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Abstract

We prove an effective integrability criterion for differential-algebraic
Pfaffian systems leading to a decision method of consistency with a
triple exponential complexity bound. As a byproduct, we obtain an
upper bound for the order of differentiations in the differential Null-
stellensatz for these systems.
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1 Introduction

Let x := x1, . . . , xm and y := y1, . . . , yn be two sets of variables; the first
ones represent the independent variables (i.e. those defining the partial
derivations) and the second ones are considered as differential unknowns.

The notion of Pfaffian system is introduced by J.F. Pfaff in [20] and in
its simplest form it is defined as a system of partial differential equations of
the type:

Σ :=

{
∂yi

∂xj
= fij(x,y) i = 1, . . . , n, j = 1, . . . ,m, (1)

∗Partially supported by the following grants: UBACYT 20020110100063 (2012-2015) /
Math-AmSud SIMCA “Implicit Systems, Modelling and Automatic Control” (2013-2014).
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where each fij is an analytic function around a certain fixed point (x0,y0) ∈
C
m × C

n.
The properties of these systems were extensively studied during the

XIXth century by notable mathematicians as Jacobi [11], Clebsch [2] and
Frobenius [6] (see also [10] for a detailed historical approach). One of the
main problems considered is the so-called complete integrability of a Pfaffian
system Σ: the existence of a neighborhood U of the point (x0,y0) such that
for all point (x̂, ŷ) ∈ U there exists a solution γ of Σ such that γ(x̂) = ŷ. A
complete solution of this problem is known today as the “Frobenius Theo-
rem” (see [6]):

Frobenius Theorem Let Σ be the Pfaffian system (1). Then Σ is com-
pletely integrable in (x0,y0) if and only if for all indices i, j, k with i =
1, . . . , n, and j, k = 1, . . . ,m, the function Dj(fik) −Dk(fij) vanishes in a
neighborhood of (x0,y0).

Here, Dj(h) denotes the j-th total derivative with respect to Σ of any an-

alytic function h in the variables (x,y), namely Dj(h) :=
∂h

∂xj
+
∑

i

∂h

∂yi
fij.

Observe that the vanishing of the functions Dj(fik) − Dk(fij) is clearly a
necessary condition because of the equality of the mixed derivatives of an
analytic function, but the sufficiency is not obvious.

We remark that Frobenius Theorem is more general than the statement
above because it remains true also for systems of differential linear 1-forms
(today called Pfaffian forms). In this sense Frobenius’s article may be con-
sidered as a main source of inspiration for the transcendental work by Cartan
about integrability of exterior differential systems developed in the first half
of the XXth century (see [1]).

In Cartan’s theory two notions play a main rôle: the prolongation and
the involutivity of an exterior differential system. In the particular case
of differential equation systems these notions can be easily paraphrased.
The prolongation of a system consists simply in applying derivations to
it. On the other hand, an involutive system is a system with no hidden
integrability conditions; in other words, no prolongation is necessary to find
new constraints. Roughly speaking, the involutive systems are those to
which the classical method of resolution by means of a power series with
indeterminate coefficients (known as Frobenius method) can be applied in
order to search for a solution or to decide that the system is not integrable.

A main general result related to the integrability in Cartan’s theory is
the Cartan-Kuranishi Principle: Any (generic) exterior differential system
can be reduced to an equivalent involutive system by a finite number of pro-
longations and projections. This result, conjectured by Cartan, is finally
proved by Kuranishi in [16] (see also [18]). Despite the algebraic precisions
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given during the ’60s and ’70s (see for instance [24, 9, 23]) and more recently
in [21] and [22], up to our knowledge, no effective a priori upper bounds for
the number of required differentiations nor projections are established.

In this paper we use arguments close to the Cartan-Kuranishi Principle
(namely, prolongations and projections) in order to study the integrability
(not necessarily complete) of differential-algebraic Pfaffian systems. More
precisely, a differential-algebraic Pfaffian system is a system of partial dif-
ferential equations Σ as follows:

Σ :=

{
∂y

∂x
= f(x,y)

g(x,y) = 0
(2)

where f := (fij)ij and g := g1, . . . , gs are polynomials in C[x,y]. As before,
x := (x1, . . . , xm) and y := (y1, . . . , yn) denote sets of variables.

By means of prolongations and projections we construct a decreasing
chain of algebraic varieties C

m+n ⊇ V0 ⊇ V1 ⊇ · · · which becomes station-
ary at most at the (m + n + 1)th step. If we denote by V∞ the smallest
variety of the chain, we prove the following criterion for integrability (see
Theorem 15 and the comments that follow it):

Theorem 1 The system Σ is integrable if and only if the algebraic variety
V∞ is non-empty. The analytic variety of all the regular points of V∞ is the
biggest analytic variety containing all the graphs of analytic solutions of Σ.

Moreover, by means of basic algorithms from commutative algebra, the
criterion can be transformed in a decision algorithm which runs within a

complexity of order (nmσd)2
O(n+m)3

, where d is an upper bound for the de-
grees of the involved polynomials and σ := max{1, s} (see Theorem 19).
As a byproduct, we obtain an upper bound of the same order for the order
of differentiations in the differential Nullstellensatz for differential-algebraic
Pfaffian systems (see Theorem 23). In this sense, the present work can be
seen as a continuation of [3].

