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Abstract

There is a consensus that progestins and thus their cognate receptor molecules, 

the progesterone receptors (PRs), are essential in the development of the adult 

mammary gland and regulators of proliferation and lactation. However, a role for 

natural progestins in breast carcinogenesis remains poorly understood. A hint to that 

possible role came from studies in which the synthetic progestin medroxyprogesterone 

acetate was associated with an increased breast cancer risk in women under hormone 

replacement therapy. However, progestins have also been used for breast cancer 

treatment and to inhibit the growth of several experimental breast cancer models. More 

recently, PRs have been shown to be regulators of estrogen receptor signaling. With 

all this information, the question is how can we target PR, and if so, which patients 

may benefit from such an approach? PRs are not single unique molecules. Two main PR 

isoforms have been characterized, PRA and PRB, which exert different functions and the 

relative abundance of one isoform with respect to the other determines the response 

of PR agonists and antagonists. Immunohistochemistry with standard antibodies against 

PR do not discriminate between isoforms. In this review, we summarize the current 

knowledge on the expression of both PR isoforms in mammary glands, in experimental 

models of breast cancer and in breast cancer patients, to better understand how the  

PRA/PRB ratio can be exploited therapeutically to design personalized therapeutic 

strategies.

Introduction

Nuclear estrogen receptors alpha (ERα) represent 
almost the first molecular targets used for breast cancer 
treatment, and two-thirds of these patients are treated 
with an endocrine therapy. Nuclear progesterone 
receptors (PRs) on the other hand, have been evaluated 
as surrogate markers of ERα integrity and functionality. 
There is nowadays emerging interest in understanding the 

interplay between the different members of the nuclear 
hormone receptor family and their role in tumor growth.

PRs are members of the nuclear steroid family of 
receptors, together with ER, androgen (AR), glucocorticoid 
(GR)/mineralocorticoid (MR) receptors and other less 
related molecules such as thyroid receptors, retinoic acid 
and orphan receptors (reviewed in Grimm et  al. 2016). 
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They are ligand-activated transcription factors that 
can also act through ligand-independent mechanisms. 
Receptors other than the classical nuclear steroid receptor 
family are also involved in generating progesterone (P4)-
mediated effects (reviewed in Mueck et al. 2014).

PR isoforms

The human PR gene consists of eight coding exons 
separated by seven non-coding introns. There are mainly 
two mRNA transcripts controlled by two different 
promoters, each one encoding a different protein. The 
mRNA regulated by the distal promoter encodes the full-
length PR named PRB (116 kDa; 933 amino acids (aa)); 
the one regulated by the proximal promoter encodes the 
truncated version, named PRA (94 kDa), which lacks the 
first 164 aa starting its translation in the methionine 165 
(reviewed in Abdel-Hafiz & Horwitz 2014). These two 
isoforms were originally described in the chick oviduct. 
Other mRNA PR variants with different deleted exons 
were detected in breast cancer tissues and cell lines 
(Cork et al. 2008). However, how these mRNAs influence 
PR signaling and if they are translated into functional 
proteins remains to be established. A third predicted 
truncated PR isoform, named PRC (60 kDa), results from 
an alternative translation site starting at methionine 595. 
This form should retain the ability to bind the ligand, 
but not DNA. It was first described in T47D cells (Wei 
et al. 1990), and it has been suggested that it may play a 
role in labor (Condon et al. 2006) where high PRC levels 
are associated with an increase in the PRA to PRB ratio 
(Renthal et al. 2015). A 78 kDa protein was also detected 
in breast cancer samples using PR antibodies (Graham 
et al. 1995). Since it is not reactive with an antibody that 
recognizes only PRB, it has been originally proposed as a 
PRA variant (Yeates et al. 1998).

In the next part of this review, we will focus on the 
two main PR isoforms, PRB and PRA, and the impact 
that the different PR isoform ratios might have on breast 
cancer progression.

PRA and PRB isoforms: localization,  
genomic and non-genomic effects

PRB isoforms have an amino terminal region named A/B, 
with a high degree of variability among the different 
nuclear receptors. Two transactivation domains: AF1 
(aa 456–546) and AF3 (aa 1–164) located in this region 
participate in coactivator recruitment (Dobson et  al. 
1989). In addition, an inhibitory domain is involved in 

corepressor recruitment (Hovland et al. 1998). The DNA-
binding domain consists of 78–80 aa and is composed 
of two type II zinc finger structures involved in the 
binding to specific cis-acting DNA sequences, the PR 
elements (PRE). The ligand-binding domain is located at 
the carboxy terminal end of the PR. It contains a third 
transactivation domain (AF-2) required for hormone-
dependent coactivator recruitment, dimerization and 
interaction with chaperone proteins in the inactive state 
(reviewed in Hilton et al. 2015).

PRA differs from PRB in the lack of the AF3 
transactivation site, located in the B-Upstream Segment 
(BUS) of PRB (Sartorius et al. 1994b). Similar affinities of PRA 
and PRB for the natural ligands and medroxyprogesterone 
acetate (MPA) have been reported (Ghatge et  al. 2005); 
however, this is not valid for the progestins levonorgestrel 
or gestodene (Schoonen et al. 1998). After ligand activation, 
PR isoforms dimerize forming homo- or heterodimers. 
There is still no consensus on whether PR dimerization 
is necessary for binding to palindromic DNA sequences. 
A different model proposes that the activation of single 
monomers, which bind to PRE half sites (Jacobsen et al. 
2009), might be thermodynamically favored (Heneghan 
et  al. 2005). Many of the endogenous PR-binding sites 
detected by chromatin immunoprecipitation sequencing 
contain these PRE half sites (Ballare et  al. 2013). More 
recently, it has been shown that in cells transfected with 
PRB, ligand activation promotes tetramerization of PR in a 
DNA-independent manner (Presman et al. 2016).

Another level of complexity is the fact that P4 may also 
elicit rapid non-genomic effects activating cytoplasmic 
signaling pathways (reviewed in Boonyaratanakornkit et al. 
2018). These effects are mediated by PRB, as this isoform 
shuttles between nuclear and cytoplasmic compartments 
whereas, PRA is mainly localized in the nucleus (Guiochon-
Mantel et al. 1994, Boonyaratanakornkit et al. 2008). In 
pathological contexts, the abnormal presence of cytosolic 
PRA may interfere with normal signaling.

PRA may also act as a ligand-dependent trans-
dominant repressor of other steroid receptors including 
PRB, ERα, AR, MR and GR (reviewed in Chabbert-Buffet 
et al. 2005), but this effect may not be so relevant under 
physiological conditions (Scarpin et  al. 2009). In most 
cases, PRB functions as an activator of progesterone-
responsive genes in conditions in which PRAs are 
transcriptionally inactive (reviewed in Jacobsen & Horwitz 
2012). Notwithstanding, genes regulated exclusively by 
PRA have been reported (Richer et al. 2002, Jacobsen et al. 
2005). PRB competes with ERα for the same coactivators 
(McDonnell & Goldman 1994, Wen et  al. 1994).  
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This coactivator squelching represents another  
mechanism through which progestins inhibit estrogen 
action. More recently, a rewiring of ERα and PR after 
progestin treatment was proposed to explain the inhibitory 
effects of progestins on breast cancer cell proliferation 
(Mohammed et al. 2015).

