made by different studies (e.g. Otto et al., 2012; Pe-
terson et al., 2013; Herring et al., 2014).

This study is an application of an event attribution methodol-
ogy to particularly wet and dry rainy seasons in Southern Africa
(SAF) and Southern South America (SSA). These are the seasons
2002/2003 (dry event) and 1999/2000 (wet event) for SAF (De-
cember to February) and the seasons 1988/1989 (dry event) and
1997/1998 (wet event) for SSA (October to March). The regions and
events were selected during the World Climate Research Program
(WCRP) – Abdus Salam International Centre for Theoretical Physics
(ICTP) summer school on the prediction and attribution of extreme
events. The majority of event attribution studies have so far fo-
cussed mainly on developed regions and to the best of the authors'
knowledge only one has yet been published which considered
events over South America (Shiogama et al., 2013), while there
have been few studies over Africa (Lott et al., 2013; Otto et al.,
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2013; Wolski et al., 2014 are representative of the few that have
been made). This study therefore provides the opportunity to
determine how anthropogenic climate change is affecting events
in areas not previously extensively studied.

The event attribution is carried out using ensembles of general
circulation models (GCMs) as first applied by Stott and Allen (2004)
and also recently adopted to study extreme events over Australia
(King et al., 2013; Lewis and Karoly, 2013). The ensembles are
constructed using GCM integrations that consider both anthro-
pogenic and natural forcings (ALL) and those that consider natural
forcings only (NAT). The two ensembles (ALL and NAT) allow the
estimation, from a model perspective, of how anthropogenic cli-
mate change has altered the likelihood of a certain threshold of a
physical variable being exceeded at a certain point in time. This
threshold is defined by a past observed extreme event.

The study further explores the sensitivities of an attribution
study related to the definition of an extreme event, which is com-
monly an ambiguous step in an attribution study (Angélil et al.,
2014). For example, an event such as a flood could be considered in
terms of maximum precipitation rates or seasonal mean precipita-
tion (Sippel and Otto, 2014). The consideration of natural variability
when the event occurred is a further key assumption. Regional
precipitation is affected by numerous natural variabilities, such as
atmospheric teleconnections, and thus the consideration of natural
drivers might alter the attribution statement. Differences in the
Fig. 1. Mean monthly precipitation of climatology over Southern South America (SSA) an
illustrating a dry and wet season over SSA and a dry and wet season over SAF. The selecte
socio-economic sectors in the respective regions.
description of an extreme precipitation event are therefore here
translated into the effect on an attribution statement.

The paper is structured as follows: Section 2 provides back-
ground on precipitation climatologies over the two regions, the
extreme events being studied and their socio-economic impacts.
Section 3 describes in detail the underlying methodology and the
model ensembles considered and Section 4 describes the results of
the event attribution studies. In Section 5, discussion and the
conclusions are presented.
2. Background on precipitation variability over study regions

2.1. Southern Africa

The climatological spatial distribution of accumulated rainfall for
DJF for the period from 1975 to 2004 for Africa is shown in Fig. 1.
Southern Africa is an austral summer (DJF) rainfall region, with the
exception of the small winter rainfall area of the south west region
and the narrow all year rainfall zone along the south coast. Rainfall
over SAF is characterized by a west–east gradient. The main
weather systems responsible for rainfall over the region have been
presented in detail in Tyson and Preston-Whyte (2000). These
systems include mesoscale convective systems, warm fronts, sub-
tropical lows, mid- to upper-tropospheric troughs, cloud bands,
d Southern Africa (SAF) for the period 1975–2004 and selected anomalous seasons
d seasons occurred during El Niño and La Niña years and had significant impacts on
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tropical storms, and tropical cyclones.
The wet event over SAF of 1999/2000 was the result of pro-

longed heavy rain combined with tropical cyclones Connie and
Eline both hitting Mozambique in February 2000 (Hellmuth et al.,
2007). Fig. 1 shows above average rainfall across the majority of
the selected region, with over 100% anomaly above the climato-
logical average in some areas. In Mozambique alone, the asso-
ciated flooding affected more than 2 million people, caused 700
deaths, the loss of 350,000 livestock, and economic losses esti-
mated at US$3 billion (Hellmuth et al., 2007). There were, how-
ever, some areas, for example, to the north of SAF and in Mada-
gascar that experienced below average rainfall for the season. The
DJF 2002/2003 season was, in contrast, relatively dry. There was
below average rainfall across most of the region. This lack of
rainfall, which followed a drought the previous year (Rouault and
Richard, 2005), caused crops to fail and led to food shortages
across the region (Bell et al., 2003).

2.2. Southern South America

The SSA region has a high concentration of large urban ag-
glomerations and its economy is based mainly on agriculture, li-
vestock and hydroelectricity production. Moreover most of the La
Plata Basin (LPB), one of the world's largest reserves of freshwater,
is included in the SSA region. In most of the SSA region the rainy
season occurs, on average, from October to March. In this sense, a
large part of subtropical South America experiences typical mon-
soonal circulation ([Kousky, 1988,Zhou and Lau, 1998]). Prominent
features include the South American low level jet (LLJ) east of the
Andes (Herdies et al., 2002; Marengo et al., 2004), the South
Atlantic Convergence Zone (SACZ – [Nogués-Paegle and Mo, 1997,
Nogués-Paegle and Mo, 2000]) and the circulation associated with
the semipermanent anticyclone over the South Atlantic Ocean
(Mächel et al., 1998).

The 1988/89 drought had devastating agricultural effects (e.g.
Seiler et al., 1998; Minetti et al., 2007). A recent study (Rivera and
Penalba, 2014) concluded that 1988–1989 was one of the most
severe drought episodes which affected a great portion of SSA. On
the other hand, during 1997 and 1998 the strongest El Niño was
registered (National Research Council, 1996; Neelin et al., 2000). In
this period positive precipitation anomalies, between 75% and
100% above climatological average, are observed (Fig. 1) across
Table 1
CMIP5 models considered in the study with number of realisations using the same mode
(ALL) and natural forcings only (NAT). The asterix denotes the data related to Rx5day ret
shown in the fourth and fifth column only. The last eight columns show the models (cr
Rx5day (n) for all the teleconnections considered.

