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Muñecas 730, 10A, 4000 Tucumán, Argentina

Received 20 March 2005
O
R
R
E
C
T
E
D

Abstract

In this work, the geometrical method for the analysis of the localization properties of the
thermodynamically consistent gradient-dependent parabolic Drucker–Prager elastoplastic
model is presented. From the analytical solution of the discontinuous bifurcation condition
of small strain gradient-dependent elastoplasticity, the elliptical envelope for localization is
formulated in the coordinates of Mohr. The tangency condition of the localization ellipse with
the major principal circle of Mohr defines the type of failure (diffuse or localized) and the crit-
ical directions for discontinuous bifurcation.

The results of the geometrical localization analysis illustrate the capability of the gradient-
dependent elastoplastic Drucker–Prager material to suppress the discontinuous bifurcations of
the related local or classical elastoplastic model formulation that take place when the adopted
hardening/softening modulus �H equals the critical (maximum) one for localization �H c. On the
other hand, the results in this work also demonstrate that the thermodynamically consistent
gradient-dependent Drucker–Prager model may lead to discontinuous bifurcation not only
when the characteristic length l turns zero but also when �H < �H c.
� 2005 Published by Elsevier Ltd.
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1. Introduction

It has been widely accepted that when quasi-brittle or ductile materials are suffi-
ciently deformed into the inelastic regime, they exhibit spatial discontinuities of the
kinematic fields. The formation of cracks and shear bands observed in experiments
in cementitious and granular materials, as well as in metals are typical examples of
localized failure mechanisms.

There were several theoretical attempts to capture the onset of localization and to
determine the direction and the amplitude of these cracks or shear bands. Following
the original works by Nadai (1931), Thomas (1961), Hill (1962), Rudnicki and Rice
(1975), recently many authors studied the problem in a systematic manner. Using the
flow theory of plasticity, the theory of continuum damage and the viscoplastic the-
ory, they developed mathematical conditions governing the failure behavior, see a.o.
Sobh (1987), Perič (1990), Ottosen and Runesson (1991), Willam and Etse (1990),
Sluys (1992), Rizzi et al. (1995), Etse and Willam (1999).

The solution at the boundary value or structural level requires the implementation
of strain-softening material models in finite element codes. In this case, the problem
of mesh dependence strongly affects the computational solution, when the governing
equations turn ill-posed.

To solve the mesh sensitivity of the computational predictions of strain-softening
material models, two possible strategies are at side. On one side, to improve the finite
element technology by developing both standard finite element formulations, which
are able to follow the post-bifurcation localization using realignment methods, and
enhanced finite elements with discontinuous interpolation capabilities. On the other
side, to regularize the description of the material behavior at the constitutive level.
However, a combination of both approaches seems to be the most effective strategy.

In the regularization approach, the medium is considered to remain a continuum,
with high deformation gradients being concentrated into a finite small region of the
body. This leads to enriched material formulations that can be based on both local
and non-local approaches. The most relevant example of the first one are the fracture
energy-based constitutive formulations that lead to dissipation-objective regulariza-
tion of the local constitutive theory, e.g. (Willam et al., 1984; Bažant, 1986). In the
non-local approach, the gradients of the displacement function are evaluated in the
vicinity of the material point, thus a spatial average is taken into account to evaluate
the point value. This is accomplished by defining suitable weighted averages (non-lo-
cal formulations) or gradients (gradient formulations) of a selection of thermody-
namic variables.

