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Abstract Crabs have panoramic compound eyes, which

can show marked regional specializations of visual acuity.

These specializations are thought to be related to the partic-

ular features of the animal’s ecological environment. Mod-

ern knowledge on the neuroanatomy and neurophysiology

of the crabs’ visual system mainly derives from studies per-

formed in the grapsid crab Neohelice granulata (=Chas-

magnathus granulatus). However, the organization of the

visual sampling elements across the eye surface of this ani-

mal had not yet been addressed. We analyzed the sampling

resolution across the eye of Neohelice by measuring the

pseudopupil displacement with a goniometer. In addition,

we measured the facet sizes in the diVerent regions of the

eye. We found that Neohelice possesses an acute band of

high vertical resolution around the eye equator and an

increase in horizontal sampling resolution and lenses diam-

eter towards the lateral side of the eye. Therefore, the anal-

ysis of the optical apparatus indicates that this crab

possesses greater visual acuity around the equator and at

the lateral side of the eye. These specializations are com-

pared with those found in diVerent species of crabs and are

discussed in connection to the particular ecological features

of Neohelice’s habitat.

Keywords Brachyura · Visual system · Compound eye · 

Visuotopy · Behaviour

Introduction

Crabs (Decapoda: Brachyura) have conquered a wide vari-

ety of ecological niches: from the deep sea to epiphytes

high up on tropical trees, from fresh water to deserts

(Diesel et al. 2000). Many crabs live in the intertidal zone

where the landscape dramatically changes twice a day.

Most crabs are highly visual animals that display complex

visual guided behaviours such as those involved in visuo-

motor control and navigation, conspeciWc and predator

recognition (Woodbury 1986; Land and Layne 1995b), and

social communication (Christy 1988a, b; Land and Layne

1995a; Backwell et al. 2000).

The compound eyes of crabs are located on cylindrical

mobile eye stalks. The retinal surface of each eye is spread

around the tip of the eye stalk. Having the eye on a raised

stalk helps to reduce the portion of the visual scene blocked

by the crab’s body creating a panoramic monocular Weld of

view. The length of the eye stalks and the eye separation in

diVerent species of crabs are related to the topography of

the biotope they inhabit: animals that live on rocky shores

or deep in mangrove forests, like Grapsidae and Sesarmi-

dae, have more spherical eyes on short eye stalks and far

apart at the lateral corners of their carapace (Zeil et al.

1986, 1989). On the other hand, species from the genus

Uca, Macrophthalmus, Ocypode and Heloecius (of the

family Ocypodidae) and soldier crabs (Mictyridae), all live

in relatively Xat environments and carry almost cylindrical

eyes close together on long eye stalks (Zeil et al. 1986).

Crabs from families Ocypodidae and Mictyridae were

found to possess an acute horizontal band of high vertical
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resolving power round the equator of the eye, about 30°

wide (Horridge 1978; Land and Layne 1995a; Zeil and Al-

Mutairi 1996; Smolka and Hemmi 2009). Because this

band imaging the horizon is most pronounced in species of

crabs which inhabit Xat environments, it was proposed that

this eye design is an adaptation to spatial vision in a Xat

world where most of the relevant visual information would

arrive within a narrow part of their visual Weld, just above

or below the horizon (Zeil et al. 1986).

The equator of the eye also delineates two functionally

diVerent areas, the dorsal and ventral visual Welds of the

animal (Zeil et al. 1986; Land and Layne 1995a). Visual

stimuli appearing in one or another visual Weld provoke

diVerent visually guided behaviours. Moving stimuli that

appear above the horizon usually trigger escape responses,

whereas stimuli moving below the horizon elicit responses

such as burrow defence or courtship displays (Land and

Layne 1995a; Hemmi and Zeil 2003). Thus, visual objects

moving above or below the equator of the eye are most

likely taken as either predators or conspeciWcs, respectively

(Layne et al. 1997; Layne 1998).

