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ABSTRACT

We study Hahn–Banach extensions of multilinear forms defined on Banach

sequence spaces. We characterize c0 in terms of extension of bilinear

forms, and describe the Banach sequence spaces in which every bilinear

form admits extensions to any superspace.

1. Introduction

One of the fundamental results in Functional Analysis is the Hahn–Banach

theorem. It was proved independently by Hahn in 1927 [18] and by Banach

in 1929 [5] (see also [6, Chapitre IV, §2]). In one of its forms, it states that if

X is a subspace of a normed space Z, then every continuous, linear functional
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f : X → K can be extended to Z preserving the norm. It soon became clear

that a multilinear version of this result was not possible in general, and this

started the search of situations in which such multilinear extension theorems

are possible. A particular positive result was given by Arens in 1951, where

he showed how to extend the product on a Banach algebra to its bidual and,

also, how to extend bilinear operators defined on a couple of Banach spaces

to their corresponding biduals [2, 3]. This is one of the lines to find extension

theorems: given a space, find a superspace to which every multilinear mapping

can be extended. Aron and Berner went further on this line and showed in 1978

that every holomorphic function on a Banach space can be extended to an open

subset of the bidual [4].

Another line is to fix a Banach spaceX and consider the problem of extending

bilinear forms defined on subspaces of X . Maurey’s extension theorem [15,

Corollary 12.23] is a classical example of this natural point of view, in which

relevant advances have been obtained in the last years [10, 26].

A third way to face the extension problem is to find the bilinear mappings (on

a fixed Banach space) that can be extended to every superspace. This was the

point of view taken by Grothendieck: in 1956 he showed in his théorème fonda-

mental [17, page 60] that these are precisely those bilinear mappings factoring

through Hilbert spaces via 2-summing operators. We say that a bilinear form

T : X × Y → K is extendible (see, e.g., [7, 11, 20, 22]) if for all Banach spaces

E ⊃ X, F ⊃ Y , there exists a bilinear form defined on E × F that extends T .

Our aim, which can be framed in this last approach, is to describe those spaces

which enjoy a bilinear (or multilinear) Hahn–Banach theorem, in the sense that

every bilinear form is extendible. Examples of such spaces are A(D), H∞(D),

L ∞-spaces and Pisier spaces, but a complete characterization is still unknown.

In this line, our main result is the following theroem, which solves the problem

among Banach spaces with unconditional basis.

Theorem 1.1: The only Banach space with an unconditional basis on which

every bilinear form is extendible is c0.

This theorem will follow as a consequence of Theorem 2.2 below. We also

characterize the Banach sequence spaces satisfying a bilinear Hahn–Banach the-

orem as those “between” c0 and ℓ∞ (see Corollary 2.4). As a byproduct, we

obtain a partial answer to the following open problem: if a sequence Xn of n-

dimensional Banach spaces is uniformly complemented in some L∞, must these
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spaces be uniformly isomorphic to ℓn∞? Corollary 2.3 gives a positive answer

for sections of a Banach sequence space (see Proposition 2.5).

1.1. Preliminaries. We briefly collect here some basic definitions that will be

used throughout the paper. We will consider real or complex Banach spaces,

that will be denoted X , Y, . . .. Unless otherwise stated they will be assumed to

be infinite dimensional. The duals will be denoted by X∗, Y ∗, . . .. Given two

Banach spaces X and Y , we write X ≈ Y if they are isomorphic and X
1≈ Y

if they are isometrically isomorphic. We refer to [1, 25] for basic concepts and

notations on Banach spaces.

We denote by L 2(X,Y ) the Banach space of all scalar valued, continuous, bi-

linear mappings (in short, bilinear forms) on X×Y . We write L 2(X) whenever

Y = X .