Modelname ALL NAT AL-
Ln

NA-
Tn

ENSO SAF ENSO SSA

bcc-csm1-1 3 1 3 1
BNU-ESM 1 1 x x
CanESM2 5 5 5 5
CCSM4 1 1 1 1 x
CESM1-CAM5 3 3 x x
CNRM-CM5 10 6 10 6
CSIRO-Mk3-6-0 10 5 10 5
GFDL-CM3 5 3 5 3
GFDL-ESM2M 1 1 1 1 x
GISS-E2-H 5 5
GISS-E2-R 5 1 x
HadGEM2-ES 5 4 x
IPSL-CM5A-LR 6 3 6 3
IPSL-CM5A-MR 3 3 1 3 x
MIROC-ESM 3 3
MRI-CGCM3 3 1 2 1
Nor-ESM1-M 3 1 1 1
almost the entire SSA region, with the exception of the Patagonia
region (around 45°S) and the northwest of Argentina. The max-
imum precipitation anomalies are found in the LPB area.
3. Methods

The event attribution framework applied follows closely that
described in King et al. (2013) with the extension that the attri-
bution study is carried out for both mean precipitation and for the
maximum precipitation of five consecutive days (Rx5day, Sillmann
et al., 2013). An extended model validation is further carried out to
test the ability of the ensemble to represent precipitation varia-
bility, considering long-term trends and multiple teleconnections
that may drive precipitation amounts in the selected regions.
Using identified significant teleconnections, two ensembles of
model simulations are constructed, one that represents well the
significant teleconnections and another with all the models con-
sidered included. Both the comparison of two different seasonal
precipitation variables and the comparison of two different en-
sembles, differing in their consideration of natural variability, al-
low for exploration of the sensitivity of the attribution statement
to these choices. The details of the approach is provided in this
section.

3.1. Models, observations and validation

The event attribution is carried out using the general circula-
tion model (GCM) integrations of the Coupled Model Inter-
comparison Project phase 5 (CMIP5) archive (Taylor et al., 2012).
The Rx5day data from these model runs is retrieved from the
Expert Team on Climate Change Detection and Indices (ETCCDI)
portal, whereas the monthly precipitation data are taken from the
CMIP5 archive (Taylor et al., 2012). The Global Precipitation Cli-
matology Centre (GPCC, Becker et al., 2013) observations for mean
monthly precipitation and the Hadley Centre EXtreme (HadEX2,
Donat et al., 2013) observations for Rx5day are used to validate the
models and to determine the intensity of the extreme events. To
evaluate the teleconnections between ocean sea surface tem-
peratures (SSTs) and regional precipitation the Hadley Centre Sea
Ice and Sea Surface Temperature (HadISST, Rayner et al., 2003)
dataset is considered along with both the monthly and Rx5day
l physics. The number of realisations are shown for the simulations using all forcings
rieved from the ETCCDI portal. It is available for a reduced set of model realisations
osses) which reproduce the significant relation between seasonal precipitation and
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precipitation datasets. The number of models and realisations are
summarised in Table 1.

The observations and the models are evaluated for the spatial
averages of the regions Southern Africa (SAF) (35–12°S, 10°W–

52°E) and Southern South America (SSA) (60–20°S, 75°W–40°W)
following the definitions of Giorgi and Francisco (2000). The sea-
sons December–February for SAF and October–March for SSA are
used, corresponding to the wet seasons in these regions. The
model data are considered over land points only and are regridded
to the observational grids. To compute the spatial averages the
effective physical grid cell area has been used to take into account
the latitudinal gradient.

Before conducting an attribution assessment we evaluate the
ability of the model ensemble to represent the precipitation
variability over the region (Christidis et al., 2011). The evaluation is
here carried out on the long-term trends, interannual variability
and spectral decomposition of its variability at different time-
scales for both mean precipitation and Rx5day for the 100 year
period 1905–2004. The means of the model simulations are bias
corrected to the mean precipitation from the observations for the
climatology of 1975–2004. The HadEX2 dataset for Rx5day is
spurious in the beginning of the 20th century with a large number
of missing values over both SAF and SSA. The validation and bias
correction of Rx5day data is therefore carried out from the time
where the number of grid-points where observations are provided
is stable. This is from the year 1951 and 1961 for SAF and SSA,
respectively.

3.2. Teleconnections of precipitation

In order to determine the impact of teleconnections on the
precipitation variability in each region, we analyse how each of
three teleconnections influenced precipitation in each region in
the past: El Niño Southern Oscillation (ENSO), Atlantic Niño (Atl3)
and El Niño Modoki (EMI). The indices were calculated based on
the areal means of SSTs of the regions defined in Table 2. For each
of these indices the anomaly is calculated for mean precipitation
and Rx5day as fractional deviation from the climatology of 1975–
2004.

Teleconnections in each region are analysed based on linear
regressions of precipitation anomalies and each of the three
modes of variability (ENSO, Atlantic Niño and El Niño Modoki),
discriminating between positive and negative phases in the ob-
servations (HadlSST). The Atlantic Niño is an inter-annual mode
with a similar pattern as the Pacific counterpart (Zebiak, 1993) and
the El Niño Modoki is an alternative phase of the traditional El
Niño which evolves over the central Pacific instead of over the
Eastern coast. Both modes exhibit a different teleconnection pat-
tern in precipitation (Ashok et al., 2007) and are independent to
ENSO. For ENSO we consider a positive and negative phase if the
Table 2
Indices that the describe the teleconnections considered in this study. The indices
are computed using regional averages of Pacific sea surface temperature anomalies
(SSTA) shown in the third column.

Teleconnection Abbreviation Index

ENSO Niño 3.4 (Tren-
berth, 1997)

5°N–5°S, 170–120°W
Neutral phase within
�0.4 °CoSSTo0.4 °C

Atlantic Niño Atl3 (Zebiak, 1993) 3°N–3°S, 20°W–0°
SSTAC�0.5*SSTAE�0.5*SSTAW

El Niño Modoki EMI (Ashok et al.,
2007)

Subscripts refer to Pacific sub-regions
Central (C): 10°S–10°N, 165°E–140°W
Eastern (E): 15°S–5°N, 110–70°W
Western (W): 10–20°N, 125–145°E
SST anomaly is larger than 0.4 °C and smaller than �0.4 °C, re-
spectively, following the definitions in Trenberth et al. (1997). For
the Atlantic Niño and El Niño Modoki the criterion smaller than
and larger than 0 °C is used. The significance of each relation is
tested with a 5% confidence level.