Enhanced gradient material theories formulate constitutive relations on the contin-
uum level that are used to solve the gap between the micro- and macromechanical
description level, see Gao et al. (1999) and Abu Al-Rub Rashid and Voyiadjis
(2004). In the literature, different frameworks of gradient-dependent plasticity theories
may be recognized and they can be classified from different points of view. As pointed
out by Huang et al. (2004), who presented a conventional theory of mechanism-based
strain gradient plasticity that excludes higher-order stress, the classification may be
based on the inclusion or not of this type of higher-order functions that requires extra
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boundary conditions. Alternatively, gradient-dependent plasticity theories can be also
classified depending on the type of conceptual setting considered to derive the consti-
tutive equations. On the one hand, within classical hypoelastic framework which does
not have a thermodynamic law, e.g. (Aifantis, 1984; Muhlhaus and Aifantis, 1991;
Zbib andAifantis, 1992; Fleck andHutchinson, 1993; Zbib, 1994). Related to this type
of material formulation Sluys et al. (1993) and Pamin (1994) have proposed numerical
algorithms for the stress integrations at the local and finite element level. On the other
hand, within a thermodynamic framework, e.g. (Dillon and Kratochvil, 1970; Ach-
arya and Bassani, 1995), who considered strain gradient plasticity formulation which
retain the essential structure of conventional plasticity and obey thermodynamic
restrictions, Svedberg and Runesson (1998), who developed gradient-dependent plas-
ticity constitutive equations whereby the non-local character is restricted to the inter-
nal variables, leading to an additive expression of the free energy density and andmore
recently, Voyiadjis et al. (2004), who presented a feasible thermodynamic approach to
derive coupled gradient viscoplasticity and viscodamage theories.

In this work, the thermodynamically consistent gradient-dependent plasticity the-
ory by Svedberg and Runesson (1998) is used to formulate a parabolic Drucker–Pra-
ger model for cohesive-frictional materials that includes an isotropic hardening/
softening law. The particular case of small strains is considered in the analyses. The
attention is also focused on the analysis of the localization properties of the non-local
material model. To this end, the gradient-dependent elastoplastic localization proper-
ties are cast in the form of an elliptical envelope condition in the rN�sN coordinates of
Mohr, see Pijaudier-Cabot and Benallal (1993), Liebe and Willam (2001). Thereby,
the tangency condition between the localization ellipse and the major principal circle
defines the existence of localized failure mode and the corresponding critical direc-
tions. In this work, the geometrical localization analysis for gradient-dependent par-
abolic Drucker–Prager elastoplasticity is defined in terms of the characteristic length
that determines the degree of non-locality of the constitutive equations.

The results of the localization analysis in the Mohr coordinates demonstrate the
capability of the thermodynamically consistent gradient-dependent elastoplastic
Drucker–Prager model to suppress the discontinuous bifurcations of the local or
classical model formulation that occur when the hardening/softening modulus �H
equals the critical value for localization �H c, as long as the characteristic length l re-
mains positive. However, when �H < �H c, discontinuous bifurcation may be signalized
by the gradient elastoplastic model if the non-local hardening/softening modulus �H g

is lower than a limit value defined in terms of �H c and l. This important results indi-
cate that the regularization capability of the thermodynamically consistent gradient-
dependent Drucker–Prager elastoplastic model does depend not only on the charac-
teristic length l but also on the relationship between �H g

, �H c, �H and l.
C

U
N2. Gradient-dependent elastoplasticity

We follow the thermodynamically consistent gradient-dependent material theory
by Svedberg and Runesson (1998). After reviewing the relevant thermodynamic and
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constitutive equations, the parabolic Drucker–Prager gradient elastoplastic model is
presented, inwhich the non-local character is restricted to the internal plastic variables.

2.1. Thermodynamic consistency

Under consideration of small strain kinematics, the free energy density of a strain
gradient elastoplastic continuum can be expressed in an additive form as

qWðee; j;rjÞ ¼ qWeðeeÞ þ qWp;locðjÞ þ qWp;gðrjÞ; ð1Þ
where q is the material density. The elastic free energy density is defined as
qWeðeeÞ ¼ 1

2
ee : Ee : ee, being ee and Ee the elastic strain tensor and the fourth-order

elastic operator, respectively.
The local and gradient free energy density contributions due to inelastic strains

Wp,loc and Wp,g are expressed in terms of the scalar hardening/softening variable j.
We observe in Eq. (1) that the gradient effects are only restricted to hardening/soft-
ening behavior via the inclusion of rj.

From the Coleman�s relations follow the constitutive equations:

r ¼ q
oW
oe

; r ¼ Ee : ee; ð2Þ

whereby r is the stress tensor and e the strain tensor. The dissipative stress within the
continuum is defined as

K ¼ K loc þ Kg ð3Þ
being

K loc ¼ �q
oWp;loc

oj
; Kg ¼ r � q

oWp;g

oðrjÞ

� �
ð4Þ

while on the boundary oX, the dissipative stress due to the gradient in Eq. (4.b) turns

Kðg;bÞ ¼ �m � q oWp;g

oðrjÞ ð5Þ

with the (outward) normal m to oX.