The space of extendible bilinear forms is denoted by E 2(X,Y ). The ex-

tendible norm

‖T ‖E = ‖T ‖E2(X,Y ) := inf{c > 0 : for all W ⊇ X,Z ⊇ Y there is

an extension of T to W × Z with norm ≤ c}

makes E 2(X,Y ) a Banach space. Since every ℓ∞(I) space is injective (in fact,

has the metric extension property), every bilinear form on such spaces is ex-

tendible and the extendible and uniform norm coincide. Moreover, a bilinear

form T on X × Y is extendible if and only if it extends to ℓ∞(I) × ℓ∞(J), for

some ℓ∞(I) ⊃ X and ℓ∞(J) ⊃ Y . The supremum defining the extendible norm

can be taken only over the extensions to ℓ∞(I)× ℓ∞(J).

We write L (X ;Y ) for the space of all (continuous, linear) operators

u : X → Y . We denote by Π1(X ;Y ) the space of absolutely summing op-

erators, Γ∞(X ;Y ) for the ∞-factorable and ∆2(X ;Y ) for the 2-dominated.

Their corresponding norms are, respectively, π1, γ∞ and δ2 (see [13, 15] for

definitions and basic properties).

We are going to use the theory of tensor products and operator ideals as

presented in [13]. We recall some notation and definitions for completeness.

The projective tensor norm π is defined, for a z in the tensor product X ⊗ Y ,

by

π(z) = inf

{ r∑

j=1

‖xj‖ ‖yj‖
}
,
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where the infimum is taken over all the representations of z of the form z =∑r
j=1 xj ⊗ yj. The right-injective associate of π is denoted by π\. This ten-

sor norm is the greatest right-injective tensor norm and makes the following

inclusion an isometry:

X ⊗π\ Y
1→֒ X ⊗π ℓ∞(BY ∗),

where BY ∗ is the unit ball of Y ∗ (see [13, Theorem 20.7.] for details). Likewise,

the injective associate /π\ is the largest injective tensor norm and is induced

by the isometric inclusion

X ⊗/π\ Y
1→֒ ℓ∞(BX∗)⊗π ℓ∞(BY ∗).

The metric extension property of ℓ∞(I) spaces implies that extendible bilinear

forms are precisely the /π\-continuous ones:

E
2(X,Y )

1
=

(
X ⊗/π\ Y

)∗
.

We refer to [13, 15] for all the basic (and not so basic) facts and any undefined

notation on tensor norms and operator ideals.

Given a family {Xn}n of Banach spaces where dimXn = n, we say that

Xn are K-uniformly complemented in X if for each n we have a mapping

in : Xn → X and qn : X → Xn such that qn ◦ in is the identity on Xn and

‖in‖ ‖qn‖ ≤ K. In this case we also say that X contains Xn uniformly com-

plemented. We note that if X contains uniform copies of ℓn∞ (i.e., Kn with the

sup norm), then the ℓn∞ are uniformly complemented since they are injective

spaces.

1.2. Banach sequence spaces. By a Banach sequence space (also known as

Köthe sequence space) we will mean a Banach space X ⊆ KN of sequences in

K such that ℓ1 ⊆ X ⊆ ℓ∞ with norm one inclusions satisfying that if x ∈ KN

and y ∈ X are such that |xn| ≤ |yn| for all n ∈ N, then x belongs to X and

‖x‖ ≤ ‖y‖.
IfX is a Banach sequence space, we denote by {en}n the sequence of canonical

vectors, which is always a 1-unconditional basic sequence. We define XN =

span{e1, . . . , eN} and X0 = span{en}n. This last space is usually referred

to as the minimal kernel of X . Given x ∈ X we write xN = (x1, . . . , xN ).

There are inclusions iXN : XN →֒ X and projections πX
N : X → XN given by

iXN (x1, . . . , xN ) = (x1, . . . , xN , 0, 0, . . .) and πX
N (x) = xN . The inclusions are
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isometric and the projections have norm 1. For the case X = ℓp (1 ≤ p ≤ ∞),

we write ℓNp for XN .

Given a Banach sequence space X , its Köthe dual is defined as

X× = {(zn)n ∈ K
N :

∑
n |znxn| < ∞ for all x ∈ X} .