The paper is organized as follows. In Section 2, first, we introduce the
notation we use throughout the paper; then, we show how to reduce the inte-
grability problem of general (non-autonomous) differential Pfaffian systems
to the autonomous case; finally, we prove our integrability criteria. Section
3 is devoted to analyzing quantitative aspects of the problem: we present an
effective decision method for the integrability of differential-algebraic Pfaf-
fian systems and we prove an upper bound for the order in the differential
Nullstellensatz for these systems.
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2 A geometrical criterion for the integrability of

differential-algebraic Pfaffian systems

In this section we exhibit a necessary and sufficient criterion for the inte-
grability of differential-algebraic Pfaffian systems in terms of the dimension
of a finite decreasing sequence of algebraic varieties associated to the dif-
ferential system (see Definition 7 and Theorem 15). These varieties can
be constructed explicitly by means of three basic operations: prolongations
(i.e. differentiations), linear projections and reductions (i.e. computation of
radicals of polynomial ideals).

2.1 Notations

Let m,n ∈ N. We consider two sets of variables x := x1, . . . , xm (the so-
called independent variables) and y := y1, . . . , yn (the variables playing the
role of differential unknowns). For each pair (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m, let
fij be a polynomial in the ring C[x,y]. Finally, let g := g1, . . . , gs ∈ C[x,y]
be another finite set of polynomials.

A differential-algebraic Pfaffian system is defined as a partial differential
system Σ of the type:

Σ =





∂yi

∂xj
= fij(x,y), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

gk(x,y) = 0 1 ≤ k ≤ s,
(3)

or in its simplified form:

Σ =

{
∂y

∂x
= f(x,y),

g(x,y) = 0

where f denotes the set of polynomials fij. If the polynomials f and g do not
depend on the variables x, we say that the Pfaffian system Σ is autonomous.

For each index j = 1, . . . ,m and any polynomial h ∈ C[x,y] we define
the total derivative with respect to xj induced by Σ as

Dj(h) :=
∂h

∂xj
+

n∑

i=1

∂h

∂yi
fij .

Observe that Dj(h) belongs to the polynomial ring C[x,y] and that the
operator Dj is a derivation in this ring.

2.2 Frobenius compatibility conditions

We are interested in the integrability (or solvability) of differential-algebraic
Pfaffian systems. This notion should be understood as the existence of an
analytic solution γ defined in an open subset of Cn with target space C

m.
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A stronger notion is that of complete integrability, which means that
there exists a neighborhood U ⊂ C

m+n around (x0,y0), such that for any
(x̂, ŷ) ∈ U there exists a solution γ of Σ verifying γ(x̂) = ŷ (note that this
notion only makes sense in the case that no algebraic constraints appear,
because such a constraint never contains a nonempty open set). If this is
the case for the system Σ, the classical Frobenius Theorem (see for instance
[4, Ch.X, §9]) gives a simple criterion for complete integrability: Σ is com-
pletely integrable around (x0,y0) if and only if the compatibility conditions
Dj(fiℓ)−Dℓ(fij) ≡ 0 hold for all triplets i, j, ℓ in a suitable neighborhood of
(x0,y0).

Our systems are in a certain sense more general than those considered
in Frobenius’s result (more constraints appear) and we are interested in a
weaker notion of integrability. In order to begin our analysis, we introduce
the following ideal which will enable us to deal with the Frobenius compat-
ibility conditions and will be involved in the first step of our criterion:

Notation 2 For a given Pfaffian system Σ as in (3) we denote by F the ideal
in the polynomial ring C[x,y] generated by the polynomials Dj(fik)−Dk(fij)
for all indices i, j, k.

If no algebraic constraints appear in Σ, the classical Frobenius Theorem
in the differential-algebraic setting can be restated as follows: Σ is com-
pletely integrable if and only if the polynomial ideal F is zero. On the other
hand, if such a system Σ is integrable, the ideal F must be properly con-
tained in C[x,y], since if γ is a solution, all polynomial in F vanish at the
vector γ(x). However, this condition (namely, the properness of F) is not
enough to guarantee simple integrability:

Example: Consider the Pfaffian system

∂y

∂x1
= y2 ,

∂y

∂x2
= y2 + 1.

In this case, n = 1, m = 2, and no constraint appears. It is obvious that if
γ is a solution, then it is not a constant function because the polynomials
y2 and y2 + 1 have no common zeros. The ideal F is generated by the
polynomial 2y(y2 + 1) − 2yy2 = 2y and then it is proper. On the other
hand, any solution γ must verify the equation 2γ = 0 and in particular γ is
a constant, leading to a contradiction.
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2.3 From non-autonomous to autonomous systems

We begin by showing that the problem of the integrability of a (general)
differential Pfaffian system

Σ =

{
∂y

∂x
= f(x,y)

g(x,y) = 0

can be reduced to analyzing the integrability of an autonomous Pfaffian
system.

To this end, we transform Σ into an autonomous Pfaffian system Σaut in
the obvious way, by introducing new differential unknowns w := w1, . . . , wm

(as many as independent variables):

Σaut =





∂y

∂x
= f(w,y)

∂w

∂x
= δ

g(w,y) = 0

(4)

where δ denotes the Dirac-symbol (i.e. δjℓ = 1 if j = ℓ, and 0 otherwise).
Clearly Σaut is an autonomous system inm+n unknowns andm independent
variables; moreover, it is equivalent to Σ from the integrability point of view:

Proposition 3 The Pfaffian system Σ is integrable if and only if the au-
tonomous Pfaffian system Σaut is integrable.

Proof. Let γ : U ⊂ C
m → C

n be a solution of Σ; then ψ : U → C
m+n

defined as ψ(x) := (x, γ(x)) is a solution of Σaut. Reciprocally, let ψ :
V → C

m+n be a solution of Σaut in a connected neighborhood of a certain
x1 ∈ C

m. From the second part of the defining equations of Σaut one
deduces that ψ(x) = (x + λ, ξ(x)) for a suitable vector λ ∈ C

m and an
analytic function ξ : V → C

n. Take x0 := x1 + λ and U := V + λ. Define
γ(x) := ξ(x− λ). Thus γ : U → C

n verifies:

∂γi(x)

∂xj
=
∂ψm+i(x− λ)

∂xj
= fij(ψ(x−λ)) = fij((x−λ)+λ, ξ(x−λ)) = fij(x, γ(x))

and
g(x, γ(x)) = g((x − λ) + λ, ξ(x− λ)) = g(ψ(x − λ)) = 0.