After ligand binding, PR aggregates in nuclear foci 
where the transcriptional activity takes place (Arnett-
Mansfield et al. 2007). The activated PR exerts their genomic 
effects by binding either to PRE directly at the promoter 
of target genes or can be tethered to other transcription 
factors, thus regulating the expression of genes that 
lack PRE sites. PR isoform-mediated transcription has 
been reviewed in depth elsewhere (Jacobsen & Horwitz 
2012). Post-translational modifications can modulate PR 
transcriptional activity. These include phosphorylations, 
acetylations, ubiquitinations, glycosylations and 
SUMOylations in serine and lysine residues located 
in the amino terminal end. The functional effects of 
these modifications are related to several factors such as 
modulation of the transcriptional activation or repression, 
DNA binding, cofactor recruitment, receptor turnover 
and changes in hormone responsiveness (reviewed in Qiu 
& Lange 2003, Abdel-Hafiz & Horwitz 2014, Diep et  al. 
2015). Several studies have suggested that, upon ligand 
binding, PRA is rapidly SUMOylated, while PRB becomes 
deSUMOylated. SUMOylation is a stabilizing modification 
and thus PRA results in a more stable isoform relative 
to PRB (Daniel et  al. 2007). This biochemical difference 
in isoform SUMOylation, together with the increased 
turnover of PRB due to mitogen-activated protein kinase-
dependent phosphorylation of serine 294 (Shen et al. 2001, 
Faivre & Lange 2007) may explain the PRA predominance 
observed in many human data sets reviewed herein.

Methods to determine PR isoform expression

PR isoform expression has been determined using 
PCR, western blots (WB) or immunohistochemistry  
(IHC)/immunofluorescence (IF) techniques. A critical 
issue in PR isoform mRNA detection is the correct 
primer design. Errors were detected in several studies by 
Aupperlee et al. (2005a). The levels of PRA are calculated 
by subtracting PRB from total PR adding a further degree 
of complexity.

Currently, WB is the most reliable method to evaluate 
PR isoforms since the ratio can be calculated in the same 
assay using one antibody. Notwithstanding, there are 
several limitations: (a) PRB splice variants with similar 
molecular weight (MW) to PRA might interfere with the 

PRA band; (b) antibodies should have equal affinities 
for both denatured PR proteins and (c) WB is not in the 
routine practice in the clinic.

The detection of PR isoforms by IHC or IF is still 
controversial. A list of antibodies that did not recognize 
PRB by IHC in gelatin-embedded cells uniquely expressing 
PRB has been reported (Mote et al. 2001). A PRA-specific 
antibody is offered by Leica, a Novocastra antibody known 
as clone 16 or 312. The FDA approved this antibody to 
detect total PR in human tissue; however, the antibody 
is commercialized as a specific PRA antibody. Following 
these assumptions, many investigators have published 
results describing and quantifying PR isoform expression 
in different tissues using IHC (Kreizman-Shefer et al. 2014, 
Bartosch et al. 2015, Bonneterre et al. 2016). In xenografts, 
using cell lines modified to express either PRA or PRB, this 
antibody proved to be excellent to recognize both PR 
isoforms by IHC (Fabris et al. 2017).

PR isoforms in the mammary gland

PRA and PRB expression ratio may change in the different 
reproductive tissues. Even in the same organ, the PR 
ratio may differ according to the developmental stage or 
hormonal status (reviewed in Patel et al. 2015, Hilton et al. 
2018).

Both PR isoforms are expressed in the mammary 
gland of most of the species studied. Equimolar ratios 
have been reported in human breast (Mote et al. 2002), 
higher levels of PRA than PRB (3:1) in mouse mammary 
glands (Schneider et al. 1991), and a single PRB isoform 
in the rabbit. Table  1 depicts in detail the PRA/PRB 
changes during the different stages of mammary gland 
development in different species.

PR isoforms in genetically modified mice

PRB is required for mammary morphogenesis during 
pregnancy (reviewed in Conneely et al. 2003). PR-knockout 
(KO) mice show decreased branching and lobuloalveolar 
differentiation. PRA-KO mice are infertile, but the 
mammary gland develops normally in response to P4, 
indicating that PRB is necessary and sufficient to induce 
mammary gland proliferation and differentiation during 
pregnancy. PRB-KO mice are fertile but the mammary 
gland is unable to differentiate (reviewed in Conneely 
et  al. 2003). Conversely, transgenic mice overexpressing 
PRA show ductal hyperplasia (Shyamala et al. 2000) that 
was reversed by antiestrogen but not with antiprogestin 
treatment (Sampayo et al. 2013) and, mice overexpressing 
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PRB did not show ductal elongation and no ends buds 
were developed (Shyamala et al. 2000).

Transgenic C/EBPB mice showed an altered pattern of 
PR isoform expression (Grimm & Rosen 2003), suggesting 
that C/EBPB plays a role in the regulation of PR. PR, 
but not ERα, are also overexpressed in the mammary 
epithelial cells of Brca1/p53-deficient mice because of a 
defect in PR degradation (Poole et al. 2006), mirroring the 
data of human mammary glands from BRCA+ patients 
showing increased levels of PRA/PRB (King et  al. 2004). 
Furthermore, treatment of Brca1/p53-deficient mice with 
the PR antagonist, mifepristone (MFP; RU-486) prevented 
mammary tumorigenesis (Poole et al. 2006).

PR isoforms in human breast cancer cell lines

PR isoform expression and PR isoform ratio differentially 
affect breast cancer progression. Although controversial, 
in vitro (Lin et  al. 1999, Khan et  al. 2012, Wargon et  al. 
2015, Diep et al. 2016) and in vivo (Sartorius et al. 2003, 
Wargon et al. 2015) studies with breast cancer cell lines 
support this notion.

The in vitro evidence comes from studies using:  
(a) T47D cells with constitutive expression of both 
PR isoforms or modified to alter the PR isoform ratio 
(McGowan & Clarke 1999, Jacobsen et  al. 2002, McFall 
et al. 2015, Wargon et al. 2015) or engineered to overexpress 
only PRA (T47D-YA) or PRB (T47D-YB) (Sartorius et  al. 
1994a); (b) MCF-7 cells in which endogenous PR is 
expressed after estradiol treatment or modified to express 
exogenous PR (Boonyaratanakornkit et al. 2001, McGowan 
et al. 2007); (c) ZR-75-1 cells in which PRB is the prevalent 
isoform (Diep et al. 2016); (d) IBH-6 cells that express low 
ERα and PR levels (Vazquez et  al. 2004) and have been 
modified to overexpress PRA or PRB (Wargon et al. 2015);  
(e) MDA-MB-231, which are claudin low triple-negative 
cells, modified to express both PR isoforms or only PRB 
(Lin et  al. 1999, 2000) or to conditionally express PRA, 
PRB or both isoforms (Khan et  al. 2012, Bellance et  al. 
2013) and (f) BT-474 cells modified to express higher PRB 
levels as compared to the PRA isoform (Wu et al. 2004).