With the norm ‖z‖X× = sup‖x‖X≤1

∑
n |znxn| it is again a Banach sequence

space.

Following [24, 1.d], a Banach sequence spaceX is said to be r-convex (with 1≤
r<∞) if there exists a constant κ > 0 such that for any choice x1, . . . , xN ∈ X

we have

∥∥∥∥
(( N∑

j=1

|xj(k)|r
)1/r)∞

k=1

∥∥∥∥
X

≤ κ

( N∑

j=1

‖xj‖rX
)1/r

.

On the other hand, X is s-concave (with 1 ≤ s < ∞) if there is a constant

κ > 0 such that

( N∑

j=1

‖xj‖sX
)1/s

≤ κ

∥∥∥∥
(( N∑

j=1

|xj(k)|s
)1/s)∞

k=1

∥∥∥∥
X

for all x1, . . . , xN ∈ X .

It is well known that ℓp is r convex for 1 ≤ r ≤ p and s-concave for p ≤ s < ∞.

The following result is probably known. However, we were not able to find a

proper reference of this fact and we include here a short proof. It is modelled

along the same lines as the proof of the fact that if the canonical vectors form

a basis of X then both duals coincide.

Proposition 1.2: If X is a Banach sequence space, its Köthe dual X× is a

1-complemented subspace of the usual dual X∗.

Proof. Let us see first that the mapping i : X× → X∗ defined by i(z) =

ϕz : X → K, with ϕz(x) =
∑

n znxn, is an isometry. It is clearly well defined;

moreover

‖ϕz‖ = sup
x∈BX

∣∣∣
∑

n

znxn

∣∣∣ ≤ sup
x∈BX

∑

n

|znxn| = ‖z‖X× .
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To see the reverse inequality, for any t, s ∈ K we take ε(t, s) ∈ K with |ε(t, s)| = 1

such that |st| = ε(t, s)st; then for every x ∈ BX and every z ∈ X× we have

∑

n

|znxn| =
∑

n

ε(zn, xn)znxn =
∣∣∣
∑

n

ε(zn, xn)znxn

∣∣∣ ≤ sup
a∈BX

∣∣∣
∑

n

znan

∣∣∣

= ‖ϕz‖,

which gives ‖z‖X× ≤ ‖ϕz‖.
On the other hand, the mapping q : X∗ → X× given by q(ϕ) =

(
ϕ(en)

)
n

defines a norm-one projection. Indeed, given x ∈ X and fixed N we have

N∑

n=1

|xnϕ(en)| =
N∑

n=1

ε(xn, ϕ(en))xnϕ(en) = ϕ

( N∑

n=1

ε(xn, ϕ(en))xnen

)

≤ ‖ϕ‖
∥∥∥∥

N∑

n=1

ε(xn, ϕ(en))xnen

∥∥∥∥
X

≤ ‖ϕ‖ ‖x‖ .

This shows that
∑∞

n=1 |xnϕ(en)| ≤ ‖ϕ‖ ‖x‖, which gives that q is well defined

and ‖q(ϕ)‖ ≤ ‖ϕ‖. Furthermore, q is a projection, since clearly q ◦ i(z) =

q(ϕz) = (zn)n = z.

2. Extension of bilinear forms on Banach sequence spaces

In what follows KG denotes Grothendieck’s constant. We begin by proving

the following known fact, which was stated as Theorem 3.4 in [20] without the

estimates for the norms (see [11, Lemma 2.4] for a result in the same spirit).

Proposition 2.1: If every bilinear form B : X × Y → K is extendible with

‖B‖E ≤ K‖B‖, then every operator u : X∗ → ℓ2 is absolutely 1-summing and

π1(u) ≤ KGK‖u‖.