2.2. Constitutive equations

2.2.1. General case

Considering a convex set B of plastically admissible states defined as B =
{(r,K) |U(r,K) 6 0} with the convex yield function U = U(r,K), and a dissipative
potential U* = U*(r,K), which turns U in case of associated plasticity. Then, the rate
equations for the inelastic strains _ep and the scalar hardening/softening variable _j,
take the forms
N

U_ep ¼ _k

oU�

or
and _j ¼ _k

oU�

oK
; ð6Þ
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where _k is the rate of the plastic parameter.
From the Prandtl–Reuss additive decomposition of the total strain rate tensor

into the elastic and plastic components that characterized the flow theory of plastic-
ity and considering Eqs. (2), (4) and (6) follow the constitutive equations (in rate
form):

_r ¼ _re � _kEe oU
�

or
with _re ¼ Ee : _e; ð7Þ

_K
loc ¼ � _kH

oU�

oK
ð8Þ

and

_K
g ¼ l2r �Hg � r _k

oU�

oK
þ _krK

o2U�

oK2

� �
; ð9Þ

which on the boundary turns

_K
ðg;bÞ ¼ �l2m �Hg � r _k

oU�

oK
þ _krK

o2U�

oK2

� �
. ð10Þ

In the above equations, two types of state parameters were considered. On the one
hand, the local hardening/softening modulus H and, on the other hand, the second-
order tensor of non-local gradient state parameters Hg defined as

Hg ¼ q
1

l2
o
2Wp;g

oðrjÞ � oðrjÞ ; ð11Þ

with

H P 0; detðHgÞ P 0. ð12Þ
As pointed out by Svedberg and Runesson (1998), there are three possible interpre-
tations for the characteristic length l in Eq. (11): as a convenient dimensional param-
eter which allows that both H and Hg get the same dimension, as a physical entity
that defines the characteristic measure of the microstructure and as a parameter that
brings numerical stabilization to the local constitutive theory.

The Kuhn–Tucker conditions complete the rate formulation of the gradient-
dependent plasticity in terms of hardening variables which, similarly to the local the-
ory, are defined by

_k P 0; Uðr;KÞ 6 0; _kUðr;KÞ ¼ 0. ð13Þ

Remark. In case of mixed isotropic and kinematic hardening/softening behavior, the
local and gradient free energies depend on both the isotropic and the kinematic
hardening/softening variables, j and b, respectively, i.e. Wp,loc = Wp,loc(j,b), and
Wp,g = Wp,g(j,b). Therefore, Eqs. (4) turn
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K loc ¼ �q
oWp;loc

oj
; Bloc ¼ �q

oWp;loc

ob
ð14Þ

and

Kg ¼ r � q
oWp;g

oðrjÞ

� �
; Bg ¼ r � q

oWp;g

oðrbÞ

� �
; ð15Þ

whereas B = Bloc + Bg is the back-stress due to kinematic hardening/softening.
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2.2.2. Parabolic Drucker–Prager Material

The expression of the second order Drucker–Prager yield criterium yields

U ¼ J 2 þ lf I1 � kðf 0
t þ KÞ; ð16Þ

with J2 the second invariant of the deviatoric stress tensor s and I1 the first invariant
of the stress tensor r.

The parameters lf and k represent the material friction and cohesion, respectively.
When expressed in terms of the uniaxial compressive and tensile strength f 0

c and f 0
t ,

they take the form

lf ¼
f 0
c � f 0

t

3
; k ¼ f 0

c

3
. ð17Þ

The explicit expression of K in Eq. (16) follows from Eqs. (3) and (4), where the local
and gradient free energy densities take now the forms

qWp;loc ¼ 1
2
Hj; ð18Þ

qWp;g ¼ 1
2
l2rj �Hg � rj. ð19Þ

Therefore, the components Kloc and Kg of K result

K loc ¼ �Hj; ð20Þ

Kg ¼ l2r � ðHg � rjÞ. ð21Þ
To account for the volumetric dilatancy of cohesive-frictional materials in the low
confinement regime a pressure-sensitive plastic potential for non-associated flow is
considered as

U� ¼ J 2 þ lqI1 � kðf 0
t þ KÞ þ gkK

2; ð22Þ

where gk is a constant. The flow and softening rules read then

_ep ¼ _sþ lqI and _j ¼ �k _k; ð23Þ

with I, the second-order identity tensor.
Associated flow is obtained when the dilatancy angle lq coincides with the friction

angle lf and gk = 0.
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3. Localized failure condition

From the ContinuumMechanic�s viewpoint, localized failure modes are related to
discontinuous bifurcations of the equilibrium path, and lead to the lost of ellipticity
of the equations that govern the static equilibrium problem.