The same comparison is subsequently performed using the
CMIP5 model simulations for the teleconnections that have proven
to be significant. As a criterion, it is assessed whether each model
correlation is distinguishable from the observed correlation using
a test for the difference in the correlation (Olkin and Finn, 1995).
The model correlation is calculated by considering all experiments
within a model as if they would originate from a single experi-
ment. Performing such a correlation test allows to take into ac-
count that each model has a different number of experiments
(model years). Models were selected if the correlation was indis-
tinguishable from that of the observations. A model could also be
selected if the simulated correlation was not significant as long it
was not significantly different from the observed correlation.

This analysis is used to define a reduced ensemble of simula-
tions that selects first only the models that reproduce relevant
teleconnections in these regions and second only those years
within a 10-year window around the event which are in phase
with the teleconnection pattern of the year when the event oc-
curred. Both model ensembles are hereafter distinguished by the
non-selective ensembles (ALL and NAT) and ensembles selected to
represent the effect of teleconnections (ALLTC and NATTC).
3.3. Attribution of extreme events

To determine how anthropogenic forcings influence precipita-
tion, we compare the natural (NAT) and all forcings (ALL) and the
ensembles selected by precipitation teleconnections (NATTC and
ALLTC) at the time of each event. Each event is represented using a
10-year window centred around the year of the event, assuming
that the models are close to stationary during the length of such a
period. The wet event over SAF during 2002/2003 is constructed
with 6 years only due to the limit of the CMIP5 historical simu-
lations which end in 2005.

The following analysis is carried out for both ALL and NAT, and
ALLTC and NATTC. A Kolmogorov–Smirnov test is first carried out to
determine if samples drawn for ALL and NAT are significantly
different. A gamma distribution is estimated for the ALL and NAT
samples, as this has been shown to be an adequate representation
of both mean and Rx5day precipitation (Husak et al., 2007). An
extreme value distribution might arguably be the correct re-
presentation of a sample of maximum data such as Rx5day, yet
consideration of spatial averages would no longer preserve the
maximum stable properties and hence the same distribution as for
mean precipitation is used. These distributions are used to eval-
uate how the exceedance probability of the precipitation amounts
observed in each event changes between ALL and NAT. This is done
by calculating the Fraction of Attributable Risk (FAR – Allen, 2003),
defined as 1�PNAT/PALL, where PALL and PNAT are the probabilities
of the threshold being exceeded in the ALL and NAT ensembles,
respectively. For the wet events this is the probability that the
observed event or wetter occurred, whereas for dry events this the
probability that the observed event or drier occurred.

The uncertainty of the FAR is estimated by bootstrapping each
sample 1000 times, before fitting the data to gamma distributions
to give a representation of the uncertainty that arises from limited
ensemble sizes. The FAR is only considered significant if the con-
fidence bounds given by the 5th and 95th percentiles exclude a
value of zero.
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4. Results

4.1. Evaluation of simulated precipitation from 1905 to 2004

The ability of the CMIP5 models to represent precipitation
variability over SAF and SSA is shown in Fig. 3(a) and (b), re-
spectively. Over SAF a negative long-term trend was observed for
mean precipitation (0.5 mm/day per decade) and a positive trend
for Rx5day (0.45 mm/day per decade) which were both re-
produced by the ensemble including anthropogenic forcing. This
finding is consistent with previous studies, yet some regional long
term changes might be obscured by considering a regional average
over Southern Africa (Kruger, 2006). A strong long-term increase
in mean precipitation was observed over SSA (1.8 mm/day per
decade) as shown in previous studies (Barros et al., 2008; Penalba
and Robledo, 2005) which was not captured in the ensemble of
CMIP5 models. It is therefore questionable if the ensemble is an
adequate representation of precipitation over the SSA region. In-
dividual models showed a significant positive trend but were only
able to represent at most half of the observed precipitation trend.
The median trend of ALL was larger than that of NAT, which may
indicate that some of the observed trend is attributable to an-
thropogenic forcings (Vera and Diaz, 2014). For Rx5day as over SAF
a positive trend was observed (2.5 mm/day per decade) which is
contrary to the seasonal precipitation reproduced by the ensemble
mean of CMIP5 models including anthropogenic forcings.

The validation of precipitation interannual variability shows an
overall uniform picture. The interannual variability, as well as its
spectral decomposition for different time-scales, is captured well
by the model ensemble over both regions. There is some indica-
tion that the ALL ensemble represents the variability more accu-
rately. Little evidence of significant multi-year variability in the
observations was detected. The results hold for both mean pre-
cipitation and Rx5day. The variability of both variables is close to
Gaussian, which may simply be due to spatial averaging according
the central limit theorem. This indicates that even a Gaussian
distribution could be adequate to represent the model ensembles
to compute changes in the distribution. However, using a gamma
distribution ensures that the probability of having negative pre-
cipitation values is zero which is physically more consistent.

4.2. Precipitation teleconnections and representation in CMIP5
models

The relation of the selected teleconnection patterns with sea-
sonal precipitation is illustrated in Fig. 2. A significant tele-
connection signal emerges between the positive and negative
phases of ENSO (El Niño events for SSA and La Niña events for
SAF). Several studies have documented a relationship between
extreme precipitation events and El Niño over SSA (e.g., Rao and
Hada, 1990; Pisciottano et al., 1994; Grimm et al., 2000; Rope-
lewski and Bell, 2008; Grimm and Tedeschi, 2009) and with La
Niña over SAF (Lindesay et al., 1986; Nicholson and Entekhabi,
1987; Tyson and Preston-Whyte, 2000). Significant relationships
are also identified between the observed precipitation anomalies
and the tropical Atlantic Niño (based on Atl3 index) as well as for
the El Niño Modoki in the Tropical Pacific.

For Rx5day a significant relationship during La Niña events
emerges over SAF, illustrating higher extreme precipitation rainfall
as identified for the mean seasonal precipitation. Stronger extreme
precipitation amounts are also found for positive phases of EMI for
SSA. Apart from these no significant relationships between the
teleconnection modes and the Rx5day data has been found, which
might be a consequence of having shorter lengths of the records.