Proof. We first note that, by definition of the tensor norm /π\ (see [13, Sec-

tion 20.7]), E 2(X,Y ) is isometrically the dual ofX⊗/π\Y . Then, our hypothesis

is equivalent to the inequality π ≤ K/π\ on X ⊗ Y and, as a consequence, we

also have π\ ≤ K/π\ on X ⊗ Y . Since both π\ and /π\ are right-injective, an

application of Dvoretzky’s theorem [15, 19.1] and the previous inequality gives

an isomorphism

(1) X ⊗/π\ ℓ
N
2 −→ X ⊗π\ ℓ

N
2
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with norm at most K. Since ℓN2 is finite dimensional, L (X ; ℓN2 ) and X∗ ⊗ ℓN2
coincide as sets. Then, the embedding in [13, Section 17.6] is actually surjec-

tive and [13, Sections 21.5 and 27.2] give X∗ ⊗w∞
ℓN2

1≈ Γ∞(X ; ℓN2 ) (see [15,

Chapter 9] or [13, Section 18] for the definition of Γ∞(X ;Y )). Therefore,

(2)
(
X ⊗π\ ℓ

N
2

)∗∗ 1≈
(
Γ∞(X ; ℓN2 )

)∗ 1≈
(
X∗ ⊗w∞

ℓN2
)∗ 1≈ Π1(X

∗; ℓN2 ) .

Now, by [13, Sections 17.12 and 27.2], the operator ideal ∆2 is associated to

w2 and Π1 is associated to π\. On the other hand, Grothendieck’s inequality

[13, Section 20.17] states that w2 ≥ KG/π\ and clearly we have L (X∗; ℓN2 )
1≈

∆2(X
∗; ℓN2 ). Using (2) to take biduals in (1) we have an isomorphism

(3) L (X∗; ℓN2 ) −→
(
X ⊗/π\ ℓ

N
2

)∗∗ −→
(
X∗∗ ⊗π\ ℓ

N
2

)∗∗ 1≈ Π1(X
∗; ℓN2 ),

where the first mapping has norm bounded by KG and the second one by K.

Since both L and Π1 are maximal operator ideals, the same holds if we put ℓ2

instead of ℓN2 .

With this result we can now prove the following one, from which Theorem 1.1

follows as an immediate consequence.

Theorem 2.2: Let X be a Banach space with an unconditional basis and Y be

any infinite dimensional Banach space such that every bilinear form on X × Y

is extendible. Then X ≈ c0.

Proof. Let us see first that, under our assumptions, the basis of X must be

shrinking. Suppose it is not. Since it is unconditional, by James theorem [19,

Corollary 2] (see also [1, Theorem 3.3.1]) X must contain a complemented copy

of ℓ1. Since the property of all bilinear forms being extendible is inherited

by complemented subspaces, it follows that every bilinear form on ℓ1 × Y is

extendible. This implies [22, Lemma 6] that every continuous linear operator

from Y to ℓ∞ is absolutely 2-summing. By the so-called Lp-Local Technique

Lemma for Operator Ideals [13, Section 23.1], the same holds for every operator

from Y to ℓ∞(I), for any index set I. But this is not possible, since there

exists an isometric embedding from Y into some ℓ∞(I), and this cannot be

absolutely 2-summing (otherwise, the identity on Y would be so, but Y is

infinite dimensional).
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This means that the canonical basis of X must be shrinking. We can as-

sume that the basis is 1-unconditional, so that the coordinate basis is an 1-

unconditional basis of X∗. We also know from Proposition 2.1 that all opera-

tors from X∗ to ℓ2 are absolutely 1-summing. By [23] (see also [25, Theorem

8.21]) this implies that the basis of X∗ is (KGK)2-equivalent to the basis of

ℓ1. Although ℓ1 has many non-isomorphic preduals, if the coordinate basis is

equivalent to that of ℓ1, a standard computation shows that the canonical basis

on X must be (KGK)2-equivalent to the basis of c0.

Note that the proof not only shows that X must be isomorphic to c0, but also

gives an estimation of the Banach–Mazur distance between X and c0 whenever

X has a 1-unconditional basis. As a consequence, we can also characterize the

pairs of Banach sequence spaces on which every bilinear form is extendible.

Corollary 2.3: If X and Y are Banach sequence spaces, then the following

are equivalent.

