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ARTICLE INFO ABSTRACT
Article history: The Mauthner-cell (M-cell) system of teleost fish has a long history as an experimental model for
Available online xxxx addressing a wide range of neurobiological questions. Principles derived from studies on this system have
contributed significantly to our understanding at multiple levels, from mechanisms of synaptic transmis-
Keywords: sion and synaptic plasticity to the concepts of a decision neuron that initiates key aspects of the startle
Startle response behavior. Here we will review recent work that focuses on the neurophysiological and neuropharmaco-
Mauthner cell logical basis for modifications in the M-cell circuit. After summarizing the main excitatory and inhibitory
g:igf;;iar:ure inputs to the M-cell, we review experiments showing startle response modulation by temperature, social
Dopamine status, and sensory filtering. Although very different in nature, actions of these three sources of modula-

Social status tion converge in the M-cell network. Mechanisms of modulation include altering the excitability of the
Prepulse inhibition M-cell itself as well as changes in excitatory and inhibitor drive, highlighting the role of balanced
excitation and inhibition for escape decisions. One of the most extensively studied forms of startle plas-
ticity in vertebrates is prepulse inhibition (PPI), a sensorimotor gating phenomenon, which is impaired in
several information processing disorders. Finally, we review recent work in the M-cell system which

focuses on the cellular mechanisms of PPI and its modulation by serotonin and dopamine.
© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

All animals display some form of defensive reflexes to avoid
potential injury. One prominent example is startle behavior. In
addition to its vital importance, study of startle or other protective
reflexes has contributed to fundamental advances in neuroscience.
For example, study of the gill withdrawal reflex in Aplysia (Croll,
2003; Glanzman, 2009; Kandel, 1976), the tail flip in crayfish
(Edwards et al, 1999), the eye blink response in humans
(Graham, 1975), and the C-start in fishes (Eaton et al., 1991;
Korn and Faber, 2005; Zottoli et al., 1999) provided critical insights
to issues ranging from the behavioral and neural basis of habitua-
tion, sensitization, fear conditioning and sensorimotor gating
(Koch, 1999) to the advancement of the command-neuron concept
(Eaton et al., 2001; Edwards et al., 1999), the cellular and molecular
basis of learning and memory (Glanzman, 2009), and the research
on neural networks implementing decision-making (Edwards
et al., 1999; Korn and Faber, 2005).

The startle response typically involves fast and massive activa-
tion of head and body muscles in response to threatening and
intense sensory stimuli. As such, startle is a protective reflex that
also constitutes often the initial phase of a more elaborate escape
behavior that involves other motor systems, although the latter
function is less clear in mammals (Yeomans and Frankland,
1995; Yeomans et al.,, 2002). Despite its vital role, frequent or
unnecessary startles need to be avoided since they disrupt other
important behaviors. These constrains are reflected in the structure
of startle networks, which are typically centered around large, (i.e.
high-threshold) ‘decision’ neuron/s that integrate vast excitatory
and inhibitory inputs from multiple sense organ, and control the
activation of large muscle areas (Eaton, 1984). Startle can be an
all-or-none behavior mediated by a pair of bilateral decision neu-
rons [e.g. crayfish (Edwards et al., 1999; Wine and Krasne, 1972),
squid (Otis and Gilly, 1990), teleost fish (Eaton et al., 1977)], or a
graded response mediated by the sequential recruitment of
numerous (50-60) decision neurons in distinct brain nuclei [mam-
mals (Lingenh6hl and Friauf, 1994; Yeomans and Frankland, 1995),
see also below]. In that context, it is interesting to note that even
all-or none startle systems are typically complemented by parallel
multifiber pathways that modulate either the later parts of a startle
response and/or produce graded yet flexible startle-like behaviors
by themselves (Bhatt et al., 2007; Fetcho and Faber, 1988; Fetcho
and O’Malley, 1995; Herberholz et al., 2004; Otis and Gilly, 1990;
Preuss and Gilly, 2000; Wine and Krasne, 1972).

Startle behavior is distinct, relatively easy to quantify, and the
large size and small number of startle circuit neurons allows in
many cases their identification in the CNS for anatomical, electro-
physiological and molecular studies (Cachope and Pereda, 2012;
Curti and Pereda, 2010; Eaton, 1984; Korn and Faber, 2005;
Pereda et al., 2004). Particularly important for this review however,
is the fact that startle circuits provide an excellent preparation and
readout for studying the sensory integration processes that under-
lie the initiation of startle behavior including its modification by
environmental context and physiological state of an animal.

Indeed, startle plasticity is widespread and subject to intense
research. Startle response can be increased by conditioned or
unconditioned aversive manipulations as an electrical foot shock
(Boulis and Davis, 1989; Davis, 1974), habituated by repeated pre-
sentation of the startling stimulus (Aljure et al., 1980; Davis et al.,
1982; Typlt et al., 2013; Valsamis and Schmid, 2011) and it can be
enhanced by fear, anxiety and related states [reviewed in Fendt
and Koch (2013)]. Failure to adjust startle threshold levels has been
connected to several fear and anxiety disorders (Dreissen et al.,
2012; Ganser et al., 2013; Grillon, 2002, 2008) and startle testing

is a well established assay to investigate anxiety-like behaviors
in several species (Pittman and Lott, 2014).