The inhomogeneous or localized deformation field exhibits a plane of discontinuity
that can be identified by the singularity condition of the acoustic or localization sec-
ond order tensor, see a.o. Ottosen and Runesson (1991) and Willam and Etse (1990).

The particular case of purely isotropic hardening/softening material behavior is
considered in what follows as the parabolic Drucker–Prager formulation in this
work is mainly used to model cohesive-frictional material behaviors which do not
exhibit kinematic hardening/softening.

Local and gradient flow theories of plasticity result both in the tangential equa-
tion that reads

_r ¼ Eep : _e; ð24Þ
where Eep denotes the elastoplastic material operator that can be expressed by means
of the encompassing equation

Eep ¼ Ee � 1

ðhþ hgÞ
Ee :

oU�

or
� oU

or
: Ee; ð25Þ

with the local and non-local generalized plastic moduli

h ¼ oU
or

: Ee :
oU�

or
þ �H ð26Þ

and

hg ¼
0 for local plasticity;

nl � �H
g � nlð2pld Þ2 for gradient� dependent plasticity.

�
ð27Þ

Being nl the normal direction to the discontinuous surfaces, and

�H ¼ H
oU
oK

oU�

oK
; ð28Þ

�H
g ¼ Hg oU

oK
oU�

oK
. ð29Þ

From Eq. (29) and for the particular case of gradient isotropy, we obtain

�H
g ¼ �H g

I ð30Þ
with �H g

a positive, nonzero scalar. As nl is a unit vector, results

nl � �H
g � nl ¼ �H g ð31Þ

and, from Eq. (27-b)

hg ¼ �H g 2pl
d

� �2

. ð32Þ
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In case of localized failure forms associated with discontinuous bifurcation, we resort
to the gradient elastoplastic localization tensor defined as

Qepg ¼ Qe � 1

hþ hg
a� � a; ð33Þ

with the elastic-localization tensor

Qe ¼ nl � Ee � nl ð34Þ
and

a� ¼ oU�

or
: Ee � nl; ð35Þ

a ¼ oU
or

: Ee � nl. ð36Þ

The localized failure condition in case of gradient-dependent elastoplasticity

detðQepgÞ ¼ 0 ð37Þ
leads to the analysis of the spectral properties of Qepg. Its smallest eigenvalue, with
respect to the metric defines by Qe, has the expression

kð1Þ ¼ 1� aðnlÞ � ½QeðnlÞ��1 � a�ðnlÞ
hþ hg

¼ 0. ð38Þ

In case of gradient isotropy, the explicit form of Eq. (38) turns

Hþ oU
or

: Ee :
oU�

or
� a � ½Qe��1 � a� ¼ 0; ð39Þ

with

H ¼ �H g

c

2pl
d

� �2

þ �H c. ð40Þ

The localization condition in Eq. (39) serves as a basis for analytical and numerical
evaluations of the localization directions nl and of the corresponding graphical max-
imum hardening/softening parameters �H cðnlÞ ¼ max½ �HðnlÞ� in case of local plastic-
ity, and �H g

cðnlÞ ¼ max½ �H gðnlÞ� in gradient-dependent plasticity.
R
U
N
C
O4. Geometrical method for discontinuous bifurcation in gradient-dependent parabolic

Drucker–Prager elastoplasticity

In this section, the geometrical method for localization analysis is derived for the
thermodynamically consistent gradient-dependent elastoplastic model formulation
detailed in Section 2. The approach is based on the original proposal by Benallal
(1992), which was further developed by Pijaudier-Cabot and Benallal (1993) and
Liebe and Willam (2001) for classical plasticity.