Experimental evidence points to PRB as the more 
proliferative isoform (Faivre et al. 2008) (reviewed in Lange 
et  al. 2008). Progestins induce cell cycle progression in 
T47D-YB cells stably expressing PRB (Skildum et al. 2005). 
However, a biphasic effect of progestins has been reported 
in T47D cells showing a late inhibitory effect preceded 
by an increase in cell cycle progression (Musgrove et al. 
1991). Conversely, in T47D cells with inducible PRA, 
there was no significant change in cell proliferation but 

displayed reduced adherence to plastic, suggesting that 
increased PRA expression, may play a role in loss of 
adhesion observed in cancers (McGowan & Clarke 1999, 
Graham et  al. 2005) and an increased ability to invade 
stromal tissue (McGowan et al. 2004).

The experimental data regarding the role of PR 
isoforms in tumor invasiveness and/or aggressiveness  
in vitro is still controversial. In some experimental models, 
PRA+ cells exhibit a more invasive and aggressive behavior 
(McGowan et  al. 2003, Jacobsen et  al. 2005), whereas 
in others, induction of PRB leads to an increase in cell 
migration (Ibrahim et al. 2008, Bellance et al. 2013).

The genomics of P4-induced effects on gene 
transcription mediated by PR isoforms has been studied 
in the T47D-YA/-YB model (Richer et al. 2002, Tung et al. 
2006), in the MDA-MB-231 cells transfected with total 
PR or PRB (Leo & Lin 2008) or in the inducible systems 
(Graham et al. 2005, Jacobsen et al. 2005, Khan et al. 2012). 
In this review, we will focus on data obtained in vivo.

PR isoforms in experimental tumor growth

Mouse mammary carcinomas

There are few mouse mammary carcinoma models that 
express ERα and PR. MMTV-induced tumors were studied at 
a time that PR was detected by ligand-binding techniques 
and, to the best of our knowledge, no information has 
been reported regarding the prevailing PR isoforms in 
these models.

Our group developed MPA-induced mammary 
carcinomas, which expressed high levels of ERα and PR 
(reviewed in Lanari et al. 2009). With time, several different 
tumor variants arose which were classified according to 
their response to antiprogestin treatment. PR isoform 
expression revealed that responsive carcinomas had high 
PRA/PRB ratios while resistant carcinomas displayed the 
opposite ratio (Wargon et al. 2015). Two types of resistant 
variants were characterized: constitutive and acquired. The 
former carried a specific PRA promoter methylation and, 
upon demethylation, PRA expression and antiprogestin 
responsiveness were restored (Wargon et  al. 2011). In 
acquired resistant variants, continuous antiprogestin 
treatment induced a decrease in PRA expression and 
estrogen or tamoxifen treatment restored antiprogestin 
responsiveness by increasing PRA expression, thus 
changing the PRA/PRB ratio (Wargon et al. 2009).

A large number of genetically engineered mice have 
also been developed in an attempt to model endocrine-
responsive human breast cancer; however, few ER+ 
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luminal mammary carcinomas have been generated 
(reviewed in Dabydeen & Furth 2014). PR isoforms were 
only briefly mentioned. In the Wnt1 transgenic model, 
variable levels of PRB and PRA were observed among the 
different tumors (Zhang et al. 2005); whereas in the two 
cases shown of the Stat1 KO model, high levels of both 
PRA and PRB were observed in WB, although they were 
not quantified (Chan et al. 2012).

Rat mammary carcinomas

To the best of our knowledge, there are no available data 
on PR isoform expression in rat mammary carcinomas.

Feline mammary carcinomas

The percentage of total PR+ cells increases in feline invasive 
mammary carcinomas as compared to normal mammary 
gland (67% vs 15%, respectively) (Millanta et  al. 2005) 
and similar levels of PRA and PRB were observed by WB in 
mammary carcinomas (Gracanin et al. 2012).

Canine mammary carcinomas

In PR+ canine mammary carcinomas, higher levels of 
PRA than those of PRB were observed (Gracanin et  al. 
2012, Guil-Luna et  al. 2014) and the antiprogestin 
aglepristone inhibited tumor growth (Guil-Luna et  al. 
2011). More recently, tumor samples excised before 
and after aglepristone treatment were analyzed for PR 
mRNA and Ki67 antigen labeling (Guil-Luna et al. 2017). 
In aglepristone-treated PRA+ tumors, both total PR and 
PRA mRNA expression levels decreased as well as the 
proliferation index, suggesting that PRA mediates the 
inhibitory effect.

Cell line-derived xenograft models

The PRA/PRB ratios in different breast cancer cell line-
derived xenograft models are depicted in Table 2. T47D 
xenografts are strictly 17-β-estradiol (E2)-dependent for 
their in vivo growth. Bagatell et al. reported double bands 
for PRA and PRB using the PR MC243 antibody in WB 
(Bagatell et  al. 2001), whereas Sartorius et  al. showed 
increased PRB expression as compared with that of PRA 
in the T47D xenografts growing in nude female mice 
(Sartorius et al. 2003). We found similar levels of both PR 
isoforms, but occasionally there was an increase in PRB. 
T47D and T47D-YA tumors grow slower than the T47D-YB 
when inoculated into nude (Sartorius et  al. 2003) or 

NSG mice (Wargon et al. 2015). T47D-YA xenografts are 
tamoxifen and MFP sensitive while T47D-YB are resistant 
to both agents (Sartorius et al. 2003, Wargon et al. 2015). 
MPA induced only a slight increase in tumor growth of 
T47D xenografts; however, it did increase the expression 
of stem cell markers such as CK5 and BCL6 (Goodman 
et  al. 2016). Others reported that P4 slightly decreased 
estrogen-induced tumor growth in MCF-7 and in T47D 
xenografts (el Etreby & Liang 1998, Mohammed et  al. 
2015) although in the latter, the decrease in growth rate 
was only significant when P4 was administered together 
with tamoxifen.

More recently, Singhal et  al. reported that in T47D 
xenografts, the antiprogestin telapristone (TLP) induced 
transient inhibition of tumor growth, while the combined 
administration together with tamoxifen induced an 
almost complete tumor regression (Singhal et al. 2016). A 
similar effect was obtained with two other antiprogestins: 
CDB 4453 and EC313 (Singhal et al. 2018). These results 
are in line with the inhibitory effect previously observed 
in T47D xenografts treated with MFP (Wargon et al. 2015).

P4 (pellet; 25 mg) inhibited the growth of MDA-MB-231 
cells transfected with PR (ABC28 clone) inoculated into 
ovariectomized NOD/SCID mice. Overall the tumors were 
too small, and no metastases were observed in any of the 
groups (Lin et  al. 2001). Recently, we found that tumor 
growth and metastases were lower in MDA-MB-231 cells 
stably transfected with PRB inoculated into NSG mice as 
compared to the control counterparts. However, while MPA 
inhibited lung metastasis, MFP induced an increase in the 
number and size of the metastatic foci (Lanari et al. 2016).

IBH-4, IBH-6 and IBH-7 are ERα+ PR+ human breast 
cancer cell lines (Vazquez et  al. 2004) that originate 
tumors when transplanted into nude mice (Bruzzone 
et al. 2009). IBH-4 and IBH-6 were able to grow without 
hormone supply and IBH-7 was strictly estrogen 
dependent (Bruzzone et al. 2009). Tumors express ERα and 
PR and although not quantified, higher levels of PRB than 
PRA were observed in WB (Bruzzone et  al. 2009). MPA 
did not alter tumor growth; however, in the three cases 
the curves corresponding to MPA-treated mice showed a 
trend to decrease the growth rate as compared with their 
matched controls, either in the presence or absence of E2. 
Tamoxifen significantly inhibited the growth of IBH-4 
and IBH-6 tumors.