One of the most intensively studied aspects in startle plasticity
is prepulse inhibition (PPI) of the auditory startle response. In the
PPI paradigm, the startle response to a strong stimulus is reduced
when it is preceded by a weak prepulse of the same or a different
modality by 30-500 ms (Campeau and Davis, 1995; Hoffman and
Ison, 1980; Weber and Swerdlow, 2008). The difference on the
intensity (or probability) of the startle response with or without
a sensory prepulse provides an operational measure of the inhibi-
tion induced by the prepulse. This reduction is thought to reflect
the subjects sensorimotor gating levels (Braff et al., 2001a). It has
been proposed that the functional role of PPI is protection from a
disruptive event such as startle at an early stage of stimulus infor-
mation processing (Graham, 1975). Underlining its importance as a
basic filtering mechanism, PPI of startle response has been exten-
sively studied in rodents (Braff et al., 2001a; Swerdlow et al,,
2008) but also in sea slugs (Frost et al., 2003; Lee et al., 2012;
Mongeluzi et al., 1998), teleost fishes (Burgess and Granato,
2007; Kohashi and Oda, 2008; Neumeister et al., 2008) and birds
(Schall et al., 1999). These studies suggest cross-species similarities
for some of the mechanisms that regulate startle plasticity and PPI
(Siegel et al., 2013). PPI has also attracted considerable attention
from biomedical research as schizophrenia patients show deficits
in PPI although these deficits are not unique of schizophrenia but
are also present in bipolar mania, Huntington'’s disease, panic dis-
order and other sensory processing disorders (Braff et al., 2001b;
van den Buuse, 2010; Siegel et al., 2013).

Given the biological and medical relevance of understanding
startle and startle plasticity mechanisms, the importance of devel-
oping animal models to study startle behavior and PPI has been
repeatedly acknowledged (Koch, 2013; Siegel et al., 2013). Great
progress has been made in elucidating the circuits, neuropharma-
cology, and genetics of PPI in rodents and linking these findings to
a range of information processing disorders (Braff et al., 2008;
Swerdlow et al., 2008). However, some methodological limitations
continue to constrain the field. For example, reliably accessing the
startle circuitry relevant to PPI with in vivo electrophysiology
remains difficult in rodents (Lingenhohl and Friauf, 1994). In vivo
experiments are critical, however, since they allow physiological
stimulation of the inhibitory pathway/s active during PPI, a
requirement to identify the effector mechanisms underlying PPL

The thesis of the current review is that the startle system of tel-
eost fishes, the Mauthner-cell (M-cell) is ideally suited to advance
such mechanistic studies of startle plasticity.

Several recent reviews have focused on aspects of plasticity in
the M-cell circuit (Cachope and Pereda, 2012; Curti and Pereda,
2010; Kano, 1995; Korn and Faber, 1996, 2005; Pereda et al.,
2004; Zottoli and Faber, 2000; Zottoli et al., 1995) but here we will
specifically focus on recent findings on cellular mechanisms regu-
lating startle plasticity and particularly PPI in the primary auditory
startle circuit of teleost fishes. We start describing the startle cir-
cuit in fishes and mammals to stress their common organizing
principles, followed by an account of main sensory inputs to the
Mauthner cell. Next we review environmental factors capable of
modulating the startle response and the role of dopamine and
serotonin in M-cell plasticity. A description of PPI and its
modulation by dopamine follows, and we conclude with an overall
discussion of the results presented and open questions for the future.

1.1. Startle circuits of vertebrates

Escape behaviors are critical for survival as they allow predator
avoidance, and most vertebrates, including mammals, have highly
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Fig. 1. The Mauthner cell circuit. Schematic shows the paired Mauthner cells (M-cells), their visual and statoacoustic inputs and cranial inhibitory networks. Each M-cell
receives bilateral visual inputs and ipsilateral auditory inputs. The schematic shows only the left auditory afferents (red) and the right visual afferents (orange). The auditory
pathway is direct, as hair cells activate auditory nerve afferents with synapses on the M-cell’s lateral dendrite and also excite bilaterally-projecting feedforward inhibitory
interneurons, the commissural PHP cells (blue). The collateral PHP neuron population (coll., light blue) mediates recurrent (feedback) inhibition triggered by firing of either
ipsilateral or contralateral M-cells that is conveyed through the cranial relay neurons (CR, green). The polysynaptic visual pathway conveys information from the retina to the
optic tectum (OT) which sends afferents that contact both M-cells ventral dendrite. M-cell axons exit the medulla through the spinal cord to make direct contact with primary
motoneurons (PM) and indirect contanct with other motoneurons (M) through a set of interneurons (DI). Spinal inhibitory networks and cranial motoneurons are omitted to
simplify the schematic. A single action potential in one of the M-cell produces contraction of contralateral trunk muscles producing the characteristic C-shape that initiates

the startle response or C-start (B). Adapted from Faber et al. (1989) and Pfaff et al. (2012).

developed neural networks for detecting an approaching predator,
deciding when to initiate the escape and the trajectory to follow.

1.1.1. The Mauthner-cell startle circuit of fishes

The startle response pattern is suggestive of a protective func-
tion against injury from potential threats and of a preparatory
phase for the flight/fight response (Koch, 1999; Yeomans et al.,
2002), however, its functional role in mammals is not always clear
as startle itself does not necessarily imply an escape (Yeomans and
Frankland, 1995; Yeomans et al., 2002). In many species of teleost
fish, however, startle is part of a true escape behavior with a clear-
cut function: interrupt all ongoing behaviors to follow a relatively
stereotyped motor sequence resulting in an escape reaction to the
threat (Batty, 1989; Dill, 1974; Eaton et al., 1991; Faber et al., 1989;
Kohashi and Oda, 2008; Neumeister et al., 2010; Preuss and Faber,
2003; Whitaker et al., 2011). This escape sequence starts with a
fast and massive unilateral contraction of trunk muscles resulting
in the fish assuming a C-shape (stage 1) followed by a return stroke
in the opposite direction (‘return flip’) where the tail straightens
propelling the animal away from potential danger (stage 2)
(Domenici and Blake, 1997; Eaton et al., 1977, 2001; Zottoli, 1977).