Crabs also behave diVerently according to the position of

visual stimuli in the azimuth. For example, upon a looming

stimulus that appears in front or behind the animal, crabs

without refuge Wrst rotate and then run sideways maintain-

ing the stimulus laterally (Land and Layne 1995b). Such

directional guided behaviour would beneWt from an

increased resolution in the eye lateral pole. Although a high

value of vertical resolution has been observed in the lateral

side of the eye (Smolka and Hemmi 2009), most of the

studies on crab eyes have indicated that horizontal sam-

pling resolution is relatively constant across diVerent hori-

zontal viewing directions (Zeil et al. 1986; Land and Layne

1995a; Zeil and Al-Mutairi 1996; but see Sandeman 1978;

Smolka and Hemmi 2009).

The reason for studying the optical system of the crab

Neohelice (previous Chasmagnathus granulatus; Sakai

et al. 2006) is twofold. First, previous studies had been per-

formed on crabs that were classiWed as either living in a

complexly structured environment or in a Xat environment

lacking vertical structures (Zeil et al. 1986). However, the

grapsid crab Neohelice granulata inhabits mud Xats that in

the upper intertidal zone can be densely vegetated by cord

grass up to 2 m tall, i.e. a Xat but at the same time structured

environment (Isacch et al. 2006). The eye design of a crab

inhabiting such a mixed environment cannot be predicted

from previous studies (see above). A second reason is that

the majority of our present knowledge on the neural organi-

zation and functioning of the visual system of crabs come

from studies carried out in Neohelice (e.g. Berón de

Astrada et al. 2001, 2002, 2009; Tomsic et al. 2003; Sztar-

ker et al. 2005, 2009; Sztarker and Tomsic 2011; Oliva

et al. 2007). Knowing how the visual world is sampled by

Neohelice eye would allow to better understand how visual

space is represented in the retinotopic optic neuropils of the

crab (Berón de Astrada et al. 2011) and to relate this to the

neural circuits involved in coping with such information

(e.g. Medan et al. 2007). Therefore, here we investigate the

distribution of resolution and facet sizes across the eye of

Neohelice.

Materials and methods

Animals were adult male Neohelice granulata (=Chasmag-

nathus granulatus) crabs measuring 27–30 mm between the

lateral carapace spines. They were collected from water less

than 1 m deep in the rias (narrow coastal inlets) of San Cle-

mente del Tuyú, Argentina, and transported to the labora-

tory where they were lodged in plastic tanks

(35 £ 48 £ 27 cm) Wlled to 0.5 cm depth with water. Water

used in tanks and other containers during experiments was

prepared with hw-Marinex (Winex-Germany) (salinity 1.0–

1.4 %, pH 7.4–7.6). To prevent deterioration in the pigmen-

tation of the eyes, the holding room was maintained under

natural sunlight illumination. Measurements were carried

out between 2 and 8 p.m. from March to June within the

Wrst week after the animal’s arrival to the laboratory.

To study the sampling resolution of the Neohelice eye, we

measured the distribution of the visual axis of the ommatidia

with a pseudopupil mapping method similar to that used in

previous studies (Zeil et al. 1986; Land and Layne 1995a).

The eye stalk was mounted into a custom-made goniometer

and rotated around the eye’s vertical or horizontal axis. The

proximal end of the eye stalk was sealed with vaseline to pre-

vent desiccation and glued to a small piece of aluminium

attached to the rotating axis of the goniometer. During mea-

surements the eye was kept moist but care was taken that no

water droplets were present on the eye surface. We deter-

mined the interommatidial angle in both the vertical and hor-

izontal directions (��v and ��h, respectively) following the

convention introduced by Stavenga (1979). According to

this, the interommatidial angle is the angle through which the

eye had to be rotated for the pseudopupil to move from one

ommatidium to the next diagonal neighbouring ommatidium

(Fig. 1f). Following the convention used in previous studies

in crabs (Zeil et al. 1986; Land and Layne 1995a, b; Smolka

and Hemmi 2009), we considered the sampling resolution as

the reciprocal of twice the interommatidial angle in vertical

or horizontal direction (�v = 1/2��v and �h = 1/2��h, respec-

tively). Since facet rows in crabs are horizontally aligned

(type C lattice, see Stavenga 1979, p 369) with regular hexa-

gons “standing” on the horizontal axis, the ratio of vertical to

horizontal interommatidial angles in the case of a symmetric

eye is q3. In such a case ��v > ��h and the ratio between

vertical and horizontal sampling resolution �v/�h would be
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0.58. In the present study, the eye was rotated so that the

pseudopupil crossed 5–10 ommatidia along a facet row, the

angle was measured, and a local average for the interommat-

idial angle was obtained. As the vertical interommatidial

angle changes steeply near the eye equator, care was taken

not to average more than Wve ommatidia in this region.