In other words, γ is a solution of Σ.
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2.4 Prolongation chains

Taking into account the result of the previous section, for simplicity, we
restrict now our attention to considering the autonomous case, namely,
differential-algebraic Pfaffian systems of the form

Σ =

{
∂y

∂x
= f(y),

g(y) = 0
(5)

where f and g are finite sets of polynomials in C[y]. In this setting, for a
polynomial h ∈ C[y], the total derivative of h with respect to xj induced by
Σ is

Dj(h) =

n∑

i=1

∂h

∂yi
fij ∈ C[y].

First, we introduce the so-called prolongation of an ideal in C[y]:

Definition 4 Let I ⊂ C[y] be an arbitrary ideal and F be a finite system
of generators of I. We denote by Ĩ the ideal of the polynomial ring C[y]
generated by I and the polynomials Dj(f) for all f ∈ F and j = 1, . . . ,m.

Proposition 5 The ideal Ĩ is independent of the system of generators F of
I.

Proof. Let G be another system of generators of I. It suffices to see that
for any k = 1, . . . ,m and any g ∈ G the polynomial Dk(g) belongs to the

ideal generated by I and the polynomials Dj(f). Writing g =
∑

f∈F

pf f and

using that Dj is a derivation in C[y], we deduce:

Dj(g) =
∑

f∈F

Dj(pf f) =
∑

f∈F

Dj(pf ) · f +
∑

f∈F

pf ·Dj(f).

Since the first term belongs to (F) = I and the second one to the ideal
generated by the polynomials Dj(f), the proposition follows.

We start proving an elementary test to check integrability by means of
a prolongation and a projection, which will be the key result to our criteria.

Lemma 6 Let Σ be an autonomous differential-algebraic Pfaffian system:

Σ =

{
∂y

∂x
= f(y),

g(y) = 0

where f and g are finite sets of polynomials in C[y]. Let I :=
√

(g) and

J :=
√

F+ Ĩ, where F ⊂ C[y] is the ideal generated by the Frobenius con-
ditions, as in Notation 2, and let V ⊇ W be the varieties defined by I and
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J respectively. Suppose that V and W are the same nonempty variety in
a neighborhood of a common regular point Q ∈ C

n. Then Σ is integrable.
Moreover, there exists a solution of Σ passing through the point Q and con-
tained in W.

Proof. From the hypotheses, the ideals I and J define the same nonempty
algebraic variety C locally around Q. Let g0 be a finite system of generators
of I. Since Q is a regular point of C, we can apply the Theorem of Implicit
Functions to the system g0 = 0 and so, without loss of generality (reordering
the variables if necessary) we may suppose that there exists an integer r > 0
such that, if y := y1, . . . , yr and ŷ := yr+1, . . . , yn, the variety C is locally
defined aroundQ = (y0, ŷ0) as the graph of an infinite differentiable function
ϕ defined in a neighborhood U ⊂ C

r of y0 with target space C
n−r. The

integer r is the dimension of C, the rank of the Jacobian matrix
∂g0
∂y

in a

neighborhood of Q in C is constant and equal to n − r, and moreover, the

submatrix
∂g0
∂ŷ

has locally maximal rank n− r.

Consider the following partial differential (not necessarily algebraic) Pfaffian
system Σ induced by Σ and ϕ:

Σ :=

{
∂y

∂x
= f(y, ϕ(y)) ,

where f := (fij) with i = 1, . . . , r, j = 1, . . . ,m.
The proof of the lemma will be achieved by showing the following facts
concerning the system Σ:

• Claim 1. The system Σ is completely integrable in a neighborhood of
y0.

• Claim 2. If µ is a solution of Σ around y0, then γ := (µ,ϕ ◦ µ) is a
solution of Σ.

Proof of Claim 1. From Frobenius Theorem it suffices to prove that for each
pair j, k, 1 ≤ j, k ≤ m, and all i = 1, . . . , r, the relation

r∑

h=1

(
∂fij(y, ϕ(y))

∂yh
fhk −

∂fik(y, ϕ(y))

∂yh
fhj

) ∣∣∣∣
(y,ϕ(y))

= 0

holds for all y ∈ U (where U a suitable neighborhood of y0).
From the Chain Rule, for any q = 1, . . . ,m, and i, h = 1, . . . , r, we have the
equality

∂fiq(y, ϕ(y))

∂yh
=
∂fiq

∂yh

∣∣∣∣
(y,ϕ(y))

+
n∑

ℓ=r+1

∂fiq

∂yℓ

∣∣∣∣
(y,ϕ(y))

∂ϕℓ

∂yh
(y) ,
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where ϕr+1, . . . , ϕn are the coordinates of the function ϕ.
These equalities can be collected in a unique relation in terms of a product of
matrices evaluated in (y, ϕ(y)) which describes the Frobenius compatibility
conditions for the system Σ as follows:

(
∂fij

∂y
+
∂fij

∂ŷ
· ∂ϕ
∂y

)
·




f1k
...
frk


 =

(
∂fik

∂y
+
∂fik

∂ŷ
· ∂ϕ
∂y

)
·




f1j
...
frj


 (6)

where
∂ϕ

∂y
denotes the (n−r)×r Jacobian matrix of the map ϕ with respect

to the variables y.
On the other hand, differentiating the identity g0(y, ϕ(y)) ≡ 0 and multi-
plying by the column vector (fij)1≤i≤r, we infer that, for all j = 1, . . . ,m,