Eq. (39) defines an ellipse in the r�s coordinates of Mohr
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r ¼ r � nl � r; s ¼ nl � s � nl; ð41Þ

s ¼ ðnl � sÞ � ðnl � sÞ � ðnl � s � nlÞ2 ð42Þ
being nl the normal to the plane where the Mohr components are evaluated.

For the gradient-dependent non-associated parabolic Drucker–Prager model in
Section 2, we obtain

oU
or

¼ sþ lfI ; ð43Þ

oU�

or
¼ sþ lqI . ð44Þ

By adopting for the elastic tensor Ee the form

Ee ¼ 2GI4 þ KI � I ð45Þ
the traction vectors in Eqs. (35) and (36) can then be rewritten as

a� ¼ 2Gnl � sþ
E

1� 2m
lqnl; ð46Þ

a ¼ 2Gnl � sþ
E

1� 2m
lfnl ð47Þ

and from Eq. (34) we obtain

½Qe��1 ¼ 1

G
I � 1

2ð1� mÞ nl � nl

� �
. ð48Þ

The critical direction nl and the maximum hardening/softening parameters �H c and
�H g

for localization are obtained when the Mohr circle of stresses

ðr� rcÞ2 þ s2 ¼ R2 ð49Þ
contacts the elliptical localization envelope

ðr� r0Þ2

A2
� s2

B2
¼ 1; ð50Þ

where the center and radius of the Mohr circle, Eq. (49), are

rc ¼
r1 þ r3

2
ð51Þ

and

R ¼ r1 � r3

2
; ð52Þ

with r1 and r3, the major and minor principal stresses, respectively, and the center r0
and half axes A and B of the localization ellipse, Eq. (50), are defined by

r0 ¼
1

3
I1 �

1þ m
2ð1� 2mÞ ðlf þ lqÞ; ð53Þ
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B2 ¼ H

4G
þ J 2 þ

1ð1þ mÞ2ðlf þ lqÞ
2

8ð1� 2mÞð1� mÞ þ 1þ m
1� m

lflq; ð54Þ

A2 ¼ 2
1� m
1� 2m

B2. ð55Þ

In the particular case of classical elastoplasticity, the inhomogeneous differential
equation (39) turns

�H cðnlÞ ¼ � oU
or

: Ee :
oU�

or
þ a � ½Qe��1 � a� ð56Þ

therefore, the parameter B2 representing the vertical axis of the ellipse in Eq. (50)
takes now the form

B2 ¼
�H c

4G
þ J 2 þ

1ð1þ mÞ2ðlf þ lqÞ
2

8ð1� 2mÞð1� mÞ þ 1þ m
1� m

lflq; ð57Þ

which agrees with the expression given by Liebe and Willam (2001) for the geomet-
rical localization analysis of classical, parabolic Drucker–Prager elastoplasticity.

So, the thermodynamically consistent gradient-dependent plasticity formulation
allows a simple extension of the geometrical localization method as demonstrated
in this section. Thereby, the non-local effects in terms of the characteristic length
and of the gradient hardening/softening modulus only affect the expression of the
localization ellipse half axes A and B. Moreover, from Eqs. (39) and (40) we conclude
that the half axis B of the gradient plasticity-based localization ellipse in Eq. (54) turns
to its form in case of local plasticity formulation in Eq. (57) as the ratio l/d ! 0.
T
R
R
E
C5. Localization analysis of gradient-dependent parabolic Drucker–Prager

elastoplasticity

The localization properties of the thermodynamically consistent gradient-depen-
dent, generalized Drucker–Prager model are analyzed for the plane strain state,
when rz = m(rx + ry). Two cases are considered. On the one hand, the case
�H ¼ �H c and, on the other hand, the case �H < �H c, being �H the particular harden-
ing/softening modulus of the gradient-dependent model and �H c the critical (maxi-
mum) hardening/softening modulus for localization of the local elastoplastic model.
U
N
C
O5.1. Case �H ¼ �H c

The geometrical localization analysis of the non-local gradient material formula-
tion is performed for the simple shear, uniaxial compression and uniaxial tensile tests
and the results are shown in Figs. 1–3, respectively. These results illustrate the influ-
ence of the characteristic length l in the mode of failure. When l > 0, no contact is
observed between the localization ellipses of the gradient-dependent plasticity model
and the Mohr circle corresponding to the analyzed limit stress state. Thus, diffuse
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Fig. 1. Geometric localization analysis at peak of the simple shear test. Local and gradient-dependent
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Fig. 2. Geometric localization analysis at peak of the uniaxial compression test. Local and gradient-
dependent plasticity.
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failure mode takes place for all three limit stress states. However, as l/d ! 0 the gra-
dient-based localization ellipses approaches that of the local model which contacts
the Mohr circle, indicating that the localization condition is fulfilled and therefore,
discontinuous bifurcation takes place.