Throughout this paper, we use the greek letter � to denote

angles of elevation and � to denote angles of azimuth.

A feature of compound eye acute zones is that the facets

are usually bigger than elsewhere in the eye (Land 1989).

We determined the facet lens diameter from photographs

taken with a camera (Olympus DP71, 12.5 megapixels)

attached to the dissecting microscope (Olympus SZX10).

Photographs were taken every 5° along the dorso-ventral

transect in the mid-sagittal plane of the eye (� = 0°, i.e. the

vertical transect imaging the frontal visual Weld); and every

10° along the equator of the eye (� = 0°, i.e. the horizontal

transect imaging the horizon).

Results

Eye morphology

The following description is based on nine male crabs. The

eyes of Neohelice are ellipsoidal in the front and more

spherical in the rear (Fig. 1a–c). The retina wraps around

the tip of mobile eyes stalk leaving only a narrow cuticular

ridge free from ommatidia at the median surface of the eye

stalk. This band extends along the medial side of the eye

stalk to end as a small round cap on the dorsal part of the

eye (Fig. 1d). On a Xat horizontal substrate, the eye stalks

of Neohelice make an angle of 50° with the horizontal in

the transverse plane while changes in the substrate slope

and crab’s own movement provoke compensatory eye

stalks movements that keep the long axis of the eye almost

perfectly vertical (Neil 1982; Nalbach 1990). In a crab of

28.5 mm carapace width, the eye stalks are 4.6 mm long

and the eye is 2.4 mm high and 1.6 mm wide in the front.

When the crab is walking normally, the eyes are held 30

mm above the ground and the center of both eyes are placed

22 mm apart from each other.

Eye visual Weld

The dark pseudopupil marks those ommatidia that are

aligned with the direction of the observer (Stavenga 1979);

therefore, the extension of the visual Weld can be inferred

from the direction of observation of the pseudopupil at the

borders of the eye. When looking at the equator of the eye

and rotating the eye through its vertical axis, the pseudopu-

pil moves continuously from the antero-medial to the

Fig. 1 The compound eyes of the grapsid crab Neohelice granulata

(=Chasmagnathus granulatus). a–c Frontal, lateral and rear views of

Neohelice with their eyes stalk raised at their normal seeing position.

d Appearance of the right eye seen from the front, lateral and rear with

the ommatidial surface shown in light grey and the pseudopupil in

darker grey. Each eye contains about 9,000 ommatidia. Angles in blue

indicate the edge of the ventral visual Weld. e Photograph of the facet

lens array including part of the dark pseudopupil at the equator on the

lateral part of the eye. f Facet lens pattern and interommatidial angles.

Interommatidial angles ��v and ��h are determined by considering

obliquely adjacent facets (Stavenga 1979). Scale bars in a–c 10 mm;

in e 100 �m
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postero-medial surface of the eye. This indicates that the

two ends of the facet-bearing surface that border the sides

of the medial cuticular ridge sample the same region of

visual space. The sampling array at the equator covers

monocularly the full 360° horizontal panorama.

A similar continuous movement of the pseudopupil is

observed dorsally along anterior and posterior ommatidia

meeting at the dorsal round cap of exoskeleton, indicating

that the dorsal visual Weld is also fully covered monocu-

larly. Although the optical axes of the ommatidia along the

outer-most ventral border of the sampling array are diYcult

to deWne due to a dark pigmentation that appears in many

eyes, we were able to assess the ventral visual Weld exten-

sion from the last 2–3 ventral rows of ommatidia. The

visual Weld reaches ventrally ¡50° to ¡70° of elevation in

the front, ¡50° to ¡60° in the lateral and ¡35° to ¡45° in

the rear of the eye (Fig. 1d). This reduction of the ventral

Weld of view from the front to the rear of the eye occurs

mainly by the loss of the ventral area of ommatidia imaging

the lower part of the Weld, which would sample the space

occupied by the dorsal carapace (Fig. 1b, c). The total num-

ber of ommatidia in a vertical row is 93–101 at the front of

the eye, it decreases to 65–72 at the side and to 44–49 at the

rear (n = 4).