∂g0
∂y

·




f1j
...
frj


 +

∂g0
∂ŷ

· ∂ϕ
∂y

·




f1j
...
frj


 = 0 (7)

holds at all the points (y, ϕ(y)).
Finally, from the hypothesis C coincides with V and W in a neighborhood
of the point Q, we may suppose (shrinking the neighborhood U of y0 if
necessary) that h(y, ϕ(y)) = 0 for all h ∈ J , in particular since Dj(g) ∈ J
for all j = 1, . . . ,m and all g ∈ g0 we have

∂g0
∂y

·




f1j
...
fnj


 = 0

in any point (y, ϕ(y)), for all index j. Again, separating the variables y as
before, this equality gives

∂g0
∂y

·




f1j
...
frj


 +

∂g0
∂ŷ

·




f(r+1)j
...
fnj


 = 0. (8)

Comparing equalities (7) and (8) and recalling that the matrix
∂g0
∂ŷ

has full

rank n− r we infer that

∂ϕ

∂y
·




f1j
...
frj


 =




f(r+1)j
...
fnj


 (9)

in any point (y, ϕ(y)) and for all index j.
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In order to finish the proof of Claim 1 it suffices to prove the validity of
relation (6). Since, by definition, the Frobenius conditions associated to the
system Σ are contained in the ideal J , we have that

∂fij

∂y
·




f1k
...
fnk


 =

∂fik

∂y
·




f1j
...
fnj




holds in a neighborhood ofQ relative to the variety C. Splitting the variables
y into y and ŷ as before, this relation can be written

∂fij

∂y
·




f1k
...
frk


+

∂fij

∂ŷ
·




f(r+1)k
...
fnk


 =

∂fik

∂y
·




f1j
...
frj


+

∂fik

∂ŷ
·




f(r+1)j
...
fnj




Identity (6) is obtained from this formula simply by replacing with relation
(9) for the indices j and k. This finishes the proof of Claim 1.
Proof of Claim 2. Suppose that µ is a solution of Σ around y0. Clearly the
image of γ := (µ,ϕ ◦ µ) is contained in C because it is included in the the
graph of ϕ. In particular γ verifies the algebraic constraint g = 0.
Decompose γ = (γ, γ̂) where γ := µ and γ̂ := ϕ ◦ µ. For all j = 1, . . . ,m we
have the relations

∂γ

∂xj
=

∂µ

∂xj
=




f1j(µ,ϕ ◦ µ)
...

frj(µ,ϕ ◦ µ)


 =




f1j(γ)
...

frj(γ)




and

∂γ̂

∂xj
=
∂(ϕ ◦ µ)
∂xj

=
∂ϕ

∂y
· ∂µ
∂xj

=
∂ϕ

∂y
·




f1j(µ,ϕ ◦ µ)
...

frj(µ,ϕ ◦ µ)


 =




f(r+1)j(γ)
...

fnj(γ)




where the last equality follows from identity (9). This completes the proof
of Claim 2 and therefore also of the lemma.

2.5 An integrability criterion

We introduce an increasing chain of radical polynomial ideals in C[y] asso-
ciated to a Pfaffian system as in (5) (or its dual counterpart: a descending
chain of algebraic varieties in C

m) which allows us to give a geometrical
criterion for the solvability of the system.

Definition 7 Let (Ip)p∈N0 be the sequence of radical polynomial ideals in
C[y] defined recursively as follows:

10



• I0 :=
√
(g), where the equations g = 0 define the algebraic constraint

of Σ.

• I1 :=

√
F+ Ĩ0, where F ⊂ C[y] is the ideal generated by the Frobenius

conditions as in Notation 2.

• For p ≥ 1, Ip+1 :=

√
Ĩp.

Here, for p ≥ 0, Ĩp ⊂ C[y] denotes the prolongation ideal introduced in
Definition 4.
By duality, we define for each p ≥ 0 the set Vp ⊂ C

n as the set of zeros of
the ideal Ip in the affine space C

n.
We obtain an ascending chain of polynomial ideals I0 ⊆ · · · ⊆ Ip ⊆

Ip+1 ⊆ · · · and the corresponding descending chain of algebraic varieties
V0 ⊇ · · · ⊇ Vp ⊇ Vp+1 ⊇ · · · .

Each step Ip  Ip+1 or Vp  Vp+1 is called a prolongation.

From Proposition 5, both chains (Ip)p∈N0 and (Vp)p∈N0 depend only on
the Pfaffian system Σ and, by Noetherianity, there exists a minimum integer
p∞ where the prolongations become stationary. Moreover, from the defini-
tions of the chains we observe that if an integer p satisfies Ip = Ip+1 (resp.
Vp = Vp+1) therefore the chain becomes stationary and hence p ≥ p∞. In
other words, p∞ is the smallest integer p ≥ 0 such that Ip = Ip+1 (resp.
Vp = Vp+1) holds.

This section is devoted to state integrability criteria for autonomous
differential-algebraic Pfaffian systems in terms of the prolongation varieties
Vp introduced above.

As a consequence of Lemma 6 we deduce:

Lemma 8 Let Σ be an autonomous differential-algebraic Pfaffian system:

Σ =

{
∂y

∂x
= f(y),

g(y) = 0

where f and g are finite sets of polynomials in C[y]. Let p ∈ N0 be such
that Vp and Vp+1 are the same nonempty variety in a neighborhood of a
common regular point Q ∈ C

n. Then Σ is integrable. Moreover, there exists
a solution of Σ passing through the point Q and contained in Vp+1.