Stage one of the C-start is initiated by a pair of large brainstem
neurons, the Mauthner cells (M-cells), which are prototypical inte-
grate-and-fire neurons that receive massive sensory inputs from
the acoustic-lateralis, vestibular, visual, and somatosensory sys-
tems (Canfield, 2003; Furukawa and Ishii, 1967; Korn and Faber,

2005; Mirjany and Faber, 2011; Preuss and Faber, 2003; Preuss
et al., 2006; Szabo et al., 2006, 2007) (Fig. 1). A single action poten-
tial (AP) in one of the two M-cells is sufficient to activate motor
networks on the contralateral trunk muscles and simultaneously
inhibit those on the ipsilateral side (Eaton and Farley, 1975;
Eaton et al., 2001; Faber et al,, 1989; Fetcho and Faber, 1988;
Nissanov et al., 1990; Weiss et al., 2006; Zottoli, 1977). Ablation
of M-cells in goldfish or zebrafish (DiDomenico et al., 1988;
Eaton et al., 1982; Issa et al,, 2011; Liu and Fetcho, 1999; Zottoli
et al,, 1999) or evolutionary loss of M-cells (Greenwood et al.,
2010) eliminates short latency C-start escapes.

Stage two of the C-start determines the final escape trajectory,
which is influenced by for example, stimulus direction and
obstructions in the environment (Eaton and Emberley, 1991;
Eaton et al, 1988, 2001; Foreman and Eaton, 1993; Mirjany
et al., 2011; Nissanov et al., 1990; Preuss and Faber, 2003). This
flexibility depends at least partly on the activation of other reticu-
lospinal neurons, such as the M-cell homologous that in conjunc-
tion with the M-cell are collectively known as the brainstem
escape network (BEN) (Canfield, 2006; Eaton et al., 2001; Gahtan
et al., 2002; Weiss et al., 2006).

Indeed, the Mauthner cell homologous are electrically con-
nected with the M-cell (Neki et al., 2014), and receive auditory
inputs although their firing thresholds and projection patterns
are different from the M-cell (Nakayama and Oda, 2004). In addi-
tion to their putative role for stage 2, thay can also produce C-start
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type behaviors, albeit with longer latencies when the M-cell is
eliminated from the circuit (Kohashi and Oda, 2008; Kohashi
et al., 2012; Liu and Fetcho, 1999).

In summary, activity in either of the two M-cells decide the like-
lihood, latency, and initial turn direction of the response (Hatta and
Korn, 1999; Korn and Faber, 2005; Preuss and Faber, 2003; Preuss
et al., 2006; Zottoli et al., 1999), with other neurons in the BEN
adding necessary plasticity to the expression of the behavior.

The M-cell dendritic morphology is relatively simple (Fig. 1):
two primary dendrites, one lateral and one ventral, each extending
up to 500 um from the soma (Korn and Faber, 2005; Faber and
Korn, 1978). Because of its size, morphology, and electrophysiolog-
ical signature (an unusually large extracellular field potential), it is
possible to record reliably from the M-cell soma and its dendrites
in vivo (Faber and Korn, 1978; Furshpan and Furukawa, 1962; Korn
and Faber, 2005; Preuss et al., 2006). The excitatory sensory inputs
to the M-cell include afferent inputs from the auditory (Furshpan
and Furukawa, 1962; Preuss and Faber, 2003; Szabo et al., 2006),
vestibular (Zottoli and Faber, 1979), visual (Preuss et al., 2006;
Zottoli et al., 1987), somatosensory systems (Chang et al., 1987)
and lateral line (Faber and Korn, 1975; Mirjany and Faber, 2011).
However, the two sensory systems that most often have been
shown to trigger a startle response with physiological stimuli are
an intense sound or a gradually increasing visual or auditory loom
stimuli (Eaton et al., 1988; Preuss et al., 2006; Weiss et al., 2006;
Zottoli, 1977). The fact that subthreshold LED flashes can bias the
direction of an escape evoked by an abrupt sound highlights mul-
timodal aspects of sensory processing in the M-cell (Canfield, 2003,
2006). Similar modulatory functions have been shown for lateral
line inputs to the M-cell, which by themselves are insufficient to
evoke an action potential in the M-cell (Faber and Korn, 1975;
Mirjany and Faber, 2011). Moreover, the relative efficacy of a given
sensory modality in the M-cell can change during development.
Zebrafish shows a transition from somatosensory to statoacoustic
nerve as the preferred input for the M-cell during development
(Kohashi et al., 2012).

The sensory input to the M-cell studied in most detail is medi-
ated by the monosynaptic connection from a group of large affer-
ents of the posterior branch of the eight (auditory) nerve
(Furshpan, 1964; Nakajima, 1974; Tuttle et al., 1986). These saccu-
lar fibers terminate on the lateral dendrite as single club endings,
10-15 pm in diameter, and they have mixed electrotonic and
chemical synapses with the dendrite (Pereda et al., 2003, 2004).
This constitutes a rapid pathway with a latency of 1-2 ms when
using acoustic stimuli in air (Canfield, 2003; Casagrand et al,,
1999; Preuss and Faber, 2003; Szabo et al., 2006), contrasting with
the slower polysynaptic visual pathway coming from the retina
through the optic tectum and contacting the M-cell in its ventral
dendrite, which has a latency of 12-22 ms when using short
(10-20 ms) visual pulses (Canfield, 2003, 2006; Weiss et al., 2006).