Vertical sampling resolution and lens diameters 

in elevation

Previous studies in crabs found that the distribution of ver-

tical resolution across their panoramic eyes is quite hetero-

geneous. In particular, species of the families Ocypodidae

and Mictyridae possess a narrow horizontal band of greatly

increased vertical resolution in the middle of the eye (Zeil

et al. 1986). The size and shape of the pseudopupil indicate

the number of ommatidia looking into a given solid angle.

At the equator of the eye of Neohelice, the pseudopupil

appears elongated while dorsally and ventrally it becomes

round and smaller (Fig. 2a–c). Consequently, at the equator

there would be more vertically aligned ommatidia looking

into the same solid angle than dorsally and ventrally. The

sampling resolution (expressed in cycles/degree) is related

to the Wnest grating resolvable by the ommatidial lattice

(e.g. see Land and Layne 1995a). Figure 2d shows the dis-

tribution of vertical sampling resolution �v in the mid-sagit-

tal plane (� = 0°, i.e. front) of three eyes. Elevation from the

ventral to the dorsal visual Weld is plotted against the verti-

cal sampling resolution �v. Neohelice has a sharp peak in

vertical resolution around 0° elevation which corresponds

to the equator of the eye (� = 0°). This maximum in vertical

resolution decreases sharply towards more dorsal and more

ventral directions of view. In the diVerent eyes, the peaks of

vertical resolution �v reached values between 0.83 and 1.2

cycles/deg (interommatidial angles �v between 0.6° and

0.4°, respectively). The vertical angular span (i.e. height) of

the region around equator where the vertical resolution

reached half the maximal vertical resolution, was between

22° and 34°. Using the eye of another crab, we measured

the proWle of vertical resolution �v along vertical transects

in the front, lateral and rear of the eye (�: 0°, 90° and 180°,

respectively). We found a similar proWle of vertical resolu-

tion around the eye but with a reduction (with respect to the

front) in the peak of resolution of 25% at lateral and 50% at

rear azimuthal positions (Fig. 2f). Figure 2e shows the

diameter of the facet lenses in the mid-sagittal plane

(� = 0°) of three eyes. The diameter of the lenses reaches a

maximum of 34–36 �m in the region of the eye that images

the horizon and decreases towards dorsal and ventral direc-

tions of view.

Behavioural and anatomical studies on crabs of the

genus Uca reveal that the information content of the world

as seen by the crabs may diVer above and below the horizon

(Zeil and Al-Mutairi 1996; Layne et al. 1997). The inset of

Fig. 2d shows a histogram in which the vertical sampling

resolution �v was averaged for 10° bins while the inset of

Fig. 2e shows a histogram in which the diameter of facet

lenses was averaged. Even when this procedure smoothens

and widens the distribution of the variables, the histograms

clearly indicate that in Neohelice both sampling and lenses

diameter are higher for ventral than for dorsal equidistant

elevations from the horizon. This result suggests that, as for

some species of the genus Uca, for Neohelice, there is

diVerential information content on the ventral and dorsal

visual Weld.

Horizontal sampling resolution and lens diameters 

in azimuth

Around the equator of the eye of Neohelice the pseudopupil

looks wider in the lateral than in the frontal and posterior

parts of the eye, indicating that horizontal resolution is not

homogeneous (Fig. 3a–c). On an equatorial horizontal row,

the number of ommatidia is between 125 and 135 (n = 4).

The distribution of horizontal sampling resolution �h

around the equator of three eyes is shown on Fig. 3d. In

each of the measured eyes, there is a gradual and marked

increase in the horizontal sampling resolution towards the

lateral side of the eye. Laterally, the horizontal sampling

resolution �h reaches peak values between 0.5 and 0.65

cycles/deg (interommatidial angles �h between 1° and

0.75°, respectively). However, in the front (� = 0°) horizon-

tal resolution �h is between 0.31 and 0.38 cycles/deg; while

fronto-medially (� = ¡45°) it is between 0.22 and 0.28

cycles/deg. This distribution of horizontal sampling resolu-

tion implies that laterally the eye of Neohelice has approxi-

mately 60% higher resolution than frontally and 120%

higher resolution than fronto-medially.
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The diameter of the facet lenses along the equator of the

eye is shown in Fig. 3e. The largest lenses (38–40 �m) are

found rearwards from lateral direction, at around azimuth

� = 120°. Even though we have measured the lenses diame-

ter only along one vertical and one horizontal transect, the

inspection of the surface of the eye conWrmed that the larg-

est ommatidia of Neohelice are those looking laterally at

the equator of the eye.