IBH-6 tumors were not inhibited by antiprogestins 
such as MFP or TLP. However, these antiprogestins 
inhibited the growth of cells manipulated to overexpress 
PRA, whereas MFP stimulated those overexpressing PRB 
(Wargon et al. 2015).
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Table 2  PR isoform imbalance in cell line xenograft breast cancer models.

Cell line/tumor PRA/PRB ratio Assay Mice Antibodies
Effect of hormones/
antagonists References

T47D (ER+, PR+, 
AR+, GR+ (low), 
HER2−, P53 
mutation)

PRA = PRB1,2 
PRB > PRA3

WB NSG1,6

SCID2

Nu/nu3,4,5,7

MC243#2; 
AB-52*

B-30*3

H-190 
(sc-7208, 
SC€) or 
Dako 12941

MPA ↑ tumor growth4 and 
stem cell markers5

P4 ↓ slightly E2-induced 
tumor growth and 
improved TAM-induced 
inhibition6

Antiprogestins (MFP1, 
TLP1,7) ↓ tumor growth

Antiprogestins (CDB4453 
and EC313) ↓ tumor 
growth that is 
potentiated by TAM8

1: Wargon et al. 
(2015); 2: Bagatell 
et al. (2001); 3: 
Sartorius et al. 
(2003); 4: Liang et al. 
(2007); 5: Goodman 
et al. (2016); 6: 
Mohammed et al. 
(2015); 7: Singhal 
et al. (2016); 8: 
Singhal et al. (2018)

T47D-YA
Only PRA

WB nu/nu1

NSG2
AB-52; B-301; 

H-190 (SC) 
or Dako 
12942

↓ growth rate as 
compared with -YB1,2; 
inhibited by TAM1 and 
MFP2

1: Sartorius et al. 
(2003); 2: Wargon 
et al. (2015)

T47D-YB only 
PRB

WB nu/nu1

NSG2
H-190 (SC) or 

Dako 1294
↑ growth rate as 

compared with wt and –
YA1,2; TAM1 and MFP2 
resistant

1: Sartorius et al. 
(2003); 2: Wargon 
et al. (2015)

MDA-MB-231 (ER−, 
PR−, AR−, HER2−,  
P53 mut)

Transfection of 
PRA/-B

ABC28 clone

NAI SCID NAI P4 ↓ tumor growth Lin et al. (2001)

PRB WB NSG H-190 (SC)1,2; 
Clone 16 
(NC€)2; 
Clone 636 
(NC)2

Fewer metastases than wt. 
MPA ↓ and MFP ↑ lung 
metastasis1

1: Lanari et al. (2016); 
2: Fabris et al. (2017)

IBH-6 (ER+, PR+, 
HER2-)

PRB > PRA
Wt

WB Nu/nu1,2 C-19, sc-538 
(SC)

H-190 (SC)

Similar growth in E2- or 
MPA-treated or 
untreated mice. TAM ↓1 
and MFP ↑ tumor 
growth2

1: Bruzzone et al. 
(2009); 2: Wargon 
et al. (2015)

PRA > PRB
PRA transfection

WB Nu/nu1,2 H-190 (SC) MFP or TLP ↓ tumor 
growth

Others not tested

Wargon et al. (2015)

PRB > PRA
PRB transfection

WB Nu/nu1,2 H-190 (SC) MFP ↑ tumor growth. TLP 
exerted no effect

Wargon et al. (2015)

IBH-4 (ER+, PR+, 
HER2-)

PRB > PRA WB Nu/nu C-19 (SC) Similar growth in E2- or 
MPA-treated or 
untreated mice. TAM ↓ 
tumor growth. MPA ↓ 
E2-induced metastases

Bruzzone et al. (2009)

IBH-7 (ER+, PR+, 
HER2-)

PRB > PRA WB Nu/nu C-19 (SC) E2-dependent. MPA ↓ 
E2-induced metastases

Bruzzone et al. (2009)

BT-474 (ER+, PR+, 
HER2+, p53 mut)

NAI P4 ↑ tumor growth, MPA ↑ 
metastasis

Liang et al. (2010)

MCF-7 (ER+ PR 
inducible, RA+, 
GR+, HER2-P53 
wt) 
 
 

MCF-7 empty 
vector

WB (cell 
extracts1)

NSG1

Nu/nu2
1: NAI P4 ↓ E2-induced tumor 

growth1. ONA, MFP or P4 
↓ as TAM tumor growth2

1: Mohammed et al. 
(2015); 2: el Etreby 
and Liang (1998)

MCF-7 PRA WB NSG NAI Slower growth than wt Mohammed et al. 
(2015)

MCF-7PRB WB NSG NAI Slower growth than wt Mohammed et al. 
(2015)

#Antibody provided by Dr D Toft, Mayo Clinic, Rochester, MN; *antibody developed by authors (Estes et al., Biochemistry 26: 6250, 1987); €SC, Santa Cruz 
Biotech; NC, Novocastra; CS, Cell Signaling Technology; NAI, No Available Information; AR, androgen receptor; E2, 17-β-estradiol; ER, estrogen receptor; 
GR, glucocorticoid receptor; MFP, mifepristone; MPA, medroxyprogesterone acetate; ONA, onapristone; P4, progesterone; PR, progesterone receptor; 
PRA, PR isoform A; PRB, PR isoform B; TAM, tamoxifen; TLP, telapristone; WB, Western blot.

Downloaded from Bioscientifica.com at 06/22/2019 06:46:10PM
via free access

https://doi.org/10.1530/ERC-18-0179
http://erc.endocrinology-journals.org


http://erc.endocrinology-journals.org� © 2018 Society for Endocrinology

Printed in Great Britain
Published by Bioscientifica Ltd.https://doi.org/10.1530/ERC-18-0179

R613C A Lamb et al. PR isoforms in breast cancer 25:12Endocrine-Related 
Cancer

Patient-derived xenografts

Only in few xenograft models, PR isoforms were evaluated 
by WB. In three out of four tumors of the WHIM xenografts, 
the PRB band seems stronger than the PRA band (in the 
publication the bands are mislabeled; the upper band is 
PRB and the lower band is PRA). More recently, the growth 
of two ERα+, PR+ patient-derived xenografts (PDX), UCD4 
and UCD65 was described (Finlay-Schultz et al. 2017). P4 
and MPA similarly inhibited E2-induced tumor growth. 
In both cases, PRB expression was apparently higher than 
PRA by WB (Finlay-Schultz et al. 2017). Esber et al. (2016) 
showed WB data from the HBCx-19, -21, -22 and -34 PDX 
(Cottu et al. 2014); both PR isoforms were expressed with 
levels of PRB that seemed to be higher than those of PRA. 
The authors report a slight inhibition of tumor growth 
after treatment with ulipristal acetate, a selective PRs 
modulator, P4 or the novel antiprogestin APR19 using the 
HBCx-34 PDX (Table 3).