Proof. Let gp ⊂ C[y] be a finite system of generators of Ip, the defining
ideal of Vp. Consider the autonomous differential-algebraic Pfaffian system

Σp =

{
∂y

∂x
= f(y),

gp(y) = 0

11



Note that the system Σp verifies the assumptions of Lemma 6 with I = Ip

and J = Ip+1. Then Σp is integrable and there exists a solution of Σp

passing through Q and contained in Vp+1. The lemma follows from the fact
that (g) ⊂ (gp).

Corollary 9 If the system Σ is not integrable then for all integer p such
that Vp 6= ∅, the inequality dimVp+1 < dimVp holds.

Proof. If the relation dimVp = dimVp+1 holds for some integer p ≥ 0
with Vp 6= ∅, since Vp+1 ⊆ Vp, the varieties Vp and Vp+1 share a common
(nonempty) irreducible component C of maximal dimension. Then, any reg-
ular point Q ∈ C verifies the hypotheses of Lemma 6 and, therefore, Σ is
integrable.

The following proposition, which is an immediate consequence of Corol-
lary 9, gives a first criterion for the integrability of Σ:

Proposition 10 Let Σ be an autonomous differential-algebraic Pfaffian sys-
tem. Then, Σ is integrable if and only if Vp∞ 6= ∅.

Proof. First observe that the condition Vp∞ 6= ∅ is clearly necessary because
if γ is a solution of Σ, its image is contained in any variety Vp, in particular,
in Vp∞ and then, Vp∞ 6= ∅. Reciprocally, if Vp∞ 6= ∅ but Σ is not integrable,
Corollary 9 implies that the decreasing chain is not stationary at level p∞,
which contradicts the definition of the integer p∞. The proposition follows.

Remark 11 In the language of Proposition 10, the classical Frobenius The-
orem can be stated as follows: assume that no algebraic constraints appear
in the system Σ, then Σ is completely integrable if and only if Vp∞ = C

n

(or equivalently Ip∞ = 0). Obviously in this case p∞ = 0.

Example 12 Consider the following autonomous Pfaffian system for m =
n = 2 with no algebraic constraints:

Σ =





∂y1

∂x1
= y1

∂y1

∂x2
= y21

∂y2

∂x1
= y1y2 + 1

∂y2

∂x2
= y21

.

In this example, I0 = 0. The Frobenius conditions are y21 and y21(y2+y1−2);
therefore, the polynomial ideal F ⊂ C[y1, y2] is the principal ideal generated
by y21 and hence its radical I1 is generated by y1. In order to obtain the
ideal I2, we compute the polynomials D1(y1) and D2(y1) obtaining y1 and
y21, respectively. Then I2 =

√
(y1, y21) = (y1) = I1 and so, p∞ = 1. Since
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(y1) 6= C[y1, y2] the system Σ is integrable (but not completely integrable).
Moreover, any solution γ := (γ1, γ2) must satisfy γ1(x1, x2) ≡ 0, because its
image must be included in the line {y1 = 0}. Hence, γ2 does not depend on

x2 and satisfies
∂γ2

∂x1
= 1 and therefore γ2(x1) = x1+λ for a suitable constant

λ ∈ C. In other words, the solutions of Σ are γ(x1, x2) = (0, x1 + λ).

Proposition 10 gives a conceptually simple criterion to decide the inte-
grability of a Pfaffian system Σ: it suffices to compute p∞ and to check if
the algebraic variety Vp∞ is empty or not. Even if the integer p∞ exists by
Noetherianity, a priori it could be too big. However we will show that p∞
is in fact bounded by the dimension of the ambient space.

Proposition 13 Let Σ be an autonomous differential-algebraic Pfaffian sys-
tem. If, for some p0 ∈ N0, C ⊆ Vp0 is an irreducible component which is also
included in Vp0+1, then C is an irreducible component of Vp∞. Moreover,
Vp∞ = Vn+1 and then, p∞ ≤ n+ 1.

Proof. Due to Lemma 8, we can guarantee that for any regular point
Q ∈ C passes locally the image of a solution of Σ. Since every solution of Σ
is contained in all the varieties Vp, we conclude in particular that the closure
of Reg(C) is contained in Vp∞ . On the other hand, the regular points form
a dense subset of C, so C is an irreducible algebraic set contained in Vp∞.
Moreover, it is also an irreducible component of Vp∞ because by assumption
it is an irreducible component of Vp and Vp∞ ⊆ Vp.

If Vp is empty for some index p, then Vp∞ is empty too. Therefore,
without loss of generality we may suppose Vn+1 6= ∅. Let Cn+1 be an
irreducible component of Vn+1. There exists a decreasing chain of irreducible
varieties Cp, p = 0, . . . , n + 1, where each Cp is an irreducible component
of Vp. If the sequence (Cp)p is strictly decreasing, we have dim(Cn+1) <
dim(Cn) < · · · < dim(C1) < dim(C0) ≤ n and then Cn+1 = ∅, leading to a
contradiction. Hence the sequence (Cp)p stabilizes in Cn+1 for some index
p ≤ n. Thus, Cn+1 is an irreducible component of Vp∞ . Since this holds
for any irreducible component of Vn+1, we deduce that Vn+1 ⊆ Vp∞ . The
other inclusion is always true; therefore, we have Vp∞ = Vn+1.

Remark 14 The variety M := Reg(Vp∞) ⊆ C
n is the integral submanifold

associated to the system Σ in the usual sense: for each point Q ∈ M , its
tangent space TQM is spanned by the vector fields determined by the differ-
ential system Σ, and the dimension ofM is maximal with this property. For
instance, in the previous example we have Vp∞ = {0} ×C and the solutions
are γ(x1, x2) = (0, x1 + λ).