(i) L 2(X,Y ) = E 2(X,Y ) and ‖B‖E ≤ K1‖B‖ for all bilinear form B on

X × Y .

(ii) The canonical basic sequence of X and Y is K2-equivalent to the canon-

ical basis of c0.

(iii) K3 := sup{d(XN , ℓN∞), d(YN , ℓN∞) : N ∈ N} is finite (where d denotes

the Banach–Mazur distance).

(iv) The spaces XN and YN (N ∈ N) are K4-uniformly complemented in

some L∞(µ).

Moreover, we have K4 ≤ K3 ≤ K2 ≤ (KG K1)
2 and K1 ≤ K2

2 ≤ K4
GK

8
4 .

Proof. If (i) holds on X × Y , then the same holds for XN × YN for any N and,

by the density lemma [13, Section 13.4], for X0 × Y0. By Theorem 2.2, both

bases are (KGK)2-equivalent to the basis of c0.

The implications (ii) ⇒ (iii) ⇒ (iv) are immediate, as well as the inequalities

K4 ≤ K3 ≤ K2.

If (iv) holds, bilinear forms on XN × YN are extendible with ‖ · ‖E ≤ K2
4‖ · ‖

and, as before, the same holds for X0 × Y0. By Theorem 2.2 their canonical

bases are K2
GK

4
4 -equivalent to the canonical basis of c0, which is (ii).

Now suppose (ii) holds and take a bilinear form B : X × Y → K. We

know from Proposition 1.2 that X× is 1-complemented in X∗. Then (X×)∗ is

isometrically a (complemented) subspace of X∗∗. Since (ii) implies X× = ℓ1,



Vol. xxx, 2014 BILINEAR FORMS ON BANACH SEQUENCE SPACES 9

we also have (X×)∗ = X×× = ℓ∞. The same holds for Y , so we obtain the

following diagrams:

X
i1

// X×× i2
// X∗∗

ℓ∞

u

OO
Y

j1
// Y ××

j2
// Y ∗∗

ℓ∞

v

OO
,

where i1, i2, j1 and j2 are isometric injections and u and v are isomorphisms

with

(4) ‖u‖ ‖u−1‖ ≤ K2 and ‖v‖ ‖v−1‖ ≤ K2.

We can extend B (in the canonical way) to a bilinear form B̃ : X∗∗ × Y ∗∗ → K

with the same norm as B, and then define a bilinear form B̂ on ℓ∞×ℓ∞ by B̂ =

B̃ ◦(i2◦u, j2◦v). We have obtained the factorization B = B̂◦(u−1◦i1, v−1 ◦j1).
Since on ℓ∞ × ℓ∞ every bilinear form is extendible (with the extendible norm

equal to the usual norm), from the ideal property of extendible bilinear forms

and inequalities (4) we conclude that B is extendible and ‖B‖E ≤ K2
2‖B‖.

It follows from the previous corollary (and its proof) that a Banach sequence

space on which every bilinear form is extendible must satisfy the sublattice

inclusions

(5) c0 ⊂ X ⊂ ℓ∞.

Conversely, let X be a Banach sequence space satisfying (5). By a closed graph

argument, both inclusions are continuous and it is easy to check that X satisfies

the equivalent conditions of Corollary 2.3. Note also that a Banach sequence

space satisfies (5) if and only if its Köthe dual is ℓ1. As a consequence, we have

the following version of Theorem 1.1 for Banach sequence spaces.

Corollary 2.4: The Banach sequence spaces X on which every bilinear form

is extendible are those satisfying (5). Also, this happens if and only if X× = ℓ1.

Examples of such spaces are c0 ⊕ ℓ∞, c0(ℓ∞) and ℓ∞(c0). It is not hard to

see that these spaces are mutually non-isomorphic Banach sequence spaces (see

also [12], where the authors show that c0(ℓ∞) and ℓ∞(c0) are not isomorphic

even as Banach spaces).
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If a sequence Xn of n-dimensional Banach spaces is uniformly complemented

in some L∞, it is an open problem if these spaces have to be uniformly isomor-

phic to ℓn∞. Taking X = Y in Corollary 2.3, the implication (iv)⇒ (iii) gives

the following partial answer.