We next measured the horizontal sampling resolution

�h in the front (� = 0°), lateral (� = 90°) and rear

(� = 180°) of one eye at diVerent elevations (�: ¡20°,

¡10°, 0°, 10°, 20°, 40° and 60°). The results are shown in

Fig. 3f. We found that horizontal sampling resolution �h is

fairly uniform at diVerent elevations within the front

(0.35–0.47 cycles/deg), the lateral (0.51–0.63 cycles/deg)

and the rear part of the eye (0.36–0.42 cycles/deg). The

results show that the increase in horizontal sampling reso-

lution in the lateral side of the eye is preserved for the

diVerent elevations. These results highlight the impor-

tance of the lateral visual Weld in the functional represen-

tation that the panoramic eye of this grapsid crab builds

from the visual world.

Fig. 2 Anatomical and optical properties along vertical transects in

the eye of Neohelice. a–c The pseudopupil along a dorso-ventral tran-

sect in the mid-sagittal plane (� = 0°, frontal visual Weld) of a right eye.

Photograph in a shows the pseudopupil in the dorsal part of the eye

(� = 30°); b in the eye equator (� = 0°); and c in the ventral part of the

eye (� = ¡30°). Note the vertical enlargement of the pseudopupil at the

equator of the eye. d ProWle of vertical resolution �v in the mid-sagittal

plane of three crabs (carapace width C = 28, 29 and 30 mm). The ordi-

nate represents the elevation in degrees with respect to the horizon (�

= 0°). Even when there are slight diVerences in the measured peak

resolution �v for the diVerent eyes, all of them showed an acute band of

high vertical resolution looking at the horizon. e Diameter of facet

lenses along the same vertical transect of the same three crabs. The

larger facet diameters correspond to the higher vertical resolution.

f ProWle of vertical resolution in vertical transects of another crab

(C = 28 mm) at the frontal, lateral and rear visual Weld (�: 0°, 90°, 180°,

respectively). Note the marked reduction in vertical resolution in the

rear of the eye. Insets in d and e are averaged histograms for 10° bins

in the dorsal (positive angles, white bars) and ventral visual Welds

(negative angles, black bars) (n = 3). Both vertical sampling resolution

�v and facet diameters appear to be higher in the ventral visual Weld.

Scale bars in a–c 1 mm
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Discussion

Many vertebrate and artrophod species inhabiting Xat envi-

ronments possess a steep horizontal band of high vertical

resolution imaging the horizon (Hughes 1977; Horridge

1978; Schwind 1980; Zeil et al. 1989; Dahmen 1991). This

has been interpreted as an adaptation to vision in a two-

dimensional habitat. Previous studies in crabs found that

this acute band was more pronounced in crabs with closely

set elongated eyes mounted on top of long stalks that

inhabit mud or sand Xats areas (families Ocypodidae and

Mictyridae), but less so in species that have their eyes rela-

tively apart and inhabit more complex environments (e.g.

families Grapsidae and Sesarmidae) (Zeil et al. 1986).

Indeed, many grapsid species known as rock crabs (e.g.

purple rock crab = Leptograpsus variegatus; the marbled

rock crab = Pachygrapsus marmoratus), live on rock

shores or promontories where they Wnd refuge in crevices.

These animals then live in a structured complex world that

forces them to walk, climb and rest in tilted surfaces and

vertical walls, a condition where there are no apparent

advantages for a specialization of the region around the eye

equator. However, some grapsid species, like Neohelice,

inhabit mud Xat areas, which can be fairly open or densely

vegetated by cord grass (mainly Spartina densiXora, Isacch

et al. 2006). Despite the fact that vegetated areas contain a

great deal of vertical and even overhead structures, Neohe-

lice still lives, moves, and interacts with other crabs in a

Fig. 3 Anatomical and optical properties along horizontal transects in

the eye of Neohelice. a–c The pseudopupil at the equator of the eye on

the front, lateral and rear of the eye (�: 0°, 90°, 180°, respectively). At

the lateral side the pseudopupil looks wider than in the front and rear

of the eye (white dashed rectangles have the same size in the three

pictures). d ProWle of horizontal sampling resolution �h along the equa-

tor of the eye of three crabs (carapace width C = 27, 28 and 30 mm).