Hence, the invariant ̺ := dim(Vp∞) is a measure of the integrability of
the system Σ: it agrees with the maximal dimension of integral submanifolds
of Σ. The extreme cases ̺ = n, and ̺ = −1 correspond to the complete
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integrability and the inconsistency of Σ, respectively. In the previous example
we have ̺ = 1.

We summarize Propositions 10 and 13 in the following criterion concern-
ing the integrability of Σ:

Theorem 15 (Criterion for the integrability of a Pfaffian system)
Let Σ be an autonomous differential-algebraic Pfaffian system. Then

Σ is integrable ⇐⇒ Vp∞ 6= ∅ ⇐⇒ Vn+1 6= ∅.

For a non-autonomous differential-algebraic Pfaffian system Σ, Theorem
1 stated in the Introduction is proved by considering the associated au-
tonomous system Σaut defined as in (4), and making all the constructions in
this section from Σaut.

3 Quantitative Aspects

3.1 Some tools from effective commutative algebra and al-

gebraic geometry

Throughout this section we will apply some results from effective commu-
tative algebra and algebraic geometry. We recall them here in the precise
formulations we will use.

One of the results we will apply is an effective version of the strong
Hilbert’s Nullstellensatz (see for instance [12, Theorem 1.3]):

Proposition 16 Let f1, . . . , fs ∈ C[z1, . . . , zn] be polynomials of degrees
bounded by d, and let I = (f1, . . . , fs) ⊂ C[z1, . . . , zn]. Then (

√
I) d

n ⊂ I.

In order to obtain upper bounds for the number and degrees of generators
of the radical of a polynomial ideal, we will apply the following estimates,
which follow from the algorithm presented in [17, Section 4] (see also [15],
[14]) and estimates for the number and degrees of polynomials involved in
Gröbner basis computations (see, for instance, [5], [19] and [7]):

Proposition 17 Let I = (f1, . . . , fs) ⊂ C[z1, . . . , zn] be an ideal generated
by s polynomials of degrees at most d that define an algebraic variety of
dimension r and let ν = max{1, r}. Then, the radical ideal

√
I can be

generated by (sd)2
O(νn)

polynomials of degrees at most (sd)2
O(νn)

.
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3.2 An effective decision method

The integrability criteria presented in Section 2.5 enable the application of
tools from effective algebraic geometry in order to derive a decision method
for the Pfaffian systems under consideration.

As stated in Theorem 15, we have that for an autonomous differential
system Σ in n differential unknowns, Σ is integrable if and only if Vn+1 6= ∅.
We start by estimating the number and degrees of polynomials generating
the intermediate ideals Ip and the complexity of computing them.

Lemma 18 With our previous notation, let ν := max{1,dim(V0)}, σ :=
max{1, s} and d := max{deg(f),deg(g)}. There exists a universal con-
stant c > 0 such that for each 0 ≤ p ≤ p∞, the ideal Ip can be generated
by a family of polynomials gp whose number and degrees are bounded by

(nmσd)2
c(p+1)νn

. These polynomials can be computed algorithmically within

complexity (nmσd)2
O(n3)

.

Proof. For p = 0, we have that g0 is a set of generators of
√

(g); then, by
Proposition 17, they can be chosen to be at most (σd)2

c0νn polynomials of
degrees bounded by (σd)2

c0νn , where c0 is a universal constant.
The ideal I1 is the radical of the polynomial ideal generated by g0,

Dj(g) for every g in g0 and 1 ≤ j ≤ m, and the Frobenius conditions
Dj(fik)−Dk(fij) for all indices i, j, k with i = 1, . . . , n, and j, k = 1, . . . ,m.
For each polynomial g in g0, we add m polynomials Dj(g), for 1 ≤ j ≤ m,
and, since deg(f) ≤ d, we have that deg(Dj(g)) ≤ deg(g)+d. The Frobenius
conditions are given by n

(
m
2

)
polynomials of degrees bounded by 2d. We

may assume that the constant c0 is chosen so that the number and degrees of
all these polynomials is bounded by (nmσd)2

c0νn . Then, by Proposition 17,
the radical ideal I1 can be generated by a set of polynomials whose number
and degrees are bounded by (nmσd)2

2c0νn+1 ≤ (nmσd)2
2cνn

by taking, for
instance, c ≥ c0 + 1.

Assume that, for p ≥ 1, there is a system gp of polynomials that generate

Ip whose number and degrees are bounded by (nmσd)2
c(p+1)νn

. Recalling

that Ip+1 =

√
Ĩp =

√
(gp;Dj(gp), 1 ≤ j ≤ m), the bounds from Proposition

17 imply that Ip+1 can be generated by a set of polynomials whose number
and degrees are bounded by
(
(m+1)((nmσd)2

c(p+1)νn
)2
)2c0νn

≤ (nmσd)2
c(p+1)νn+c0νn+2 ≤ (nmσd)2

c(p+2)νn

for a universal constant c (it suffices to take c ≥ c0 + 2).
The complexity bound follows from the complexity of the computation

of the radical of a polynomial ideal stated in [17, Section 4].

As a consequence of the previous lemma, we deduce that we can obtain a

Gröbner basis of the defining ideal of Vn+1 within complexity (nmσd)2
O(n3)

,
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which enables us to decide immediately whether this variety is empty or not.
We conclude:

Theorem 19 Let Σ be an autonomous differential-algebraic Pfaffian sys-
tem:

Σ =

{
∂y

∂x
= f(y),

g(y) = 0

where y = y1, . . . , yn and x = x1, . . . , xm, f = (fij)1≤i≤n,1≤j≤m and g =
g1, . . . , gs polynomials in C[y] with deg(f),deg(g) ≤ d. There is a determin-
istic algorithm that decides whether the system Σ is integrable or not within

complexity (nmσd)2
O(n3)

, where σ = max{1, s}.