Tables 1–6, indicate the critical localization directions as well as the critical nor-
malized hardening/softening parameter �H c=E of the classical (local) Drucker–Prager
material for different strength ratios f 0

c=f
0
t and Poisson�s modulus m. Tables 1 and 2

correspond to the limit stress state of the simple shear test, for associated and non-
associated (J2-type) plastic flows, respectively. Similarly, Tables 3 and 4 correspond
to the limit stress state of the plane strain uniaxial compression test, with associated
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Fig. 3. Geometric localization analysis at peak of the uniaxial tensile test. Local and gradient-dependent
plasticity.

Table 1
Critical localization direction hc and �H c=E

f 0
c=f

0
t m = 0.0 m = 0.2 m = 0.4

hc (�) �H c=E hc (�) �H c=E hc (�) �H c=E

2 32.9 �0.11 30.3 �0.11 27.6 �0.11
5 0.0 �1.78 0.0 �1.94 0.0 �2.23
10 0.0 �11.00 0.0 �12.30 0.0 �15.75

Simple shear test: lq = lf.

Table 2
Critical localization direction hc and �H c=E

f 0
c=f

0
t m = 0.0 m = 0.2 m = 0.4

hc (�) �H c=E hc (�) �H c=E hc (�) �H c=E

2 39.1 0.027 37.9 0.04 36.7� 0.065
5 29.4 0.44 25.8 0.667 0.0 0.88
10 0.0 2.25 0.0 3.37 0.0 4.5

Simple shear test: lq = 0.

Table 3
Critical localization direction hc and �H c=E

f 0
c=f

0
t m = 0.0 m = 0.2 m = 0.4

hc (�) �H c=E hc (�) �H c=E hc (�) �H c=E

2 45.0 �1 36.8 �0.53 30.7 �0.21
5 39.2 �9.0 30.1 �5.63 21.9 �2.79
10 37.2 �40.11 28.0 �26.23 18.9 �13.68

Uniaxial compression test: lq = lf.
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Table 6
Critical localization direction hc and �H c=E

f 0
c=f

0
t m = 0.0 m = 0.2 m = 0.4

hc (�) �H c=E hc (�) �H c=E hc (�) �H c=E

2 24.1 0.027 27.9 0.069 27.0 0.08
5 0.0 0.66 0.0 0.67 0.0 0.73
10 0.0 1.73 0.0 1.73 0.0 1.78

Uniaxial tensile test: lq = 0.

Table 4
Critical localization direction hc and �H c=E

f 0
c=f

0
t m = 0.0 m = 0.2 m = 0.4

hc (�) �H c=E hc (�) �H c=E hc (�) �H c=E

2 49.8 �0.63 42.6 �0.25 38.3 0.006
5 46.9 �4.55 39.6 �1.8 34.6 0.47
10 45.9 �18.9 38.6 �7.49 33.6 2.66

Uniaxial compression test: lq = 0.

Table 5
Critical localization direction hc and �H c=E

f 0
c=f

0
t m = 0.0 m = 0.2 m = 0.4

hc (�) �H c=E hc (�) �H c=E hc (�) �H c=E

2 0.0 0.0 0.0 �0.03 0.0 �0.09
5 0.0 �2.0 0.0 �2.92 0.0 �4.3
10 0.0 �14.26 0.0 �25.32 0.0 �19.56