In order to select the GCMs which are able to represent tele-
connections on the precipitation variability in each region, the
same analysis as with observations is performed for each of the
models. The models which are able to capture a significant cor-
relation between the indices and the regional precipitation
amounts are denoted with a cross in Table 1. The overall picture is
diverse. All the models are able to reproduce at least one tele-
connection, but none are able to capture all the teleconnections
over both regions. Clustering the teleconnections into the two
regions shows that no model can be selected that captures all
relevant teleconnections for SAF, whereas only two models cap-
ture all teleconnection over SSA. This finding inhibits a selection of
models that capture the tropical teleconnections that appear to
explain part of the precipitation variability in the two study re-
gions. In order to account for at least part of the natural variability
we choose as a compromise a selection of models based only on
ENSO mode, which explains the largest fraction of variability at the
inter-annual scale (Deser et al., 2010; Doblas-Reyes et al., 2013).
This leaves a selection of four and five models for SAF and
SSA, respectively, which provide sufficient samples to estimate
the distributions of precipitation to compute probabilities of
exceedances.

4.3. Attribution of Southern African dry and wet events

The distributions of FAR for the SAF events are illustrated in
Fig. 4a and show that anthropogenic influences increased the risk
of the 2002/2003 drought event significantly, as the 5th to 95th
confidence bounds lie above zero FAR. This is the case for non-
selective (based on ALL and NAT) and for the selective (based on
ALLTC and NATTC) distributions. The distribution is shifted higher
for the selective distributions, yet the uncertainty in FAR increases
as fewer models and years of data are available to compute the
probabilities of exceedances in the selective ensemble. The Kol-
mogorov–Smirnov test (KS-test) is only significant for the non-
selective ensemble consistent with the finding based on the
bootstrapped confidence interval of FAR which indicates only
significant non-zero values in the non-selective case. The median
value of FAR for the non-selective distributions is 0.3, which is
equivalent to stating that around a third of the risk of the event
occurring is attributed to anthropogenic causes, respectively.

For the wet event of 1999/2000 the FAR distributions are
shown for both the mean seasonal precipitation and Rx5day. The
FAR distributions show median values for the mean seasonal
precipitation below zero in both cases (�0.8 for non-selected and
�0.5 for selected ensemble), which for both ensembles indicates
that anthropogenic impacts decreased the risk of the wet event
occurring. FAR is not designed to quantify the proportion of risk
attributable in cases where the risk reduces, nevertheless we re-
tain this measure for means of comparability. This result for the
wet event is significant for the non-selective ensemble while for
the selective ensemble, the uncertainty of FAR exhibits a greater
spread (due to the smaller ensemble size) and the 95th percentile
is slightly above zero. The KS-test again confirms that the dis-
tributions are different only in the non-selective case.

Using the Rx5day data the median FAR values lie above zero for
both ensembles. This indicates that anthropogenic forcings have
increased the likelihood of high precipitation totals in a short
period of time. However, this result is not significant at the 5%
level given the wide confidence bounds in FAR. The KS-test by
contrast indicates that the ensembles NAT and ALL are drawn from
different distributions in both the non-selective and selective case.
Hence while we find reduced risk in observing anonymously wet
seasons in terms of seasonal totals there is some tentative in-
dication that the risk to observe extreme precipitation over five
consecutive days may have increased.



Fig. 2. Precipitation variability of CMIP5 models using all forcings (red) and only natural forcings (green) compared to observations of mean precipitation (GPCC) and Rx5day
(HadEX2) for Southern Africa (a) and Southern South America (b). The individual panels show in the first column long term trends, in the second column interannual
variability from the detrended series as histograms and in the third column the spectral decomposition of the variability for different time windows in years. The figures are
computed for the period 1905–2004 for mean precipitation and 1951–2004 for Rx5day. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 3. Linear regressions of teleconnection indices (ENSO (Trenberth, 1997), Atlantic Niño (Zebiak, 1993) and El Niño Modoki (Ashok, 2007)) with precipitation anomalies as
percentage of mean precipitation over Southern Africa (a) and Southern South America (b) for mean precipitation and maximum precipitation of five consecutive days
(Rx5day). The anomalies are computed as fractional deviations from the climatology 1975–2004 for mean precipitation for Rx5day over Southern Africa and Southern South
America, respectively. For Rx5day shorter periods were used due to lack of data in the early century (1951–2004 for SAF and 1961–2004 for SSA). The regressions are
computed for positive (red), neutral (black, only ENSO) and negative (blue) phases of the indices and significant regressions are highlighted with a correlation coefficient. The
black dots show the selected events for the respective regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 4. Empirical distributions of Fraction Attributable Risk (FAR) for the period DJF in Southern Africa (a) and October to March in Southern South America (b) for the
selected events. Each of the region distributions of FAR are shown using all models years (Non phased) and only model years which are in the same phase of ENSO when the
event occurred. Blue shading indicates range of 5th to 95th percentiles of the distribution of FAR using bootstrapping of the model data and the black line the median. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.4. Attribution of South American wet and dry events

The same analysis as over SAF is performed over SSA, bearing in
mind that the observed long-term trend of seasonal precipitation
is not adequately represented by the CMIP5 models. The models
do though capture well the past variability of Rx5day. The overall
picture is similar to SAF. For the drought event (1988/1989) there
are positive FAR values which are only significant in the non-se-
lective case, with a median of 0.4. In the selective case the con-
fidence bounds widen with lower numbers of model years and
thus zero FAR can no longer be excluded. However, KS-tests
applied to the drought event do show a significant difference be-
tween the ALL and NAT and ALLTC and NATTC ensembles.

For the wet event of 1997/1998, both monthly precipitation and
Rx5day indices were analysed. For the seasonal mean precipitation
amounts the ensembles without the model selection show a FAR
distribution that has a median value of �0.25, suggesting that the
likelihood of this event was decreased due to anthropogenic in-
fluence. However, the 95th percentile of this distribution is greater
than zero, indicating no significant FAR. The KS-test confirms this
finding by indicating identical parent distributions. A negative
median FAR is unexpected in this context as there is some



O. Bellprat et al. / Weather and Climate Extremes 9 (2015) 36–4644
indication for a positive trend in ALL as discussed in (Vera and Diaz
2014). Since the flooding event over SSA falls in the very high tails
of the model distributions (130 mm/month, see Fig. 3b) a gamma
distribution might though no longer adequately represent the
probabilities (Papalexiou et al., 2013).