In summary, increased levels of PRB than PRA 
were seen in most models in which progestins showed 
inhibitory effects on tumor growth or metastasis. Taking 
into consideration that the ability to generate a PDX is by 
itself a bad prognostic factor (DeRose et  al. 2011, Byrne 
et al. 2017, Shafaee & Ellis 2017), it can be speculated that 
higher levels of PRB than PRA are associated with worse 
prognosis.

PR isoforms in breast cancer cohorts

ERα, PR, HER2 and Ki67 are routinely evaluated as 
prognostic and predictive markers in breast cancer patients. 
According to the ER status, patients are categorized in ERα+ 
PR+; ERα+ PR−; ERα− PR+ or ERα− PR−. Whereas there is no 
doubt regarding the clinical benefit of measuring ERα, the 
benefit of measuring PR expression is more controversial 
(Olivotto et al. 2004). However, as pointed out by several 
studies and discussed by many authors, PR expression has 
been proposed as a surrogate marker for ERα integrity and 
endocrine response since high total PR levels correlate 
with an improved tamoxifen response, longer disease-
free and overall survival (Fuqua et  al. 2005, MacGrogan 
et  al. 2005). Moreover, the ERα+PR− group has a worse 
prognosis, and this phenotype has been associated with 
impaired ERα function or aberrant growth factor signaling 
that could contribute to tamoxifen resistance (Arpino et al. 
2005). On the other hand, the existence of the ERα−PR+ 
group of breast cancer patients remains controversial. It 
has been proposed that in selected samples, either the lack 
of ERα staining or the detection of false-positive PR are 

related to technical issues, since in many cases which had 
been revisited a change in diagnosis has been registered 
(reviewed in Kunc et  al. 2018). However, others sustain 
that ERα−PR+ tumors represent a different subgroup with 
distinct molecular features and clinical course (Shen et al. 
2015).

In our hands, from 352 samples with ERα scoring, 258 
(82.10%) were ERα+ PR+, 59 (16.76%) were ERα− PR−; 
31 (8.80%) were classified as ERα+ PR−, and only three 
samples were reported as ERα− PR+ (0.09%). In all three 
cases, these samples displayed a PR staining ≤40% and PR 
isoforms were not detected by WB (unpublished data).

Only few studies have addressed the expression of the 
different PR isoforms in breast cancer (Table  4). The first 
study evaluating PR isoforms in breast cancers was reported 
in 1995 (Graham et  al. 1995). They used 202 cytosols 
from PR+ primary tumors and analyzed the pattern of PR 
bands in WB. Several bands were observed; one around 
115/120 kDa equivalent to the PRB band of T47D cells used 
as controls, another ahead from the 81 kDa band observed 
in the controls considered as PRA and one of 78 kDa. Extra 
faint bands with lower MW were occasionally observed. 
The median PRA/B ratio observed was 1.26.

Bamberger et  al. studied a total of 53 mammary 
carcinomas, 21 PR− and 32 PR+ (Bamberger et al. 2000) 
by WB. Band intensity was quantified as negative, weak, 
moderate, strong and very strong. In only two out of 32 
cases, one was a recurrence, PRB showed to be increased, 
as compared with PRA. In this study, the authors conclude 
that PRB expression correlates with the absence of HER2. 
Overall, the authors conclude that higher PRB levels 
correlated with a more differentiated phenotype. The 
drawback is the small cohort and the fact that the authors 
included in the data analysis all PR+ and PR− patients.

Ariga et  al. evaluated the expression of PR by IHC 
(Ariga et  al. 2001). The samples included 47 cases of 
invasive ductal carcinoma, 40 ductal carcinomas in situ 
(DCIS), 27 atypical ductal hyperplasias and 27 cases 
of proliferative disease without atypia. The IHC scores 
for PRA in atypical ductal hyperplasias were higher 
than those in high histological grade DCIS or invasive 
carcinomas, whereas the scores for PRB were lower in 
invasive carcinomas with high histological grades, than in 
proliferative disease without atypia. Both scores correlated 
inversely with histological grade in invasive carcinoma 
and DCIS. A positive correlation between ERα, PRA and 
PRB was observed in invasive carcinomas. Again, as in the 
previous study, the analysis was performed on PR+ and 
PR− samples. From the 47 cases of invasive carcinomas, 
16 were PR− and 31 PR+.
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The three previous studies did not analyze the role of 
PRA and PRB as predictive factors for endocrine therapies. 
However, in 2004, Hopp et al. presented data suggesting 
that high PRA levels identify a subgroup of women with 
a poorer response to tamoxifen (Hopp et al. 2004). They 
evaluated frozen primary breast tumor specimens from a 
cohort of 297 axillary lymph node-positive patients; 119 
received no adjuvant therapy after surgery and 178 were 
treated only with tamoxifen. Eighty-nine per cent were 
ERα+ and 69% PR+ as determined by binding techniques. 
Total extracts were prepared for WB. PRA and PRB levels 
in tumors were normalized to PRB levels in the T47D-
positive control lysate used in the same immunoblot. The 
primary outcome was disease-free survival. The authors 
reinforce the fact that it is not possible to distinguish 
between both isoforms by IHC and that stromal cells will 
not interfere with the balance between both of them. The 
median PRA/PRB ratio was 0.96. The PR isoforms showed 
a significant inverse correlation with tumor size, S phase 
and number of positive nodes. Only in the tamoxifen-
treated group, PRA expression higher than PRB correlated 
with decreased disease-free survival, suggesting that 
the determination of PR isoforms could help to predict 
tamoxifen responsiveness.

Pathiraja  et  al. reported an association of PRA 
promoter methylation with worse outcome in ERα+ 
breast cancer patients (Pathiraja et al. 2011). They selected 
500 patients who received tamoxifen treatment and 500 
without endocrine treatment. Most of the tumors had a 

small size (48% < 2 cm) and 66% were node negative. Of 
the 227 ERα+, PR− tumors, PRA was methylated in 25.9% 
of the tumors and PRB in 28.5% suggesting loss of PRA or 
PRB was not a result of DNA methylation in regulatory 
regions of the PR genes. In the tamoxifen-treated group, 
overall survival was worse for patients with methylated 
PRA compared with non-methylated PRA. This finding 
conceptually contradicts the previous study (Hopp et al. 
2004), since those patients with methylated PRA are 
supposed to be those with higher levels of PRB than 
PRA, and thus, better disease-free survival, although PR 
isoforms were not evaluated in this study.

Lindet et  al. evaluated in 299 breast cancer 
samples the relation between mRNA expression of 
total (PRA + PRB) and PRB with different mRNAs of the  
HER/ERBB family and showed that they inversely 
correlated with aggressiveness (Lindet et  al. 2012). 
Knutson et al. evaluated pSer294 expression in ten breast 
carcinomas. Phospho-Ser294 PRB was detected in five out 
of seven PR+ samples, suggesting that these tumors might 
be those with an active PR pathway (Knutson et al. 2012).

Mote et al. evaluated by IF the expression of both PR 
isoforms (Mote et al. 2015). PR expression was determined 
in tissue microarrays (TMAs) derived from the TransATAC 
cohort of patients (n = 710) treated either with tamoxifen 
or with the aromatase inhibitor anastrozole, with a 10-year 
median follow-up. For cohort 1, sections of archival 
formalin-fixed and paraffin-embedded (FFPE) tissue were 
stained sequentially for PRB and then PRA, using a dual 

Table 3  PR isoform imbalance in breast cancer patient-derived xenograft models.