Inhibition has been shown to serve two major roles in the M-
cell. Feedforward inhibition sets the threshold for escape, regulat-
ing M-cell excitability in response to sensory stimuli, to ensure that
only sufficiently strong and abrupt stimuli trigger the M-cell (Faber
and Korn, 1978). Feedforward inhibition is also involved in infor-
mation processing by restricting the spatial spread of excitation
and its duration, favoring the detection of temporal changes in a
signal (Faber et al., 1991; Preuss and Faber, 2003; Preuss et al.,
2006). For the auditory pathway this is attained by commissural
passive hyperpolarizing potential (PHP) exhibiting neurons, which
receive mixed electric and synaptic inputs from primary afferents
and provide chemical inhibition to the lateral dendrite and M-cell
soma within a synaptic delay (Fig. 1). Interestingly, the same path-
way also mediates an instantaneous electrical field (ephaptic) inhi-
bition coincident with presynaptic action potentials at the M-cell
axon hillock (Furukawa and Furshpan, 1963; Furukawa et al.,

1963; Takahashi et al., 2002; Weiss et al., 2008) (Fig. 1). Another
source of inhibition is a recurrent pathway triggered by the M-cell
spike that avoids repetitive firing of the activated M-cell as well as
firing of the contralateral M-cell (reciprocal inhibition) (Faber et al.,
1989; Takahashi et al., 2002). This feedback pathway involves cra-
nial relay neurons (CR, Fig. 1), which in turn bilaterally activate
inhibitory PHP neurons, but also cranial motor neurons that evoke
startle-related opercular, ocular, jaw and pectoral fin movements
(Auerbach and Bennett, 1969; Diamond, 1971; Hackett and
Buchheim, 1984; Hackett and Faber, 1983).

In summary, in the M-cell startle network, threshold to startling
stimuli is determined ultimately by the balance between excit-
atory and inhibitory mechanisms acting in the startle “decision-
making” circuit (Faber et al., 1989). The downstream network of
the M-cell includes interneurons and motorneurons forming cra-
nial and spinal networks that ultimately mediate the execution
of the escape response (Bhatt et al., 2007; Faber et al., 1989;
Fetcho and Faber, 1988; Fetcho and McLean, 2010). Plasticity in
the M-cell output synapses or in the downstream elements could
be translated to behavioral plasticity of startle behavior (Aljure
et al,, 1980; Gelman et al., 2011) but here we will concentrate on
plasticity affecting the ‘decision making’ process (e.g. plasticity
affecting the firing probability of the M-cell).

1.1.2. The startle circuit of mammals

The circuit for the mammalian startle reflex shares many orga-
nizing principles with those for fast escape responses in lower ver-
tebrates and invertebrates. In mammals, the primary acoustic
startle circuit encompasses two central relay stations between
the sensory periphery (cochlea) and the motor and premotor neu-
rons that execute the motor response. Auditory input enters the
cochlear nuclei where the cochlear root neurons are, which in turn
excite a small cluster of about 60 giant neurons (PnC neurons) from
the caudal pontine reticular formation that innervate cranial and
spinal motoneurons (Lingenhohl and Friauf, 1992, 1994). The
graded nature of the escape mammalian startle responses is par-
tially a consequence of startle being the result of the activation
of a population of neurons (and not a single neuron).

Similarly to M-cells, PnC neurons are activated by high-inten-
sity acoustic stimulation at latencies of 3-8 ms (Lingenhohl and
Friauf, 1992) and have a relatively low resistance and large mem-
brane time constant (Faber et al., 1989; Wagner and Mack, 1998).
Lessions of the PnC neurons block the startle response elicited by
acoustic or air-puff stimuli (Koch et al., 1992; Lee et al., 1996). Tri-
geminal or auditory stimuli reach the PnC neurons through large-
diameter, myelinated axons projecting directly from the cochlear,
vestibular and spinal trigeminal nuclei of rats (Lee et al., 1996;
Lingenhohl and Friauf, 1994). In turn, PnC giant neurons project
directly and indirectly to motoneurons in the brain stem and spinal
cord via a large and fast-conducting axon (Wu et al., 1988). One of
the major difference between the M-cell circuit and the PnC circuit
is that whereas only one M-cell is activated producing unilateral
contraction of the trunk muscles, the mammalian response is bilat-
eral, with reticulospinal neurons (PnC neurons) on both sides of the
midline being excited (Lee et al., 1996). Besides this fact, the mam-
malian startle networks parallels the fish auditory startle network
at every stage, the properties of this circuit performing a very fast
response minimizing the number of synapses between the sensory
input and the motor output and using large caliber myelinated
fibers, electrical synapses and establishing direct contacts with
motoneurons.