The limitation of the approach to attribute such an extreme
event becomes fundamentally difficult for the case where the
ensembles were selected with respect to ENSO where the samples
of model years is approximately ten times smaller. The event oc-
curs with a probability close to zero in the reduced ensembles
NATTC and ANTTC, which are unable to capture such an extreme
event. The event is hence highly unlikely in both ensembles but
results in a value FAR of one with a negligible confidence bound, as
the probability in ANTTC is, albeit being almost zero, still order of
magnitudes larger than NATTC. The interpretation would be that
the event would have been nearly impossible in world without
climate change even though the probability of the event is ex-
tremely small in both ensembles. This example illustrates a lim-
itation of the approach when selecting model ensembles that are
limited in size which results in an under-dispersive representation
of underlying variability of highly extreme events. The underlying
uncertainty of FAR is a consequence not represented adequately
and the resulting value of FAR should hence not be interpreted
physically.

For the Rx5day index, in this case, there were no significant
ENSO relations identified. Therefore only one pair of ALL and NAT
ensembles was analysed as no selection of simulations with re-
spect to a teleconnection could take place. The median value of
FAR for this case was found to be 0.4, which is significant and the
KS-test confirms that the two ensembles were drawn from dif-
ferent distributions. Hence while there are weak grounds to de-
termine attributable risks for seasonal precipitation over SSA
based on the methodology adopted we find that an extreme pre-
cipitation event as occurred in 1997/1998 has become more likely
due to anthropogenic influences.
5. Discussion and conclusions

We have presented an application of event attribution for dry
and wet rainy seasons over Southern Africa and Southern South
America, studying events which have caused high socio-economic
impact in terms of flooding or droughts. The analysis comprised
the use of GCMs from CMIP5 which include all atmospheric for-
cings (anthropogenic and natural) and natural forcings only, in
order to estimate how human activity has changed the odds of
occurrence of such events. The application is further extended to
explore how natural drivers associated with different modes of the
Southern Oscillation affect the attribution results.

The event attribution results show that the risk of dry austral
summers (DJF) over Southern Africa (SAF) such as during the years
2002/2003 was increased due to human influence. However, the
risk of a wet summer as occurred during 1999/00 was decreased.

The CMIP5 models are, in contrast to over SAF, unable to re-
present the precipitation variability over Southern South America
(SSA). Mean precipitation during the rainy season (October to
March) has increased over SSA in the last century, which is only
weakly captured by the models including anthropogenic forcings.
Attribution statements about the events are thus questionable
with the set of model simulations considered in this study. Bearing
in mind these shortcomings, little significant contribution of hu-
man activity could be identified on wet and dry events for seasonal
precipitation as occurred during the austral summers 1997/98 and
1988/89, respectively. As over SAF we find evidence for an in-
creased risk of high 5-day extreme rainfall totals during the
flooding event of 1988/89.
Precipitation over both SAF and SSA prove to be correlated with
the phase of ENSO but also modes of the Atlantic Niño and the El
Niño Modoki. Since there is no subset of models contributing to
CMIP5 that is able to represent all of the relevant of the tele-
connections a subset of models based on solely ENSO was selected.
This selection represents an intermediate approach between event
attribution studies using models with prescribed SSTs (Pall et al.,
2011; Schaller et al., 2014) and non-initialised models (King et al.,
2013; Lewis et al., 2014) which are able to simulate coupled pro-
cesses between the atmosphere and the ocean. Considering the
models which are in phase with ENSO when the events occurred
and simulate coupled atmosphere–ocean processes has found to
change weakly the magnitude of FAR but not its sign. However, the
differences are obscured by increased uncertainty in FAR as the
selected sample of model years that include ENSO is smaller in
comparison to all the model data available in CMIP5.

The alternative evaluation of the wet season using an extreme
index for precipitation (Rx5day) indicates (not significant at the 5%
level) that the odds of experiencing short and intense precipitation
events increased over SAF in contrast to a decreased chance of
having a wetter mean season due to climate change. This finding is
consistent with previous studies arguing that an increase of the
water holding capacity due to increasing temperatures leads to
more intense precipitation events while seasonal mean pre-
cipitation decreases in subtropical regions (Held and Soden, 2006).
For the wet event over SAF during 1999/00 (which was affected by
prolonged precipitation and two tropical cyclones, causing severe
damages due to flooding) both mean seasonal precipitation and
Rx5day may seem an adequate representation of the event, yet
result in different attribution statements. This example highlights
the different conclusions that can arise by asking different ques-
tions on the attributable risk of an extreme event.

Finally, we find that the uncertainty in the fraction of attribu-
table risk using bootstrapping of the confidence intervals can be
large, in particular when few data points are available, but still
allows for several significant statements.The uncertainty of FAR
increases particularly if the event is very rare, i.e. if it lies in the tail
of model distributions, and thus the attributable risk using this
framework is generally more uncertain for very extreme events,
for instance the heavy precipitation levels in 1997/98 over
Southern South America.

Concluding our findings in SAF we find an increase in risk of
anomalously dry austral summer seasons and an increase in risk of
anomalously wet seasons attributable to anthropogenic influence
on climate. For SSA, model deficiencies mean we are not able to
make a robust attribution statement about changes of risk of
anomalously wet October–March seasons as seen in 1997/98 or
anomalously dry October–March seasons as seen in 1988/89. Thus,
though we have been able to make some strong statements per-
taining to changes in the risks in Southern Africa, further work is
needed to more precisely quantify the fraction of risk attributable
to anthropogenic and natural factors in Southern South America.
Acknowledgements

We acknowledge the World Climate Research Programme
(WCRP) and the International Centre for Theoretical Physics (ICTP),
which supported this research through the WCRP-ICTP Summer
School on Prediction and Attribution of Extremes (2014). The work
of Bellprat and Ciavarella was further supported by the EUropean
CLimate and weather Events: Interpretation and Attribution (EU-
CLEIA), funded by the European Union's Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement no. 607085. The
contribution of Lott was supported by the Climate Science for



O. Bellprat et al. / Weather and Climate Extremes 9 (2015) 36–46 45
Service Partnership through the Newton UK–China Research and
Innovation Partnership Fund, while Stott was supported by the
Joint DECC/Defra Met Office Hadley Centre Climate Programme
(GA01101). The work of Gulizia was supported by the Argentina
National Council for Scientific and Technological Research [CON-
ICET PIP 11220120100586]. The work of Parker was supported by
the National Environmental Research Council (NERC) under Grant
NE/K005472/1.The Hadley Centre authors (Ciavarella, Lott and
Stott) would also like to thank the other authors and their su-
pervisors for allowing the time to work on this study.
References

Allen, M., 2003. Liability for climate change. Nature 421, 891–892.
Angélil, O., Stone, D.A., Tadross, M., Tummon, F., Wehner, M., Knutti, R., 2014. At-

tribution of extreme weather to anthropogenic greenhouse gas emissions:
sensitivity to spatial and temporal scales. Geophys. Res. Lett. 41, 2150–2155.