PDX PRA/PRB ratio Assay Mice Antibodies Effect of hormones/antagonists References

PDX WHIM
16 skin met

PRB > PRA WB NSG #8757, CS€ E2 ↓ tumor growth Li et al. (2013)

PDX WHIM
18 skin met

PRA > PRB WB NSG #8757, CS E2 has no effect on growth, FUL resistant Li et al. (2013)

PDX WHIM
20 skin met

PRB > PRA WB NSG #8757, CS E2 has no effect on growth Li et al. (2013)

PDX WHIM
24 skin met

PRB > PRA WB NSG #8757, CS E2 ↑ tumor growth Li et al. (2013)

PDX UCD
UCD4

PRB > PRA WB NSG H-190 (SC);  
DAKO, 1294

E2 ↑ tumor growth; MPA or P4 ↓ 
E2-induced tumor growth

Finlay-Schultz et al. 
(2017)

PDX UCD
UCD65

PRB > PRA WB NSG H-190 (SC);  
DAKO, 1294

E2 dependent; MPA or P4 similarly ↓ 
E2-induced tumor growth

Finlay-Schultz et al. 
(2017)

HBCx 19 PRB > PRA WB Nu/nu C-19 (SC) NAI Esber et al. (2016)
HBCx 21 PRB > PRA WB Nu/nu C-19 (SC) NAI Esber et al. (2016)
HBCx 22 PRB > PRA WB Nu/nu C-19 (SC) NAI Esber et al. (2016)
HBCx 34 PRB > PRA WB Nu/nu C-19 (SC) E2 ↑ growth. P4, APR19, a novel 

antiprogestin and UPA ↓ tumor volume 
and/or tumor weight

Esber et al. (2016)

€SC, Santa Cruz Biotech; NC, Novocastra; CS, Cell Signaling Technology; NAI, No Available Information; E2, 17-β-estradiol; FUL, fulvestrant;  
MPA, medroxyprogesterone acetate; P4, progesterone; PR, progesterone receptor; PRA, PR isoform A; PRB, PR isoform B; UPA, ulipristal acetate;  
WB, Western blot.
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Table 4  PR isoform ratio in breast cancer patients.

Study Assay Antibodies Methods Results References

1 WB Mix of hPRa7, 
hPRa0 (NM€)

202 cytosols from PR+ 
primary tumors

PRA and PRB bands plus an extra one 
of 78 kDa. PRA/PRB ratio between 0 
and 2 in 61.4%, and between 0 and 
4, in 75.2% of tumors. PRA is the 
predominant isoform

Graham et al. 
(1996)

2 WB NCL-PGR (NC€) 53 mammary carcinomas (21 
PR−; 32 PR+). Band 
intensity quantification: 
negative, weak, moderate, 
strong, and very strong

In 30/32 cases, PRA ≥ PRB. PRB 
correlated with better 
differentiation. The expression of 
both PR isoforms correlated with 
ERα expression

Bamberger 
et al. (2000)

3 IHC
PCR (6 cases)

hPRa7 for PRA 
and hPRa2 for 
PRB (NM)

47 IDC* (31 PR+), 40 DCIS**, 
27 ADH#, and 27 PDWA*** 
six cases were evaluated 
for (PRA + PRB) or PRB 
mRNA expression

IHC scores for PRB were lower in 
high-grade IDC than in the PDWA. 
Positive correlation between ERα, 
PRA and PRB in the IDC

Ariga et al. 
(2001)

4 Dual IF staining hPRa6 for PRB 
and hPRa7 for 
PRA (own 
antibodies)

13 normal breast tissues 
(FFPE); archival FFPE blocks 
of 15 PDWA, 15 ADH; 15 
DCIS, and 39 malignant 
carcinomas

IC: 51% equimolar, 10% PRB and 
39% PRA predominance. Loss of 
control of relative PRA/PRB 
expression is an early event in 
breast cancer

Mote et al. 
(2002)

5 WB #1294 (Dako) 297 frozen tumors from 
lymph node+ patients. 119: 
no adjuvant therapy; 178: 
TAM-treated. Isoforms 
normalized to PRB levels of 
the T47D control lysate. 
The primary outcome was 
disease-free survival

PRA/PRB ratio ranged 0–31 with 72% 
of the tumors showing a ratio 
between 0.5 and 2. The PR isoforms 
showed an inverse correlation with 
tumor size, S phase, and number of 
positive nodes. Only in the TAM-
treated group PRA > PRB correlated 
with decreased free survival

Hopp et al. 
(2004)

6 PR methylation NA 500 TAM-treated patients 
and 500 without 
treatment. All tumors were 
ERα+ and 77% PR+. Most 
of them had small sizes and 
low rates of metastasis

In 25.9% of PR− tumors, PRA was 
methylated. In the TAM-treated 
group, overall survival was worse 
for patients with methylated PRA. 
PRA is silenced in luminal breast 
cancer patients with worse 
prognosis

Pathiraja et al. 
(2011)

7 qPCR (PRA + PRB) 
and PRB

NA 299 samples. mRNA 
expression of total PR, PRB 
and mRNAs of the HER/
ERBB family

PR isoforms inversely correlated with 
tumor aggressiveness. No 
differences were recorded between 
total PR or PRB isoform expression 
and HER/ERBB expression

Lindet et al. 
(2012)

8 Dual IF staining PRB: hPRa6 
(NM) or 
SAN27 (NC). 
PRA: hPRa7 
(NM) and 
clone 16 (NC)

Tissue microarrays from the 
TransATAC cohort (n = 710) 
patients treated with TAM 
or anastrozole, (10-year 
median follow-up). Tumors 
were categorized into: 
PRA/PRB ratios between 0.8 
and 1.2; lower than 0.8 and 
higher than 1.2

PRA = PRB (53%); PRA > PRB (29%); 
PRB > PRA (18%). A significant 
association between PRB 
predominance and previous or 
current use of MHT was observed. 
TAM-treated, but not anastrozole-
treated patients had a shorter time 
to distant relapse if their tumors 
had high PRA/PRB ratios

Mote et al. 
(2015)

9 
 
 
 
 
 
 

IHC 
 
 
 
 
 
 

PRA: clone 16 
(#312; NC). 
PRB: clone 
SAN27 H.1H 
(NC) 
 
 

Archived samples from 789 
women with IC were 
analyzed for PR isoforms. 
Tumors were considered as 
activated PR (APR)+ if they 
had an aggregated pattern 
of nuclear foci staining 

From 79% of PR+ tumors, 25% were 
PRA+ and APR+, and 23% PRB+ and 
APR+. The APR+ score was 
associated with higher grade. The 
authors proposed this assay to 
select patients with aggregated PR 
expression as candidates for an 
antiprogestin treatment

Bonneterre 
et al. (2016) 
 
 
 
 
 

(Continued)
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immunofluorescence technique, selective for PRA and 
PRB, that reflects relative levels of the two isoforms (Mote 
et al. 1999). In FFPE samples, the antibodies used for these 
studies had been previously recommended by this group 
to recognize only PRA (Mote et  al. 2001) or PRB (Clarke 
et  al. 1987). The mean PRA/PRB ratio was determined 
and 138 tumors were categorized into samples with  
PRA/PRB ratios between 0.8 and 1.2 (equimolar; n = 73); 
PRA/PRB ratios lower than 0.8 (PRB predominance; n = 18) 
and ratios higher than 1.2 (PRA predominance; n = 40) in 
accordance with previous findings (Mote et  al. 2002). A 
significant association between PRB predominance and 
previous or current use of menopausal hormone treatment 
was observed. Of the 16% (15/93) of patients who had never 
used menopausal treatment, almost half (7/15, 47%) had 
tumors expressing a high proportion of PRB. In addition, 
tamoxifen, but not anastrozole-treated patients had a 
significantly shorter time to distant relapse if their tumors 
had high mean PRA/PRB ratios, suggesting that the PRA/PRB 
ratio may be a discriminating factor in predicting response 
to these endocrine agents. The major drawback in this 
study is that the NCL-PGR-312 antibody used to detect PRA 
recognizes both PR isoforms in human xenografts (Fabris 
et al. 2017).