1.2. Significant M-cell inputs from the acoustico-lateralis system

Up to 100 eight nerve (auditory) afferent inputs impinge onto
the mid distal M-cell lateral dendrite and provide massive
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Fig. 2. Auditory representation in the M-cell. (A) Example traces of postsynaptic potentials (PSPs) recorded in the M-cell proximal lateral dendrite in response to sound pip
(200 Hz, 147 dBre. 1 pPa in water, lower trace) before (blue) and after (red) superfusion with ionotropic glutamate receptor antagonists cocktail (APV 100 uM, CNQX 100 uM)
and subtraction of both traces (black). The gray line indicates the RMP baseline. Note that while part of the slow component of the PSP is insensitive to glutamate blockers, the
subtraction trace reveals a significant glutamate blockers-sensitive component. (B) Somatically recorded M-cell PSPs in response to an AM stimulus (200 Hz, 0-90 dB in
100 ms, lower trace) before (blue) and after (red) superfusion with ionotropic glutamatergic antagonist cocktail (same as in A). The gray line indicates the RMP baseline. Note
the marked decrease in the underlying envelope of the PSP as compared to A. (C) Somatically recorded M-cell PSPs (black) in response to FM/AM stimulus (50 Hz initial
frequency, 109 dB; 200 ms, lower trace) and its high-pass filtered representation (blue). All recordings (A-C) were obtained with KAc-filled electrodes. (D) Superimposed joint
time-frequency spectrograms of the high-pass filtered response (blue, fundamental and two harmonics) and the sound stimulus (red). The high frequency component follows
the changing sound frequency. Adapted from Szabo et al. (2006).

excitatory input via mixed electrical and chemical synapses (Lin 1.3. Significant M-cell inputs from the visual system

and Faber, 1988; Pereda et al., 2004). The size of these primary

afferent terminals (up to 15 um) and the M-cell dendrite allows Each M-cell receives binocular visual input from both ipsi and
for simultaneous pre- and postsynaptic recordings and the charac- contralateral optic tectum projections that end in the distal ventral
terization of their role in sensory processing of acoustic stimuli. dendrite (Zottoli et al., 1987). In goldfish, brief visual stimuli pro-

Interestingly, paired recordings suggest that >80% of the chemical duced by a flash or a black disk projected on top of the animal typ-
connections are silent (Lin and Faber, 1988), i.e. a presynaptic AP ically do not elicit startles but do produce subthreshold EPSPs in
produces a postsynaptic electrotonic potential but no chemically the M-cell (Fig. 3A and B). As noted, similar stimuli are capable
mediated excitatory postsynaptic potential (EPSP). The chemical of modulating the auditory startle response in the African cichlid
component seems to be recruited only when a large fraction of fish Astatotilapia burtoni (Canfield, 2003, 2006).

the afferent fibers is simultaneously activated as with direct elec- Startle responses however, can be reliably evoked in goldfish by
trical stimulation to the eight nerve fibers (Pereda et al., 1992, visual loom stimuli, i.e.,, by motion stimuli that stimulate an
1994). Accordingly, M-cell EPSPs evoked by short sound pips (sin- approaching object on collision course (Batty, 1989; Dill, 1974;
gle sine waves, Fig. 2A) and longer lasting frequency (FM) or ampli- Preuss et al., 2006; Webb, 1986). Intracellular in vivo M-cell record-

tude (AM) modulated tone bursts (Fig. 2B) show two components ings show graded depolarizing EPSPs (Fig. 3C), and chronic record-
namely, one that is phasic and phase locked to stimulus frequency ings in freely moving animals confirmed that these escapes are
and its first harmonic (Fig. 2C and D), and a sustained underlying initiated by a M-cell AP (Preuss et al., 2006; Weiss et al., 2006).

depolarization with a slower onset that tracks the amplitude of As noted, acoustic and visual information converge in the M-cell
the stimulus (Szabo et al., 2006). Blocking of the chemical synaptic and both modalities and most predator strikes will typically
transmission revealed that the fast components are essentially involve visual and mechanosensory components, e.g. a diving bird
electrotonic coupling potentials (Fig. 2B) of eight nerve APs, breaking the water surface. Indeed, the M-cell has been shown to
whereas the underlying slow EPSP is largely glutamatergic integrate visual, statoacoustical and somatosensory inputs for an
(Szabo et al., 2006). Together with the demonstration of silent syn- appropriate startle behavior (Canfield, 2003; Mirjany et al., 2011
apses (see above) these results suggest that the chemical compo- and Medan and Preuss unpublished results).

nent of the mixed synapse is weak or functionally silent when

single sound pips or short tone bursts are used (Szabo et al.,

2006). Chemical transmission becomes more prominent with 2. Plasticity in the startle circuit

longer lasting stimuli and with repetitive stimulation (Cachope

et al., 2007; Curti and Pereda, 2004). The M-cell network has a vital function (i.e. escape from preda-
The M-cell also receives input from the anterior and posterior tion) but on the other hand unnecessary escapes would be non-

lateral line nerves (Faber and Korn, 1975). These fibers contact adaptive. Therefore, it becomes apparent the necessity of a very

the M-cell proximal lateral dendrite and soma with mixed (chem- robust and reliable response on one hand, but of an adaptable
ical and electrical) synapses and provide weak but essential mod- and plastic response on the other (Pfaff et al., 2012). In the startle
ulatory information for the left-right directionality of goldfish network specifically, thresholds to startling stimuli will be deter-
startle response (Mirjany and Faber, 2011; Mirjany et al., 2011). mined ultimately by the balance between excitatory and inhibitory
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Fig. 3. Visual representation in the M-cell. (A) Visual response recorded in the M-
cell ventral dendrite to a 1 ms flash recorded in vivo. Note increased latency
compared to auditory stimuli (Fig. 2). (B) Visual response recorded in the ventral
dendrite to the image of a black disc projected on a white screen on top of the
animal subtending a view angle of about 50° in the animal’s retina. Note the
response decays before the stimulus offset. (C) Response to a visual loom stimulus
(subtending retinal view angles from 0° to 113° in 900 ms) recorded in the ventral
dendrite of the same M-cell as in B. All recordings (A-C) were obtained with KAc-
filled electrodes. Note that the response peaks before the stimulus reaches its
maximum expansion and persists throughout the rest of the stimulus duration.
(Medan and Preuss, unpublished).

mechanisms acting on the startle “decision-making” circuit along
with changes occurring in the M-cell excitability itself (Faber
et al., 1989).