Uniaxial tensile test. lq = lf.
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Eand non-associated flows, respectively. Finally, Tables 5 and 6 are related to the

plane strain uniaxial tensile test. Positive values of the critical normalized harden-
ing/softening parameter of the local Drucker–Prager model in Tables 1–6 indicate
that localized failure mode in form of discontinuous bifurcation takes place before
peak. The results in Tables 1 and 2 agree with the well known localization properties
of the classical Drucker–Prager elastoplastic material in the sense that, in hardening
regime of the simple shear test, localized failure forms occurs for all possible Pois-
son�s modulus and strength ratios, provide the non-associated flow rule (lq = 0) is
considered. In the uniaxial compression test, a localized failure form in the pre-peak
regime of classical Drucker–Prager material occurs only when mP 0.4 in the non-
associated flow rule (lq = 0), as can be observed in Table 4. Finally, in the uniaxial
tensile test localized failure mode takes place in the hardening regime, in both asso-
ciated flow rule (when f 0

c=f
0
t ¼ 2 and m = 0) and non-associated flow rule (for all pos-

sible Poisson�s moduli and strength ratios).
The results in Figs. 1–3 demonstrate that the non-local gradient formulation leads

to the same critical directions for localization as those corresponding to the local
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model. However, the lack of contact between the Mohr circles and the localization
ellipses of the gradient model, indicates that this non-local theory suppress the dis-
continuous bifurcation condition of the local one, for all possible ratios l/d > 0.

5.2. Case: �H < �H c

We consider the particular case when the adopted hardening/softening modulus is
smaller than the critical one for localization of the local elastoplastic model formu-
lation, �H < �H c. From Eqs. (39) and (56) we obtain

�H c � �H ¼ nl � �H
g

c � nl
2pl
d

� �2

. ð58Þ
U
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Fig. 4. Gradient localization ellipse for simple shear test and associated plasticity flow.
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Fig. 5. Gradient localization ellipse for simple shear test and non-associated plasticity flow.
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Therefore, the ratio d/l results, see Svedberg (1999),

d
l
¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nl � �H

g

c � nl
ð �H c � �HÞ

s
. ð59Þ

For isotropic gradient, and taking into account Eq. (31), the previous equation gives

d
l
¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�H g

c

ð �H c � �HÞ

s
. ð60Þ

And the localization condition is then satisfied when
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Fig. 6. Gradient localization ellipse for uniaxial compression test and associated plasticity flow.

0

0

1

Mohr circle
Local Plasticity
Gradient Plasticity

τ
/ f

t

σ / ft 

Fig. 7. Gradient localization ellipse for uniaxial compression test and non-associated plasticity flow.
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�H g

c ¼ ð �H c � �HÞ d
2pl

� �2

. ð61Þ

We conclude that, when the condition in Eq. (61) is fulfilled, the gradient-dependent
elastoplastic material formulation leads to localized failure modes, similarly to the
local material model.

Figs. 4 and 5 exhibit the localization angles of the gradient-dependent elastoplas-
tic model for the limit state of the simple shear test with associated and non-associ-
ated plastic flows, respectively.

The gradient localization ellipses corresponding to the limit stress state of the uni-
axial compression test are presented in Figs. 6 and 7, while in Figs. 8 and 9 those
corresponding to the stress state of the uniaxial tensile test.
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Fig. 8. Gradient localization ellipse for uniaxial tensile test and associated plasticity flow.
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Fig. 9. Gradient localization ellipse for uniaxial tensile test and non-associated plasticity flow.
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To verify the previous geometrical results regarding the shortcomings of the gra-
dient-dependent elastoplastic formulation of the parabolic Drucker–Prager model to
suppress discontinuous bifurcations when Eq. (61) is fulfilled, a numerical localiza-
tion study is performed at the constitutive level. The diagrams in Fig. 10 show the
variation of the normalized localization indicator detQepg= detQe with the in-plane
failure angles for pure shear test at peak, when �H=E ¼ 0:5 �H c=E ¼ 0:032. The cases
corresponding to associated and non-associated gradient elastoplasticity as well as
non-associated local elastoplasticity were considered. The results in Fig. 10
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Fig. 10. Bifurcation analysis for parabolic Drucker–Prager model with f 0
c=f

0
t ¼ 2, m = 0.4.
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Fig. 11. Gradient localization ellipse for simple shear test at peak when �H g
> ð �H c � �HÞðd=2plÞ2.
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demonstrate the shortcomings of the gradient-dependent elastoplastic model formu-
lation to eliminate discontinuous bifurcation in the form of localized failure when
�H < �H c. In the particular case of simple shear test, the non-associated gradient-
dependent model leads also to localized failure in the pre-peak regime, similarly to
the local elastoplastic formulation.