Ashok, K., Behera, S.K., Rao, S.A., Weng, H., Yamagata, T., 2007. El Niño Modoki and
its possible teleconnection. J. Geophys. Res. 112, C11007.

Barros, V.R., Doyle, M.E., Camilloni, I.A., 2008. Precipitation trends in southeastern
South America: relationship with ENSO phases and with low-level circulation.
Theor. Appl. Climatol. 93, 19–33.

Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U.,
Ziese, M., 2013. A description of the global land-surface precipitation data
products of the Global Precipitation Climatology Centre with sample applica-
tions including centennial (trend) analysis from 1901 to present. Earth Syst. Sci.
Data Discuss 5, 921–998.

Bell, M., Grover, E., Hopp, M., Kestin, T., Lyon, B., Seth, A., 2003. IRI Climate Digest
February 2002: Climate Impacts – January, URL: 〈http://iri.columbia.edu/cli
mate/cid/Feb2003/impacts/html〉 (accessed 6.10.14.).

Christidis, N., Stott, P.A., Brown, S.J., 2011. The role of human activity in the recent
warming of extremely warm daytime temperatures. J. Clim. 24, 1922–1930.

Deser, C., Alexander, M.A., Xie, S.-P., Phillips, A.S., 2010. Sea surface temperature
variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2, 115–143.

Doblas-Reyes, F.J., García-Serrano, J., Lienert, F., Biescas, A.P., Rodrigues, L.R.L., 2013.
Seasonal climate predictability and forecasting: status and prospects. Wiley
Interdiscip. Rev.: Clim. Change 4 (4), 245–268.

Dole, R., Hoerling, M., Perlwitz, J., Eischeid, J., Pegion, P., Zhang, T., Quan, X.-W., Xu,
T., Murray, D., 2011. Was there a basis for anticipating the 2010 Russian heat
wave? Geophys. Res. Lett. 38, L06702.

Donat, M.G., Alexander, L.V., Yang, H., Durre, I., Vose, R., Dunn, R.J.H., Willett, K.M.,
Aguilar, E., Brunet, M., Caesar, J., Hewitson, B., Jack, C., Klein Tank, A.M.G.,
Kruger, A.C., Marengo, J., Peterson, T.C., Renom, M., Oria Rojas, C., Rusticucci, M.,
Salinger, J., Elrayah, A.S., Sekele, S.S., Srivastava, A.K., Trewin, B., Villarroel, C.,
Vincent, L.A., Zhai, P., Zhang, X., Kitching, S., 2013. Updated analyses of tem-
perature and precipitation extreme indices since the beginning of the twen-
tieth century: The HadEX2 Jdataset. J. Geophys. Res. Atmos. 118, 2098–2118.
http://dx.doi.org/10.1002/jgrd.50150.

Giorgi, F., Francisco, R., 2000. Uncertainties in regional climate change prediction: a
regional analysis of ensemble simulations with the HADCM2 coupled AOGCM.
Clim. Dyn. 16, 169–182.

Grimm, A.M., Tedeschi, R.G., 2009. ENSO and extreme rainfall events in South
America. J. Clim. 22, 1589–1609.

Grimm, A.M., Barros, V.R., Doyle, M.E., 2000. Climate variability in southern South
America associated with El Niño and La Niña events. J. Clim. 13, 35–58.

Held and Soden, 2006. Robust responses of the hydrological cycle to global
warming. J. Clim. 19 (21), 5686–5699.

Hellmuth, M.E., Moorhead, A., Thomson, M.C., Williams, J. (Eds.), 2007. Climate Risk
Management in Africa: Learning from Practice. International Research Institute
for Climate and Society (IRI), Columbia University New York, USA.

Herdies, D.L., Da Silva, A., Silva Dias, M.A.F., Nieto Ferreira,, R., 2002. Moisture
budget of the bimodal pattern of the summer circulation over South America. J.
Geophys. Res. (Atmos.) 107 (D20), 8075. http://dx.doi.org/10.1029/
2001JD000997.

Herring, S.C., Hoerling, M.P., Peterson, T.C., Stott, P.A. (Eds.), 2014. Explaining ex-
treme events of 2013 from a climate perspective. Bull. Am. Meteorol. Soc. 95,
S1–S96.

Husak, Gregory J., Michaelsen, Joel, Funk, Chris, 2007. Use of the gamma distribu-
tion to represent monthly rainfall in Africa for drought monitoring applications.
Int. J. Climatol. 27, 935–944.

IPCC, 2013. Climate change 2013: the physical science basis. In: Stocker, T.F., Qin, D.,
Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V.,
Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change. Cambridge Uni-
versity Press, Cambridge, United Kingdom and New York, NY, USA 1535 pp.

King, A.D., Lewis, S.C., Perkins, S.E., Alexander, L.V., Donat, M.G., Karoly, D.J., Black,
M.T., 2013. Limited evidence of anthropogenic influence on the 2011–12 ex-
treme rainfall over southeast australia in explaining extreme events of 2012
from a climate perspective. Bull. Am. Meteorol. Soc. 94 (9), S55–S58.
Kousky, V.E., 1988. Pentad outgoing longwave radiation climatology for the South
American sector. Rev. Bras. Meteorol. 3, 217–231.

Kruger, A.C., 2006. Observed trends in daily precipitation indices in South Africa:
1910–2004. Int. J. Clim. 26, 2275–2285. http://dx.doi.org/10.1002/joc.1368.