2.1. Temperature modulation of startle response

Fishes are poikilotherm animals that maintain a coordinated
behavior over a range of naturally occurring temperature changes.
Thermal plasticity of the startle circuit is critical for temperature
tolerance and determines the temperature-dependent effects on
performance (Montgomery and Macdonald, 1990; Schulte et al.,
2011).

In goldfish, an acute 10 °C temperature drop profoundly affects
auditory evoked C-starts: the response is delayed by about 20 ms,
the angular velocity and acceleration of the head turn is dimin-
ished (Fig. 4A1 and A2) and the total distance traveled within the
first 100 ms after stimulus onset is significantly reduced
(Fig. 4A3). Interestingly however, the likelihood for an escape
increases significantly after cooling (see Fig. 6 in Preuss and
Faber, 2003) due to an increase in M-cell excitability. The latter
is mediated by an increase in M-cell input resistance (Fig. 4A5)
and a reduced and delayed onset of feedforward inhibition to the

M-cell (Preuss and Faber, 2003). In a natural context, such an
increase in M-cell excitability will increase the distance at which
a fish responds to an approaching predator and thus might com-
pensate for the decremental effects of cooling on the motor system.

Another critical aspect of the C-start is its directionality and the
ability of the fish to avoid obstacles (Eaton and Emberley, 1991).
Cooling doubles the frequency of inappropriate turns toward the
stimulus and increases escapes “into the wall” of the aquarium
(Fig. 4A4) which would be detrimental in natural conditions. In
order to explain the sensitivity of response directionality to acute
cooling one has to consider that startle stimuli typically bring both
M-cell close to threshold and only small differences in the excit-
atory/inhibitory balance within both M-cells ‘decide’ which
reaches threshold first. Accordingly, the observed overall increase
in M-cell excitability and decrease in inhibition is a likely cause
for the directional deficits after acute cooling. Further evidence
for this notion comes from a study by Szabo and colleagues
(Szabo et al., 2008), which showed that acclimating animals to cold
temperatures predominantly restores M-cell inhibition and
directionality.

2.2. Aminergic modulation of startle response

Dopaminergic modulation of startle behavior has been reported
decades ago in rodents (Mansbach et al., 1988) although the locus
or loci of action of dopamine are still unclear. The synaptic bed of
the M-cell lateral dendrite is innervated by thin fibers containing
small dopamine-positive varicosities that project from forebrain
nuclei (O’Connell et al.,, 2011; Pereda et al.,, 1992). Dopamine
enhances the synaptic EPSPs in the M-cell lateral dendrite in
response to electrical stimulation of the auditory afferents (8th
nerve). This modulation affects both components of the mixed syn-
apse, i.e. enhances the coupling potential of electrical synapses and
the glutamatergic chemical transmission (Pereda et al., 1992).
Dopamine action is mediated through the cAMP and PKA second
messenger pathway affecting glutamate ionotropic receptors
expressed in the chemical excitatory synapse (Pereda et al.,
1994). Dopamine can affect startle also upstream of the primary
startle circuit. Experiments in larval zebrafish using a cross-modal
paradigm in which a preceding flash enhanced a sound-evoked
startle response showed that the visual enhancement of the audi-
tory startle reflex required light-responsive dopaminergic neurons
of the caudal hypothalamus and D1 dopamine receptor activation.
The enhancement is produced by an increase in the auditory-
evoked response in the M-cell accounted for by an increase in
the signal-to noise ratio of the auditory afferents and the efficacy
of the auditory nerve to M-cell synapse (Mu et al., 2012).

The M-cells are also innervated by 5-HT projections (Gotow
et al., 1990; Whitaker et al., 2011) which have their highest densi-
ties in the ventral dendrite, although 5HT afferents are also present
in the soma (Petrov et al., 1991). Mintz and Korn (1991) demon-
strated a serotonergic modulation of the inhibitory glycinergic
afferents as well as postsynaptic modulation of a voltage-depen-
dent inward rectifier in the M-cell. Recently, it has been shown that
only 5-HT5A and 5-HT6 receptors are expressed in the M-cell
(Whitaker et al., 2011) and that specific antagonists of 5-HT5A
receptor decrease startle probability (Curtin et al., 2013) (Fig. 4B1).