By adopting a gradient modulus �H g that satisfies

�H g
> �H g

c ð62Þ
the discontinuous bifurcations is suppressed. To analytically verify this, the value
�H g ¼ 1:2ð �H c � �HÞðd=2plÞ2 is assumed. The failure predictions of the resulting
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Fig. 12. Gradient localization ellipse for simple shear test at peak when �H g
> ð �H c � �HÞðd=2plÞ2. Non-

associated plasticity.
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Fig. 13. Gradient localization ellipse for uniaxial compression test at peak when �H g
> ð �H c � �HÞðd=2plÞ2.

Associated plasticity.
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Fig. 14. Gradient localization ellipse for uniaxial compression test at peak when �H g
> ð �H c � �HÞðd=2plÞ2.

Non-associated plasticity.
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Fig. 15. Gradient localization ellipse for uniaxial tensile test at peak when �H g
> ð �H c � �HÞðd=2plÞ2.

Associated plasticity.
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non-local generalized Drucker–Prager elastoplastic model in terms of the localiza-
tion ellipse are depicted in Figs. 11–16 for the peak stress states of the plane strain
simple shear, uniaxial compression and uniaxial tensile tests. We observe the lack
of contact between the localization ellipse and the Mohr circle, indicating that no
localized failure mode takes place.

Remark. According to the classification of strain gradient plasticity theories by
Huang et al. (2004), the constitutive theory considered in this work belongs to the so-
called lower-order theory as it does not involve higher order stresses and the plastic
strain gradients appear only at the constitutive level, while the boundary conditions
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Fig. 16. Gradient localization ellipse for uniaxial tensile test at peak when �H g
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associated plasticity.

20 S.M. Vrech, G. Etse / International Journal of Plasticity xxx (2005) xxx–xxx

INTPLA 883 No. of Pages 22, DTD=5.0.1

29 August 2005; Disk Used ARTICLE IN PRESS
E
D
Pare the same as in the classical or local plasticity. Actually, as shown in the same

work by Huang et al. (2004), both lower and higher order strain gradient theories
lead to similar stress distributions away from a thin boundary layer of the solid.
However, as the localization bands may represent internal boundaries in the
continuum it is expected that the localization solutions corresponding to the two
different gradient plasticity theories, obtained with geometrical and/or analytical
methods, would differ.
 T
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C6. Conclusion

In this work, a geometrical localization method was developed for the analysis of
the discontinuous bifurcation properties of the thermodynamically consistent gradi-
ent-dependent parabolic Drucker–Prager elastoplastic model for cohesive-frictional
materials. The gradient-dependent elastoplastic localization condition was expressed
in terms of the coordinates ofMohr to obtain a second-order ellipse that represents the
envelope of localization for each particular state of stress. The localization condition
was geometrically defined by the tangency condition between the localization ellipse
and the major principle circle of Mohr, while the mode of failure was defined by the
inclination of theMohr circle radio to the tangential point with the localization ellipse.

The results of the geometrical localization analysis indicate that the gradient-
dependent parabolic Drucker–Prager elastoplastic formulation suppresses the dis-
continuous bifurcations of the classical elastoplasticity when the selected harden-
ing/softening modulus �H equals the critical one for localization of the local
material formulation �H c.

The regularization capability of the gradient formulation reduces as l/d ! 0.
Therefore, the characteristic length l defines the level of diffusion of the failure
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mode. When l approaches zero, a continuous transition from non-local gradient
to local elastoplasticity is obtained. In the extreme case, when l = 0, see Eqs.
(40), (54) and (57), the local formulation is fully recovered. On the other hand,
by adopting a hardening/softening modulus �H < �H c, the gradient elastoplastic
material formulation may lead to localized failure modes, as long as the non-local
gradient hardening/softening modulus �H g

is lower than a limit value defined in
terms of �H c and l. Therefor, we conclude that regularization capability of the
thermodynamically consistent gradient-dependent plasticity formulation does not
only depends on the characteristic length l but also on the relationship between
�H g

, �H c, �H and l.
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