3.3 An effective Differential Nullstellensatz for differential-

algebraic Pfaffian systems

We write C{y} for the polynomial ring in the infinitely many variables yi,α
where α ∈ N

m
0 . This ring has naturally m many independent derivations

∂

∂x1
, . . . ,

∂

∂xm
: for h ∈ C{y},

∂h

∂xj
:=
∑

i,α

∂h

∂yi,α
yi,α+ej ,

where ej denotes the j-th vector of the canonical basis in N
m
0 . We identify

the variable yi with yi,0 for 1 ≤ i ≤ n.
Consider an autonomous differential-algebraic Pfaffian system

Σ =

{
∂y

∂x
= f(y),

g(y) = 0

where f , g are polynomials in C[y] of degrees bounded by an integer d. This
sytem induces a differential ideal in C{y} (that is, an ideal of C{y} which is

closed under the derivations
∂

∂xj
) simply by taking the ideal generated by

the polynomials yi,ej − fij , gk (with i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . , s)

and all their derivatives. We denote this ideal by [
∂y

∂x
− f ,g].

By the differential Nullstellensatz (see [13]), Σ has no solution if and only

if 1 lies in the differential ideal [
∂y

∂x
− f ,g] ⊂ C{y}. The aim of this section

is to prove an upper bound for the number of derivations needed to obtain
a representation of 1 as an element of this differential ideal assuming that
Σ is inconsistent. A previous bound on this subject for general differential
algebraic systems is given in [8].
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For each α = (α1, . . . , αm) ∈ N
m
0 , let |α| = α1 + . . . + αm and for each

k ≥ 0, let y[k] be the set of all variables yi,α with |α| ≤ k. For h ∈ C{y}, we

denote
∂|α|h

∂xα
=

∂|α|h

∂xα1
1 . . . ∂xαm

m
and

h[k] =

{
∂|α|h

∂xα
: |α| ≤ k

}
.

We consider the algebraic ideals Ip ⊂ C[y] (0 ≤ p ≤ p∞) introduced
in Notation 7. For p = 0, . . . , p∞, let gp ⊂ C[y] be a system of generators
of the ideal Ip. We also denote g−1 := g. Since (g) ⊂ Ip for every p, the
differential-algebraic Pfaffian system

Σp =

{
∂y

∂x
= f(y),

gp(y) = 0

has no solution and so, by the differential Nullstellensatz, 1 ∈ [
∂y

∂x
− f ,gp].

Thus, there exists a non negative integer k (depending on p) such that

1 ∈ ((
∂y

∂x
− f)[k],g

[k]
p ) ⊆ C[y[k+1]]. Moreover, by Proposition 10, we have

that {gp∞ = 0} = Vp∞ = ∅, and so, 1 ∈ (gp∞) ⊂ C[y]. We define

kp = min
{
k ∈ N0 : 1 ∈

(
(
∂y

∂x
− f)[k],g[k]

p

)}
. (10)

In particular,

k−1 = min
{
k ∈ N0 : 1 ∈

(
(
∂y

∂x
− f)[k],g[k]

)}

is the order of differentiation of the input equations we want to bound.
Note that, since (gp) = Ip ⊂ Ip+1 = (gp+1) for every p, the sequence

kp is decreasing. In addition, as 1 ∈ (gp∞), we have that kp∞ = 0. We will
obtain an upper bound for k−1 by recursively computing upper bounds for
kp for p = p∞, . . . , 0. In order to do this, we will use the following auxiliary
sequence of non-negative integers defined for p = 0 . . . , p∞:

ε0 := min{ε ∈ N : Iε0 ⊂ (g)},

ε1 := min{ε ∈ N : Iε1 ⊂ Ĩ0 + F},
εp := min{ε ∈ N : Iεp ⊂ Ĩp−1}, for 2 ≤ p ≤ p∞.

By the definition of the ideals Ip and Ĩp, it follows that ε0 is the Noether

exponent of the ideal (g), ε1 is the Noether exponent of the ideal Ĩ0 + F

and, for p ≥ 2, εp is the Noether exponent of Ĩp−1. Taking into account that
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F ⊂
(
(
∂y

∂x
− f)[1]

)
and, for p ≥ 1, Ĩp−1 = (gp−1;Dj(gp−1), 1 ≤ j ≤ m) and

Dj(gp−1) ≡
∂gp−1

∂xj
mod

(∂y
∂x

− f
)
, it follows that

I
ε0
0 ⊂

(
g−1

)
, I

ε1
1 ⊂

(
(
∂y

∂x
− f)[1],g

[1]
0

)
,

and I
εp
p ⊂

(∂y
∂x

− f ,g
[1]
p−1

)
for p ≥ 2.

(11)

The following is the key result that enables us to prove the required
bound for the integers kp:

Lemma 20 Let 0 ≤ p ≤ p∞ and g ∈ Ip. Then, for every k ∈ N0, all the

partial derivatives
∂|α|g

∂xα
, for α ∈ (N0)

m with |α| ≤ k, lie in the polynomial

ideal

√(
(
∂y

∂x
− f)[1+εpk],g

[1+εpk]
p−1

)
.

Proof. Consider the usual graded lexicographic order in ((N0)
m,≺): for

α, β ∈ (N0)
m, α ≺ β if and only if either |α| < |β| or |α| = |β| and there

exists j, 1 ≤ j ≤ m, such that αk = βk for every 1 ≤ k < j and αj < βj.
We proceed inductively following this order.