Consistent with this notion Curtin et al. (2013) showed that a 5-
HT5A receptor antagonist attenuated the M-cell synaptic response
to acoustic stimuli (Fig. 4B2, B3). This effect is mediated by a
decrease in the input resistance of the M-cell itself (i.e. a postsyn-
aptic mechanism) reflected as a decrease in the voltage vs. current
curve of the M-cell as well as in a reduction of the antidromic AP
amplitude (Fig. 4B4, B5). Blocking 5-HT5A receptor decreases M-
cell membrane resistance both close to resting membrane poten-
tial and close to firing threshold, suggesting that the affected con-
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Fig. 4. Mechanisms of startle plasticity in the M-cell. (A) Effects of cooling on sound evoked C-starts (200 Hz pips). A1, cumulative distribution of response latency at 18 °C
(N=27, n=53, solid black) and 8 °C (N =33, n=48, dashed blue). This measure increases significantly after cooling from a mean (+SEM) of 11.5+0.3 ms at 18 °C to
27.3+0.8 ms at 8 °C (F=202.66; df = 1.74; p < 0.001). Similarly, cooling decreases the angular velocity of the fish center of mass (A2), kinematics correspond to two escapes
performed by the same animal at 18 °C (solid black) and 8 °C (dashed blue). Cooling also decreases significantly the mean distance traveled in the first 100 ms after stimulus
onset (A3, in body length, BL, F=12.66, df =1, 33; 'p<0.002; 18°C: N=6, n=18 and 8 °C: N=6, n=17). A4, lower temperature increases the frequency of inappropriate
responses (p < 0.01, X? test), i.e. escapes toward the stimulus from 14% at 18 °C (N = 24; n = 66) to 36% at 8 °C (N = 27; n = 62) and turning into the wall (6% at 18 °C vs. 20% at
8 °C). A5, current-voltage relationship obtained by injecting square current pulses in the dendrite and recording in the soma at 8 °C and 18 °C. The transfer resistance (Vsoma/
Igendrite) Shows an increase from 53 kQ at 18 °C to 85 kQ at 8 °C (N = 2). N: number of animals, n: number of escapes. Adapted from Preuss and Faber (2003). (B) Serotonergic
modulation in the M-cell system. B1, Plots of mean startle response rates (+SEM) in response to acoustic stimuli of different intensities (dB re. to 1 pPa in water), before (open
bars) and after blockade of 5HT receptor 5A with SB-699551. B2, Representative example of a somatic M-cell PSP (KAc electrodes) in response to sound before (black) and
after (green) SB-699551 systemic injection (0.9 mg/kg body weight). Bottom trace indicates sound stimulus (200 Hz pip at 147 dB re. 11 pPa in water). B3, Plots of mean peak
amplitudes (+SEM) of sound-evoked PSPs for control and SB-699551 conditions (N = 14, paired t test, "p = 0.0011). B4, Example trace of antidromically evoked APs recorded in
the soma before (black) and after (green) injection of SB-699551 with KAc filled electrodes. B5, mean peak amplitude (+SEM) of the antidromically evoked APs in the two
conditions (N = 6, paired t test, p = 0.0154). The decrease in the AP amplitude is indicative of a reduction in M-cell input resistance. Adapted from Curtin et al. (2013). (C)
Social modulation of the M-cell system of African cichlid fish. C1, Plots of mean escape rates (+SEM in dominant [DOM] and subordinate [SUB] males (DOM: 58.3 + 2.9, N = 14;
SUB: 41.7 + 2.0, N = 18, bootstrap analysis, p < 0.01). C2, example traces of somatically recorded M-cell PSPs (KAc electrodes) in response to a sound pip in a dominant (black)
and a subordinate (gray) cichlid male. Bottom trace indicates sound stimulus (133 dB re. 1 pPa in water). Adapted from Neumeister et al. (2010).

ductance shows no voltage dependence within the physiological
range of membrane depolarization. Previous studies by Mintz
and Korn (1991) showed that 5-HT modulates a voltage-dependent

these results and underlines the use of specific agonists/antagonist
to determine the serotoninergic modulation of startle response.

conductance in the M-cell. However, the voltage-dependent effect
was only evident at somewhat unphysiological membrane poten-
tials (~-100 mV) with the author themselves questioning the bio-
logical significance of this conductance (Mintz and Korn, 1991).
Finally, studies on zebrafish larvae found no effect of the sero-
tonin reuptake inhibitor fluoxetine on startle (Griffiths et al.,
2012). They did find however an interaction between serotonin
and glucocorticoids: in mutants with non-functional glucocortoc-
oids receptors fluoxetine increased spontaneous locomotion and
decreased startle (Griffiths et al., 2012). As the net effect of fluox-
etine is a general increase of 5HT, all its receptors might be poten-
tially affected, which potentially obscured the interpretation of

2.3. Social modulation of startle responses

Many fish species establish social ranks which correlate with
breeding status, differences in coloration and behavioral displays.
In African cichlids fish (A. burtoni) dominant (DOMs) males have
bright body coloration and display courtship behaviors to attract
females to their territory which they vigorously defend against
other males (Huntingford, 2012; Maruska and Fernald, 2013;
O’Connell and Hofmann, 2012). At the same time, coloration and
behavioral activity makes DOMs likely also more conspicuous for
predators (Fernald and Hirata, 1977; Maan et al, 2008).
Interestingly, this tradeoff is compensated by an increased startle
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probability and lower escape threshold when compared to less
conspicuous subordinate (SUBs) males (Neumeister et al., 2010)
(Fig. 4C1). The behavioral differences are paralleled by a larger
auditory evoked EPSP to a given sound stimulus (Fig. 4C2) and a
reduction on inhibitory drive impinging on the M-cell in DOMs
(Neumeister et al., 2010). Serotonin is one of the prime candidates
for mediating this socially controlled plasticity in the M-cell since
ketanserin, a 5-HT2A receptor antagonist differentially affects the
inhibitory tone in DOMs and SUBs (Whitaker et al., 2011).