Bonnaterre and coworkers reported a novel 
immunohistochemical analysis to distinguish tumors 

in which PR is activated (Bonneterre et  al. 2016). Based 
on previous studies (Mote et  al. 2001), they proposed 
two subnuclear morphological PR distribution patterns 
indicative of transcriptional activation status: an aggregated 
pattern, formed by activated ligand-bound PR disposed in 
nuclear foci and a diffuse pattern. The authors propose that 
activated PR (APR) foci/aggregates in breast cancer cells can 
be used as a biomarker for antiprogestin responsiveness, 
namely onapristone (ONA). In this study, tumors are 
categorized according to their ‘nuclear PR pattern’ and 
correlate it with antiestrogen treatment outcomes. PR 
isoforms were detected by IHC in archived 801 specimens 
with previously determined ERα and PR status from women 
with early invasive breast cancer. APR− (APRneg) tumors 
are those that are either PR−, or, if they express PR, they 
have a diffuse staining. From 79% of PR+ tumors, 25% were 
PRA+ and APR+ and 23% were PRB+ and APR+. The APRA+ 
was associated with higher histological grade. The authors 
propose this assay to select patients with aggregated PR 
expression as candidates for an antiprogestin treatment. As 
mentioned before, the specificity of the PRA antibody has 
not been corroborated (Fabris et al. 2017).

Our laboratory has recently published results from 
a study involving 222 PR+ breast cancer samples (Rojas 
et  al. 2017), which were categorized according to the  
PRA/PRB ratio, as measured by WB. Tumors were 

Study Assay Antibodies Methods Results References

10 WB #1294 (Dako) 
and H-190 
(SC€)

Nuclear and cytosolic 
extracts from 222 frozen 
PR+ breast cancer samples 
were run in 8% gels for 
electrophoresis. Samples 
were categorized 
according to the PRA/PRB 
ratio Tumors were 
equimolar (ratio: 1.2–0.83), 
PRA high (PRA-H) if PRA/
PRB ≥1.2 or PRB high 
(PRB-H) if PRA/PRB ≤0.83

PR+ tumors: 52.3% were PRA-H and 
28.8% PRB-H. Molecular profiling 
and data mining associated PRA-H 
tumors with the luminal A and 
PRB-H with the luminal B tumors. 
PRB-H tumors were associated with 
lower total PR values, greater tumor 
size, higher histological grade, 
higher Ki-67 expression and HER-2 
expression. 100% of PRA-H samples 
(n = 19) were inhibited with 10 nM 
MFP in tissue cultures

Rojas et al. 
(2017)

11 WB, qPCR 8757 (Cell 
Signaling)

53 ER+/PR+ ductal 
carcinomas, from the 
Cooperative Human Tissue 
Network. T47D cells 
overexpressing PRA were 
used as controls

21 samples out of 53 showed PR 
isoform bands in WB. PRA is the 
prevailing isoform. A correlation 
between protein and mRNA is 
reported. PRA expression correlated 
negatively with miR92a3p and 
positively with miR-26b5p 
expression. A role for PRA inhibiting 
the inhibitory effect of ER on 
metastases is proposed

McFall et al. 
(2018)

#ADH, Atypical Ductal Hyperplasia; *IDC, Invasive Ductal Carcinomas; **DCIS, Ductal Carcinoma In Situ; ***PDWA, Proliferative Disease Without Atypia; 
€NC, Novocastra; NM, Neomarkers; SC, Santa Cruz Biotech.
IC, Invasive Cancer; NA, NOT Applicable; MHT, Menopausal Hormone Treatment; ER, estrogen receptor; FFPE, formalin-fixed paraffin-embedded tissue; 
IHC, immunohistochemistry; MFP, mifepristone; PR, progesterone receptor; PRA, PR isoform A; PRB, PR isoform B; APR, activated PR; TAM, tamoxifen; 
WB, Western blot.

Table 4  Continued.
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Figure 1
Quantification of clinicopathological parameters in PRA-H and PRB-H breast cancer samples. Immunohistochemical staining of PR (A) and ki67 (B) in 
three PRA-H and PRB-H breast cancer samples. (C) Quantification of the percentage of PRA-H or PRB-H patients with tumor sizes >2 cm, histological 
grade 3, Ki67 >14 or PR >50%. PR, progesterone receptor; PRA-H, breast cancer human sample with isoform A of PR/isoform B of PR ≥1.2; PRB-H, breast 
cancer human sample with isoform A of PR/isoform B of PR ≤0.83. The numbers on the corners in (A) and (B) correspond to the patient sample. 
Statistical analysis: Fisher exact test. Data obtained from Rojas et al. (2017). A full color version of this figure is available at https://doi.org/10.1530/
ERC-18-0179.
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considered equimolar if the ratio was within the range 
1.2–0.83 or were classified as PRA high (PRA-H) if  
PRA/PRB ≥1.2 or PRB high (PRB-H) if PRB/PRA ≥1.2. In 
agreement with most of previous studies, PRA-H cases 
were predominant: 52.3% were PRA-H and 28.8% PRB-H,  
the rest being within the equimolar range. Molecular 
profiling and data mining of selected cases associated 
PRA-H tumors with the luminal A and PRB-H with the 
luminal B breast carcinomas. For this analysis, only ductal 
HER2− non-metastatic carcinomas were selected. This 
was corroborated by clinical parameters that associated 
the PRB-H with lower total PR values, greater tumor size, 
higher histological grade, Ki67 expression and HER-2 
expression, supporting the data in molecular profiling 
(Fig. 1). Whereas in 100% of the PRA-H samples (n = 19), a 
decrease in Ki67 staining was observed after incubation of 
tissue cultures with 10 nM MFP for 48 h, variable responses 
were observed in the 10 PRB-H, four equimolar or 3  
PR− cases. This study is in line with that of Pathiraja et al. 
(2011), with observations of Knudson et al., in modified 
T47D cells (Knutson et al. 2012) and with our preclinical 
studies suggesting that PRB-H tumors may be endocrine-
resistant tumors (Lanari et al. 2012, Wargon et al. 2015).