By the inclusions in (11), we have that gεp ∈
(
(
∂y

∂x
− f)[1],g

[1]
p−1

)
and so,

the statement holds for k = 0.

Claim: Given ε ∈ N, for every α ∈ (N0)
m, there exist c ∈ N and a differen-

tial polynomial G ∈ C{y} in the ideal generated by the partial derivatives(
∂|β|g

∂xβ

)

β≺α

such that

∂ε|α|gε

∂xε·α
= c ·

(
∂|α|g

∂xα

)ε

+G. (12)

Proof of the claim. According to the Leibniz formula, we have that

∂ε|α|gε

∂xεα
=
∑

ν

cν

(
∂|ν1|g

∂xν1

)
· · ·
(
∂|νε|g

∂xνε

)
,

where cν > 0 and ν runs over all matrices in (N0)
ε×m, with rows ν1, . . . , νε ∈

(N0)
m, such that the sums of their columns are εα1, . . . , εαm respectively.
Let us analyze each term of the above sum. If, for some i = 1, . . . , ε, we

have that |νi| < |α|, the term lies in the ideal generated by

(
∂|β|g

∂xβ

)

β≺α

and

it will contribute to the differential polynomial G.
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Assume now that |νi| ≥ |α| for every i. Then, |νi| = α for every i, since
|ν1| + · · · + |νǫ| = ε|α|. If νi ≺ α for some i, the term will contribute to
the polynomial G. Then, it remains to consider the case where no νi is
smaller than α in the order ≺. We claim that in this case νi = α for every i.
Otherwise, let i0 be such that νi0 is the smallest among all νi different from
α, and j0 = min{j : αj < νi0j}. By the minimality of νi0 and j0, all the
entries νij0 of the j0th column of the matrix ν are greater than or equal to αj0

and for at least one index, i0, the strict inequality holds; therefore, the sum
of the j0th column of ν is greater than εαj0 , which leads to a contradiction.
Therefore, in the only term not containing a factor with νi ≺ α we have

νi = α for every i and so, the term equals c ·
(
∂|α|g

∂xα

)ε

for a combinatorial

constant c.

Since gεp ∈
(
(
∂y

∂x
− f)[1],g

[1]
p−1

)
, it follows that

∂εp|α|gεp

∂xεp·α
∈
((∂y
∂x

−

f
)[1+εpk],g

[1+εpk]
p−1

)
for every α ∈ (N0)

m with |α| ≤ k; in particular,
∂εp|α|gεp

∂xεp·α

lies in the radical of this polynomial ideal. By induction in ((N0)
m,≺), this

property along with formula (12) of the Claim imply that

∂|α|g

∂xα
∈
√((∂y

∂x
− f
)[1+εpk],g

[1+εpk]
p−1

)

for every α ∈ (N0)
m with |α| ≤ k.

Corollary 21 Let 0 ≤ p ≤ p∞. For every k ∈ N0, if 1 ∈
(
(
∂y

∂x
− f)[k],g

[k]
p

)
,

then 1 ∈
(
(
∂y

∂x
− f)[1+εpk],g

[1+εpk]
p−1

)
. In particular, kp−1 ≤ 1 + εpkp.

Proof. Since εp ≥ 1, it follows that (
∂y

∂x
− f)[k] ⊂ (

∂y

∂x
− f)[1+εpk]. In

addition, applying Lemma 20 to the polynomials in gp, we deduce that

(g
[k]
p ) ⊂

√(
(
∂y

∂x
− f)[1+εpk],g

[1+εpk]
p−1

)
. Then,

(
(
∂y

∂x
− f)[k],g[k]

p

)
⊂
√(

(
∂y

∂x
− f)[1+εpk],g

[1+εpk]
p−1

)
,

which implies the first assertion of the Corollary.
The second assertion follows from the definition of the integers kp in

equation (10).

Corollary 22 Let µ := min{0 ≤ p ≤ p∞ : kp = 0}. Then, k−1 ≤ (µ+ 1)
µ−1∏
p=0

εp.
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Proof. By applying recursively the inequality kp−1 ≤ 1+εpkp from the pre-

vious corollary, it follows easily that kµ−j ≤ j
µ−1∏

i=µ−j+1
εi for j = 1, . . . , µ, µ+

1.

Now, to prove our main result, it suffices only to bound the Noether
exponents εp for p = 0, . . . , µ−1, which will be easily done from Proposition
16.

Theorem 23 Let x = x1, . . . , xm independent variables and y = y1, . . . , ym
differential variables, and let f = (fij)1≤i≤n,1≤j≤m and g = g1, . . . , gs be
polynomials in C[y] of degrees bounded by d. Let V ⊂ C

n be the variety
defined as the set of zeros of the ideal (g) and ν := max{1,dim(V)}. Then,

1 ∈ [
∂y

∂x
− f ,g] ⇐⇒ 1 ∈

(
(
∂y

∂x
− f)[K],g[K]

)
,

where K ≤ ((s+ nm2)d)2
Cν2n

for a universal constant C > 0.

Proof. Following Corollaries 22 and 9, notice first that µ ≤ p∞ ≤ ν + 1.
On the other hand, by Proposition 16 and Lemma 18, it follows that the
Noether exponents εp can be bounded as follows:

ε0 ≤ dn and εp ≤ (nmσd)n2
c(p+1)νn

, 1 ≤ p ≤ p∞.

By Corollary 22, we have that, for a suitable constant c,

K = k−1 ≤ (n+ 2)

ν∏

p=0

(nmσd)n2
c(p+1)νn ≤

≤ (n+ 2)(nmσd)n2
1+c(ν+1)νn ≤ (nmσd)2

Cν2n

for a suitable constant C.
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J. Comput. 19, no. 4 (1990), 750–775.
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