Proposition 2.5: If the N -dimensional sections XN of a Banach sequence

space X are uniformly complemented in some L∞(µ), then they must be uni-

formly isomorphic to ℓN∞.

Note also that, since ℓ∞ and c0 are the only symmetric Banach sequence

spaces satisfying (ii) of Corollary 2.3, these two are the only symmetric Banach

sequence spaces on which every bilinear form is extendible.

IfX1, . . . , Xn are Banach spaces such that every n-linear form onX1×· · ·×Xn

is extendible, then it is known (and easy to see) that so is every bilinear form on

Xi ×Xj for each pair i 6= j. Indeed, given B ∈ L 2(Xi ×Xj), we can multiply

it by linear functionals to obtain a n-linear form on X1 × · · · × Xn. This is

extendible by our hypothesis. From this, it is rather immediate to conclude

that B is extendible. As a consequence, multilinear versions of our results

follow directly from the bilinear ones.

If X and Y are Banach sequence spaces such that every bilinear form on

X × Y is extendible, then we know from Theorem 2.3 (iii) that both X and

Y contain the ℓN∞ uniformly. We can extend this statement to subspaces of

Banach lattices.

Proposition 2.6: Let X1, X2 be subspaces of Banach lattices such that every

n-linear form on X1, X2 is extendible. Then every infinite dimensional comple-

mented subspace of each Xj contains the ℓN∞ uniformly.

Proof. Suppose that there exists a complemented subspace E of X1 that does

not contain the ℓN∞ uniformly. By [21, Corollary 1], E must contain uniformly

complemented N -dimensional subspaces EN such that supN d(EN , ℓNp ) < ∞
for p = 1 or 2. Since E is complemented in X1, the EN are also uniformly

complemented in X1. On the other hand, again by [21, Corollary 1], X2

must contain uniformly complemented N -dimensional subspaces FN such that

supN d(FN , ℓNq ) < ∞ for q = 1, 2 or ∞. Our hypotheses ensure that bilinear

forms on X1 × X2 are extendible. Since EN and FN are uniformly comple-

mented in X1 and X2 and they are (uniformly) isomorphic to ℓNp and ℓNq , there
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must exist K > 0 such that ‖B‖E 2(ℓNp ,ℓNq ) ≤ K‖B‖L 2(ℓNp ,ℓNq ) for all N . Now,

the density lemma [13, Section 13.4] implies that every bilinear form on ℓp × ℓq

(or ℓp × c0) must be extendible, which contradicts Theorem 2.2.

The converse of Proposition 2.6 does not hold. For example, the Schreier

space is c0-saturated and there are non-extendible bilinear forms on it (since

there are bilinear forms which are not weakly sequentially continuous). Another

conterexample of the converse is d∗(w, 1), the predual of the Lorentz sequence

space d(w, 1) (see [27] or [16] for a description of the predual). Since these

examples are Banach sequence spaces, they also show that assertion (iii) in

Theorem 2.3 is strictly stronger than containing ℓN∞ uniformly.

In Banach sequence spaces, diagonal bilinear forms are the simplest ones.

These are the bilinear forms Tα : X1 ×X2 → C given by

Tα(x
1, x2) =

∞∑

k=1

αkx
1
kx

2
k ,

for some sequence (αk)k of scalars. We end this note showing, under some

assumptions, which are the spaces on which all diagonal bilinear forms are

extendible.

Following standard notation, given a symmetric Banach sequence space X

we consider the fundamental function of X , given by λX(N) :=
∥∥∑N

k=1 ek
∥∥
X

for N ∈ N.

Given two sequences of real numbers (an)n and (bn)n we write an � bn

whenever there is a universal constant C > 0 such that an ≤ Cbn for every n.

If an � bn and bn � an, we write an ≍ bn.