Here, the ordinate represents the horizontal resolution �h and the ab-

scissa the azimuth in degrees. Horizontal resolution shows a gradual

increase towards the lateral visual Weld. e The diameter of facet lenses

also shows a gradual increase in the lateral of the eye but a few degrees

rearwards. f Measurements of horizontal resolution �h in another crab

(C = 28 mm) in the front, lateral and rear of the eye at diVerent eleva-

tions, �: ¡20°, ¡10°, 0°, 10°, 20°, 40° and 60°. The increase in hori-

zontal resolution at the lateral visual Weld is conserved at diVerent

elevations. Scale bars in a–c 1 mm
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well deWned horizontal plane, which means they can take

advantage of having a band of high vertical resolution at the

eye equator (for a comparison of Neohelice eye design with

that of other crabs, see Fig. 6 in Zeil et al. 1986: in the front

Neohelice vertical/horizontal resolution = 2.8 and eye sepa-

ration/carapace width = 0.75).

Previous studies found that horizontal sampling resolu-

tion is fairly uniform in crab eyes (Zeil et al. 1986; Land

and Layne 1995a; Zeil and Al-Mutairi 1996). Therefore,

our Wnding that in Neohelice, the horizontal sampling reso-

lution and the size of facets signiWcantly increase towards

the lateral side of the eye was unexpected. When looking

the study of Zeil et al. (1986) in more detail we noticed that

Pachygrapsus (a grapsid crab like Neohelice) also shows a

similar increase in horizontal sampling resolution at the lat-

eral side of its eye (Fig. 5, Zeil et al. 1986). Both Neohelice

and Pachygrapsus have their eyes relatively far apart and

present the greatest increase in horizontal sampling resolu-

tion in the lateral visual Weld found in any crab (60 and

100%, respectively). Crabs which have their eyes relatively

far apart were proposed to take advantage of binocular inte-

gration (Zeil et al. 1986). In fact, in the third optic neuropil

of Neohelice, we have found binocular neurons (Sztarker

and Tomsic 2004). The increase in lateral resolution may

then serve to compensate the lack of binocular sampling

present in the frontal and rear visual Welds.

When challenged by a visual danger stimulus (e.g. a

predator appearing above the horizon) crabs either Xee

down their burrow or, if caught in the open without a ref-

uge, run directly away in opposite direction to the threat.

While running the escape direction is adjusted in order to

keep the stimulus centered in the lateral visual Weld, which

allows the animal to continue running in its faster way, i.e.

sideways (Land and Layne 1995b). Therefore, the increase

in resolution at the lateral side of the eye could help the ani-

mal to accurately control its visually guided escape in the

lateral direction away from the predator (see also Smolka

and Hemmi 2009).

Recently, we have described the large-scale retinal map

of the optic neuropils of the crab (Berón de Astrada et al.

2011). Results of the present study will allow a reWnement

of such a map as well as to relate this information with

previous knowledge on neuronal movement detector

circuits found in Neohelice (e.g. Medan et al. 2007).

Comparative studies on the development and structure of

the optic neuropils in malacostracan crustaceans and insects

suggest a homology of the optic neuropils in these two

groups (e.g. Harzsch and Waloszek 2002; Harzsch 2002;

Strausfeld 2005, 2009). Beneath the retina lie three serially

arranged retinotopic optic neuropils that in crabs are con-

nected by two orthogonal chiasmata. From the periphery to

the center these neuropils are: the lamina, the medulla, and

the lobula. In Neohelice, the retinal representation is

preserved at the level of these three neuropils (Sztarker

et al. 2005). Results from the present account make now

possible to investigate the correspondence between the

sampling specialization found in the retinal mosaic and the

sampling properties of the columnar arrangement in the

retinotopic optic neuropils.
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