Singhal et al. (2018) using the raw RNA-seq data from 
our study (Rojas et al. 2017) compared the list of differential 
genes expressed in T47D-YA and T47D-YB xenografts and 
those differentially regulated in PRA-H or PRB-H patients 
and concluded that a high PRA/PRB ratio might correlate 
with worse prognosis. Although the total number of 

samples included in both studies coincides, for the PAM50 
analysis, we excluded the HER2+ cases, a lobular tumor 
and a metastatic tumor from a premenopausal patient, to 
compare a homogeneous cohort of patients. In Singhal’s 
study, two of the HER2+ patients and the lobular patient 
were included, and a luminal A case of the PRA-H group 
was excluded. A larger cohort will be necessary to confirm 
these findings.

In a recent study, a positive correlation between PRA 
and miR26b5p expression and a negative correlation with 
miR92a3p was observed in 21 PRA+ breast cancer samples, 
with these two miRNAs being involved in the ER–PR 
crosstalk and in the invasive and metastatic features 
of luminal breast cancer (McFall et  al. 2018). MiR92a 
expression is inversely correlated to tumor grade, positive 
lymph node status and recurrence-free survival in breast 
cancer (Nilsson et al. 2012).

In all these studies, the consensus indicates that PRA is 
the prevailing isoform in breast cancers; however, the role 
of the PRA/PRB ratio as a prognostic marker needs to be 
further validated in larger cohorts of breast cancer patients.

Clinical trials

Progestins (reviewed in Carroll et  al. 2017) and 
antiprogestins (reviewed in Klijn et  al. 2000, Lanari 
et  al. 2012) have been used in the past to treat breast 
cancers with isolated positive responses. Among current 
clinical trials aimed to test the effects of antiprogestins 

Figure 2
Schematic model of PR expression in breast 
cancer tumor progression. Few mammary 
epithelial cells express PR (equimolar PRA and 
PRB levels in the normal breast). Most invasive 
carcinomas express higher levels of PRA than PRB. 
PRA-H tumors recapitulate luminal A molecular 
subtypes (high total PR levels, low ki67 levels and 
respond to antiprogestin therapy). We 
hypothesize that invasive PRB-H tumors arise 
mainly during tumor progression. PRB-H tumors 
recapitulate luminal B molecular subtypes (low 
total PR levels, high ki67 levels, are resistant to 
antiprogestin therapy and may respond to 
progestin therapy). Invasive carcinomas may arise 
from DCIS (Cowell et al. 2013) or directly from 
mammary stem cells (Wang et al. 2013). DCIS, 
ductal carcinoma in situ; PR, progesterone 
receptor; PRA-H, higher levels of PRA than PRB; 
PRB-H, higher levels of PRB than PRA. A full color 
version of this figure is available at https://doi.
org/10.1530/ERC-18-0179.
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or progestins in breast cancer treatment, only the MIPRA 
trial (NCT02651844) has included the evaluation of the 
PR isoform ratio as an inclusion criterion to select patients 
for MFP treatment during 14  days between biopsy and 
surgery. Only those with PRA/PRB >1.5 are eligible. One 
study uses MFP for prevention in patients carrying BRCA1 
or -2 mutations with a high risk/incidence of breast and 
ovarian cancer (NCT01898312). As mentioned previously, 
BRCA carriers usually have levels of PRA higher than those 
of PRB (Fuqua & Cui 2004, King et al. 2004).

Other antiprogestins, such as ONA or TLP, are 
currently being tested. Regarding ONA (NCT02052128), 
although the study was expected to be completed by April 
2016, the website has not been modified since June 24, 
2015. With respect to TLP, the drug is given orally once 
daily for 2–10 weeks between biopsy and surgical resection 
(NCT01800422); the status is active, not recruiting. The 
NCT02314156 trial will evaluate transdermal or oral TLP 
in BRCA carriers undergoing mastectomy. The status is 
active, not recruiting. The NCT02408770 trial is also aimed 
to test the effect of antiprogestins in prevention and 
compares the effect of ulipristal acetate in breast density 
using MRI and the status is unknown.

On the other hand, a study using progestins has 
recently started. The NCT03306472 clinical trial is 
designed to evaluate the effect of letrozole alone or 
combined with megestrol acetate before surgery. The 
status is recruiting. Alternatively, the NCT00123669 trial 
consists of a unique dose of hydroxyprogesterone prior 
to surgery and the rationale is to test the effect of P4 in 
operable breast cancer on overall and disease-free survival 
at 5 years. The status is active, not recruiting.

Concluding remarks

PR ligands may stimulate or inhibit breast cancer growth, 
and the challenge is to determine which patient will respond 
to either treatment. Breast cancers with PRA/PRB ratios 
may respond to antiprogestin treatments, as supported 
by preclinical assays (Wargon et  al. 2009, 2015), clinical 
evidence in dogs (Guil-Luna et al. 2014) and ex vivo data in 
human breast cancer tissue cultures (Rojas et al. 2017).

On the other hand, progestins may be inhibitory 
in tumors in which PRB levels are higher than those of 
PRA, as seen in preclinical assays (Wargon et al. 2015), in 
xenografted human breast cancer cell lines, and in PDX 
studies (Mohammed et al. 2015, Finlay-Schultz et al. 2017).

It has been suggested that most of the models in 
which progestins stimulate mammary carcinoma growth 
are biased because of the lack of ERα expression, as it is 

the case of the T47D-YA/YB models (Carroll et al. 2017) 
or because of the lack of estrogen supply. However, ERα 
levels in these models score higher than average ERα 
luminal breast carcinomas and experiments performed 
using syngeneic mice are performed under physiologic 
estrogen levels (Lanari et al. 2012).

Based on all the available information, malignant 
neoplastic transformation and the ability to invade 
neighboring tissues might be associated with an increased 
PRB activation resulting in PRB downregulation (Diep 
et al. 2015), inducing a switch from an equimolar stage to 
a preferential PRA-H stage in the human mammary gland. 
These tumors may be slow growing (low Ki67, luminal A) 
sensitive to ERα targeted therapy (and/or an antiprogestin 
treatment). As the tumor progresses and becomes 
insensitive to other treatments, there is an increase in cell 
proliferation, a decrease in total PR expression and mainly 
a decrease in PRA expression (which makes these tumors 
resistant to an antiprogestin therapy). We hypothesize 
that these high-grade tumors may now become sensitive 
to a progestin treatment (Fig. 2).

Future directions

More experimental work is necessary to better understand 
the role of PR isoforms in breast cancer growth and to 
exploit these receptors as therapeutic targets. Efforts 
should be geared to:

a.	 Design studies using homogeneous cohorts of 
patients to further define the PRA/PRB ratio as a 
prognostic factor.

b.	 Avoid the use of antibodies that supposedly recognize 
only PRA by IHC and develop specific antibodies to 
both PR isoforms.

c.	 Develop novel reliable methods to quantify the PR 
protein isoform ratio.

d.	 Determine whether there is a change in the PR 
isoform ratio between primary tumors and their 
metastatic spreads.

e.	 Determine whether PRA-H tumors will become PRB-H 
in recurrence.

f.	 Further explore mechanisms to re-express PRA in 
PRB-H tumors.

g.	 Design PRB selective inhibitors.
h.	 Dissect the role of GR and AR in the interplay with PR 

isoforms to design combined therapies.
i.	 Evaluate PR isoforms in breast cancer biopsies 

of patients undergoing clinical trials involving 
progestins/antiprogestins.
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j.	 Better characterize metastatic tumor models to 
further evaluate the role of antiprogestins/progestins 
as therapeutic agents in tumor progression.
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