Lewis, S.C., Karoly, D.J., Yu, M., 2014. Quantitative estimates of anthropogenic
contributions to extreme national and State monthly, seasonal and annual
average temperatures for Australia. Australian Meteorological and Oceano-
graphic Journal 64, 215–230.

Lewis, S.C., Karoly, D.J., 2013. Anthropogenic contributions to Australia's record
summer temperatures of 2013. Geophys. Res. Lett. 40, 3705–3709. http://dx.doi.
org/10.1002/grl.50673.

Lindesay, J.A., Harrison, M.S.J., Haffner, M.P., 1986. The Southern Oscillation and
South African rainfall. S. Afr. J. Sci. 82, 196–198.

Lott, F.C., Christidis, N., Stott, P.A., 2013. Can the 2011 East African drought be at-
tributed to human-induced climate change? Geophys. Res. Lett. 40, 1177–1181.

Mächel, H., Kapala, A., Flohn, H., 1998. Behaviour of the centres of action above the
Atlantic since 1881. Part I: characteristics of seasonal and interannual varia-
bility. Int. J. Climatol. 18 (1), 1–22.

Marengo, J.A., Soares, W.R., Saulo, C., Nicolini, M., 2004. Climatology of the low-level
jet east of the Andes as derived from the NCEP-NCAR reanalyses: characteristics
and temporal variability. J. Clim. 17, 2261–2280.

Minetti, J.L., Vargas, W.M., Vega, B., Costa, M.C., 2007. Las sequías en la pampa húmeda:
Impacto en la productividad del maíz. Rev. Bras. Meteorol. 22, 218–232.

National Research Council, 1996. Learning to Predict Climate Variations Associated
with El Nino and the Southern Oscillation. National Academies Press, Wa-
shington, DC.

Neelin, J.D., Jin, F.-F., Syu, H.-H., 2000. Variations in ENSO phase locking. J. Clim. 13,
2570–2590.

Nicholson, S.E., Entekhabi, D., 1987. Rainfall variability in equatorial and southern
Africa: relationships with sea surface temperatures along the southwestern
coast of Africa. J. Appl. Meteorol. 26, 561–578.

Nogués-Paegle, J., Mo, K., 1997. Alternating wet and dry conditions over South
America during Summer. Mon. Weather Rev. 125, 279–291.

Nogués-Paegle, J., Mo, K., 2000. Intraseasonal modulation of South American
summer precipitation. Mon. Weather Rev. 128, 837–850.

Olkin, I., Finn, J.D., 1995. Correlations redux. Psychol. Bull. 118, 155–164. http://dx.
doi.org/10.1037/0033-2909.118.1.155.

Otto, F.E.L., Jones, R.G., Halladay, K., Allen, M.R., 2013. Attribution of changes in
precipitation patterns in African rainforests. Philos. Trans. R. Soc. B 368. http:
//dx.doi.org/10.1098/rstb.2012.0299 20120299.

Otto, F.E.L., Massey, N., vanOldenborgh, G.J., Jones, R.G., Allen, M.R., 2012. Re-
conciling two approaches to attribution of the 2010 Russian heat wave. Geo-
phys. Res. Lett. 39, L04702.

Pall, P., Aina, T., Stone, D.A., Stott, P.A., Nozawa, T., Hilberts, A.G.J., Lohmann, D.,
Allen, M.R., 2011. Anthropogenic greenhouse gas contribution to flood risk in
England and Wales in autumn 2000. Nature 470, 382–385.

Penalba, O.C., Robledo, F.A., 2005. Frequency of precipitation in the humid Pampa of
Argentina. Atlantic 40, 30–36.

Peterson, T.C., Hoerling, M.P., Stott, P.A., Herring, S. (Eds.), 2013. Explaining extreme
events of 2012 from a climate perspective. Bull. Am. Meteorol. Soc. 94, S1–S74.

Papalexiou, S. M., Koutsoyiannis, D., Makropoulos, C.: How extreme is extreme? An
assessment of daily rainfall distribution tails, Hydrol. Earth Syst. Sci., 17, 851-
862, doi:10.5194/hess-17-851-2013, 2013.

Pisciottano, G.F., Diaz, A.F., Cazes, G., Mechoso, C.R., 1994. El Niño–Southern Oscil-
lation impact on rainfall in Uruguay. J. Clim. 7, 1286–1302.

Rahmstorf, S., Coumou, D., 2011. Increase of extreme events in a warming world.
Proc. Natl. Acad. Sci. USA 108, 17905–17909.

Rao, V.B., Hada, K., 1990. Characteristics of rainfall over Brazil: annual variations and
connections with the Southern Oscillation. Theor. Appl. Climatol. 42, 81–91.

Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P.,
Kent, E.C., Kaplan, A., 2003. Global analyses of sea surface temperature, sea ice,
and night marine air temperature since the late nineteenth century. J. Geophys.
Res. (Atmos.) 108, D14.

Rivera, J.A., Penalba, O., 2014. Trends and spatial patterns of drought affected area in
Southern South America. Climate 2, 264–278. http://dx.doi.org/10.3390/
cli2040264.

Ropelewski, C., Bell, M., 2008. Shifts in the statistics of daily rainfall in South
America conditional on ENSO phase. J. Clim. 21, 849–865.

Rouault, M., Richard, Y., 2005. Intensity and spatial extent of droughts in Southern
Africa. Geophys. Res. Lett. 32, L15702.

Seiler, R.A., Kogan, F., Sullivan, J., 1998. AVHRR-based vegetation and temperature
condition indices for drought detection in Argentina. Adv. Space Res. 21,
481–484.

Shiogama, H., Watanabe, M., Imada, Y., Mori, M., Ishii, M., Kimoto, M., 2013. An
event attribution of the 2010 drought in the South Amazon region using the
MIROC5 model. Atmos. Sci. Lett. 14, 170–175. http://dx.doi.org/10.1002/
asl2.435.

Sillmann, J., Kharin, V.V., Zwiers, F.W., Zhang, X., Bronaugh, D., 2013. Climate ex-
tremes indices in the CMIP5 multi-model ensemble. Part 1: model evaluation in
the present climate. J. Geophys. Res.

Schaller, N., F.E.L., Otto, G.J., van Oldenborgh, N.R., Massey, S., Sparrow, M.R., Allan,
2014. The heavy precipitation event of May-June 2013 in the upper Danube and
Elbe basins. Bull. Amer. Meteor. Soc 95 (9), S69–S72.