Theorem 2.7: Let X and Y be symmetric Banach sequence spaces, each being

2-convex or 2-concave. Then all diagonal bilinear forms on X×Y are extendible

if and only if either X = Y = ℓ1 or X,Y ∈ {c0, ℓ∞}.

Proof. The if part is clear: by [8, Proposition 2.3] (see also [9, Proposition 1.2])

on ℓ1 diagonal bilinear forms are integral (and, therefore, extendible), and in

the other cases all bilinear forms are extendible.

For the converse, we consider the diagonal bilinear form given by φN (x, y) =∑N
i=1 xiyi. It is easily computed that ‖φN‖L 2(ℓN

2
) = 1; on the other hand, by [8,

Proposition 1.1] or [11, Proposition 2.5] we have ‖φN‖E 2(ℓN
2
)=‖φN‖N 2(ℓN

2
)=N .
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Let now idN
X : ℓN2 → XN and idNY : ℓN2 → YN be the identity mappings. Compar-

ing the usual and extendible norms of the bilinear forms φN and

φN ◦ ((idN
X)−1, (idN

Y )−1), we get

N � ‖ idNX ‖‖ idNY ‖‖(idNX)−1‖(idNY )−1‖.

By [28, 16.4] (see also [14, page 138]), sinceX is a symmetric Banach sequence

space we have d(ℓN2 , XN) = ‖ idNX ‖ ‖(idNX)−1‖ (and the same for YN ). Therefore,

N � ‖ idNX ‖‖ idNY ‖‖(idNX)−1‖(idNY )−1‖ = d(ℓN2 , XN )d(ℓN2 , YN ) .

Since we always have d(ℓN2 , XN ) ≤
√
N and d(ℓN2 , YN ) ≤

√
N , we can conclude

that
√
N ≍ d(ℓN2 , XN) = ‖ idNX ‖ ‖(idNX)−1‖ (and the same for YN ). We now

apply [14, Lemma 1 (i)] and get

max
( 1

λX(N)
,
λX(N)

N

)
≍ 1.

From this we can conclude that X must be ℓ1, c0 or ℓ∞. Indeed, suppose we split

the natural numbers N = I ∪ J , so that
(

1
λX (N)

)
N∈I

≍ 1 and
(λX (N)

N

)
N∈J

≍ 1.

We have then that (λX(N))N∈I is bounded and (N)N∈J � (λX(N))N∈J . Since

(λX(N))N∈N is non-decreasing, either I or J must be finite. If J is finite, then

(λX(N))N∈N is bounded and then the norm in X is equivalent to the sup norm

and X is c0 or ℓ∞. If I is finite, then N � (λX(N))N∈N. Although the funda-

mental sequence of a symmetric Banach sequence space does not characterize

the norm, for this extreme case it is possible to prove that the norm on X must

be isomorphic to ℓ1: from the estimate N � (λX(N))N∈N we easily obtain

λX×(N) ≍ 1 and, by the previous case, X× must be ℓ∞. Then we have X = ℓ1.

Proceeding in the same way, Y has to be either ℓ1, c0 or ℓ∞.

It remains to show that on c0 × ℓ1 and on ℓ1 × ℓ∞ there are non-extendible

diagonal bilinear forms. The mapping c0 × ℓ1 given by (x, x′) 7→ x′(x) is the

diagonal bilinear form induced by the formal identity. An extension of this

mapping to c0× ℓ∞ would give a projection from ℓ∞ to ℓ1 (see [13, 1.5]), which

does not exist. For ℓ1 × ℓ∞ we can reason in a similar way.

Both assumptions on symmetry and concavity/convexity in the “only if”

part of the previous theorem cannot be omitted. Indeed, if we take c0⊕ ℓ1 (that

seen as a sequence space is neither symmetric nor 2-concave or 2-convex), then

every diagonal bilinear form on (c0 ⊕ ℓ1) × (c0 ⊕ ℓ1) is the sum of a diagonal
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bilinear form on c0× c0 and a diagonal bilinear form on ℓ1× ℓ1, and is therefore

extendible.
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