Sippel, S., Otto, F.E.L., 2014. Beyond climatological extremes-assessing how the odds
of hydrometeorological extreme events in South-East Europe change in a

http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref1
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref1
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref2
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref2
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref2
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref2
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref3
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref3
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref4
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref4
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref4
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref4
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref5
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref5
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref5
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref5
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref5
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref5
http://iri.columbia.edu/climate/cid/Feb2003/impacts/html
http://iri.columbia.edu/climate/cid/Feb2003/impacts/html
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref6
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref6
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref6
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref7
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref7
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref7
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref8
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref8
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref8
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref8
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref9
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref9
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref9
http://dx.doi.org/10.1002/jgrd.50150
http://dx.doi.org/10.1002/jgrd.50150
http://dx.doi.org/10.1002/jgrd.50150
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref11
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref11
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref11
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref11
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref12
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref12
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref12
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref13
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref13
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref13
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref15
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref15
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref15
http://dx.doi.org/10.1029/2001JD000997
http://dx.doi.org/10.1029/2001JD000997
http://dx.doi.org/10.1029/2001JD000997
http://dx.doi.org/10.1029/2001JD000997
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref17
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref17
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref17
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref17
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref19
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref19
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref19
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref19
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref19
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref20
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref20
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref20
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref20
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref20
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref21
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref21
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref21
http://dx.doi.org/10.1002/joc.1368
http://dx.doi.org/10.1002/joc.1368
http://dx.doi.org/10.1002/joc.1368
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref124
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref124
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref124
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref124
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref124
http://dx.doi.org/10.1002/grl.50673
http://dx.doi.org/10.1002/grl.50673
http://dx.doi.org/10.1002/grl.50673
http://dx.doi.org/10.1002/grl.50673
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref25
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref25
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref25
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref26
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref26
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref26
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref27
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref27
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref27
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref27
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref28
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref28
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref28
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref28
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref29
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref29
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref29
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref30
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref30
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref30
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref31
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref31
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref31
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref32
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref32
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref32
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref32
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref33
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref33
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref33
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref34
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref34
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref34
http://dx.doi.org/10.1037/0033-2909.118.1.155
http://dx.doi.org/10.1037/0033-2909.118.1.155
http://dx.doi.org/10.1037/0033-2909.118.1.155
http://dx.doi.org/10.1037/0033-2909.118.1.155
http://dx.doi.org/10.1098/rstb.2012.0299
http://dx.doi.org/10.1098/rstb.2012.0299
http://dx.doi.org/10.1098/rstb.2012.0299
http://dx.doi.org/10.1098/rstb.2012.0299
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref37
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref37
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref37
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref38
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref38
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref38
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref38
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref39
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref39
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref39
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref40
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref40
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref40
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref41
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref41
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref41
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref42
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref42
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref42
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref43
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref43
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref43
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref43
http://dx.doi.org/10.3390/cli2040264
http://dx.doi.org/10.3390/cli2040264
http://dx.doi.org/10.3390/cli2040264
http://dx.doi.org/10.3390/cli2040264
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref45
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref45
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref45
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref48
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref48
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref49
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref49
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref49
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref49
http://dx.doi.org/10.1002/asl2.435
http://dx.doi.org/10.1002/asl2.435
http://dx.doi.org/10.1002/asl2.435
http://dx.doi.org/10.1002/asl2.435
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref51
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref51
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref51
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref152
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref152
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref152
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref152


O. Bellprat et al. / Weather and Climate Extremes 9 (2015) 36–4646
warming climate. Clim. Change 125 (3–4), 381–398. http://dx.doi.org/10.1007/
s10584-014-1153-9.

Stott, P.A., Stone, D.A., Allen, M., Human contribution to the European heatwave of
2003, Nature 432, 2004, 610–614.

Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An overview of CMIP5 and the ex-
periment design. Bull. Am. Meteorol. Soc. 93, 485–498.

Trenberth, Kevin E., 1997. The definition of El Niño. Bull. Am. Meteorol. Soc. 78 (12),
2771–2777.

Tyson, P.D., Preston-Whyte, R.A., 2000. The Weather and Climate of Southern Africa.
Oxford University Press 396 pp.
Vera, C.S., Díaz, L., 2014, Anthropogenic influence on summer precipitation trends
over South America in CMIP5 models. Int. J. Climatol.. doi: 10.1002/joc.4153.

Wolski, P., Stone, D., Tadross, M., Wehner, M., Hewitson, B., 2014. Attribution of
floods in the Okavango basin, Southern Africa. J. Hydrol. 511, 350–358.

Zebiak, S.E., 1993. Air–sea interaction in the equatorial Atlantic region. J. Clim. 6; ,
pp. 1567–1586.

Zhou, J.Y., Lau, K.M., 1998. Does a monsoon climate exist over South America? J.
Clim. 11, 1020–1040.

http://dx.doi.org/10.1007/s10584-014-1153-9
http://dx.doi.org/10.1007/s10584-014-1153-9
http://dx.doi.org/10.1007/s10584-014-1153-9
http://dx.doi.org/10.1007/s10584-014-1153-9
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref54
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref54
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref54
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref55
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref55
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref55
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref56
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref56
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref57
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref57
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref57
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref58
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref58
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref58
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref59
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref59
http://refhub.elsevier.com/S2212-0947(15)30008-6/sbref59

	Unusual past dry and wet rainy seasons over Southern Africa and South America from a climate perspective
	Introduction
	Background on precipitation variability over study regions
	Southern Africa
	Southern South America

	Methods
	Models, observations and validation
	Teleconnections of precipitation
	Attribution of extreme events

	Results
	Evaluation of simulated precipitation from 1905 to 2004
	Precipitation teleconnections and representation in CMIP5 models
	Attribution of Southern African dry and wet events
	Attribution of South American wet and dry events

	Discussion and conclusions
	Acknowledgements
	References