3. Sensorimotor gating in fishes

In larval zebrafish or adult goldfish behavioral PPl is observed as
a reduction on the all-or-none probability of eliciting an auditory
evoked C-start when it is preceded by a non-startling sound
(Burgess and Granato, 2007; Neumeister et al., 2008) (Fig. 5A, left).
The effective lead times between the non-startling prepulse and
the pulse (20-500 ms) are comparable with the effective lead
times in mammals (Davis and Gendelman, 1977; Swerdlow et al.,
2006) (Fig. 5A, right).

PPI is observed shortly after zebrafish hatches, implying that PPI
of startle is a ontogenetically basic mode of startle plasticity
(Bhandiwad et al.,, 2013; Burgess and Granato, 2007). In vivo
recordings from the M-cell revealed that an auditory prepulse sig-
nificantly attenuates the synaptic response to a subsequent sound
pulse in the M-cell, thus providing a synaptic correlate for PPI
evoked by physiological stimuli (Fig. 5B). This attenuation is max-
imal at short lead times (20 ms) but it is still present with an inter-
stimulus interval (ISI) of 500 ms (Curtin et al., 2013; Medan and
Preuss, 2011; Neumeister et al., 2008) (Fig. 5C). The synaptic PPI
is largely mediated by a prepulse-induced reduction in input resis-
tance that is particularly apparent in the depolarized M-cell, i.e.,
close to firing threshold (Fig. 5D, black vs. red trace). Specifically,
an auditory prepulse eliminates a membrane nonlinearity (linked
to an inward rectifier) that under control conditions (no prepulse)
dynamically increases M-cell input resistance during depolariza-
tion (Faber and Korn, 1986; Medan and Preuss, 2011; Neumeister
et al., 2008) (Fig. 5D, black trace, compared to dashed line, i.e. to
a linear response). In addition, auditory prepulses also decrease
M-cell input resistance in the non-depolarized membrane which
further reduces M-cell excitably during PPI (Curtin et al., 2013;
Medan and Preuss, 2011; Neumeister et al., 2008). The combina-
tion of these two postsynaptic inhibitory mechanisms can largely
account for the time course of PPI, although presynaptic compo-
nents of PPI cannot be excluded (Frost et al., 2003). Interestingly,
prepulse induced changes in input resistance have also been
shown in the mammalian startle circuit (Fendt et al., 2001;
Yeomans et al., 2010). Taken together, these findings are in line
with the view that PPI is mediated within the elementary startle
pathway in vertebrates (Fendt et al.,, 2001; Gomez-Nieto et al.,
2013; Li et al., 2009). The existence of a zebrafish mutant with
an apparently specific deficit in sensorimotor gating opens the pos-
sibility of additional studies on the neural circuit underlying nor-
mal and altered PPI of startle (Burgess and Granato, 2007; Hirata
et al., 2005).

Importantly, these results also demonstrate that the unique
experimental accessibility of the M-cell system for in vivo electro-
physiology, makes it a particularly well-suited and a promising
preparation for studying PPI at the molecular, cellular, and network
levels.

4. Modulation of auditory PPI

Decades ago, deficits in auditory PPI were observed in schizo-
phrenic patients; these deficits were partially compensated by
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Left: schematic showing the prepulse inhibition (PPI) experimental paradigm.
When the Pulse is preceded by a lower intensity Prepulse with an interstimulus
interval (ISI) ranging from 20 to 500 ms the startle probability decreases. In
behavioral experiments, PPI is typically expressed as PPI effect=100 - (startle
probability with prepulse-pulse/startle probability with pulse) x 100 (Neumeister
et al., 2008; Zhang et al., 2000). Right: example of behavioral PPI effect (see text) at
two different ISI, 50 and 500 ms. An ISI of 50 ms produces a mean (+SEM) drop of
56.9 + 9.2% in the startle probability while 500 ms has a significantly smaller effect
(25.6 £10.9%, N = 10, paired t test, *p < 0.05) Adapted from Curtin et al. (2013). (B)
Effect of the prepulse/pulse interstimulus interval (ISI) on PPI of sound evoked PSPs
at the M-cell. Recordings of M-cell PSPs to a sound pip without (black trace) or with
a prepulse at 4 distinct ISIs (KAc electrodes). Bottom trace shows sound stimulus
(200 Hz, 147 dB re. 1 pPa in water). (C) Quantification of ISI dependence on peak
PSP amplitudes (mean + SEM; N = 20) showing a progressive increase in PPI as the
ISI diminishes. (D) Postsynaptic effects of a sound prepulse on the M-cell membrane
properties. Representative example of the voltage-current (V-I) plots for the M-cell
with (red) or without (black) a sound prepulse (50 ms ISI). Note that without a
prepulse, the M-cell has initially a linear V-I relationship that becomes increasingly
nonlinear for depolarizations above 4-5 mV, compare Ryesting With Rinreshola Slopes.
(Mean+SEM for no prepulse Riesiing=101+12KkQ and for no sound Rinresh-
oid=116 £16 kQ, N=15) A sound prepulse attenuates the nonlinear behavior of
the membrane (red, mean + SEM for 50 ms sound prepulse Ryesting = 85 +9 kQ and
for 50 ms sound prepulse Ripreshold = 89 14 kQ, N =15). The hypothetical linear
response is showed in dotted line. Adapted from Medan and Preuss (2011).
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apomorphine. Note the time dependence of PPI disruption by apomorphine: PPI levels are smaller only for 50 ms ISI ('p < 0.01). (C) Plots of the mean PPI effect (ISI 50 ms) on
the M-cell PSPs (+SEM) before (black) and after (red) apomorphine injection and after subsequent injection of haloperidol (0.6 mg/kg i.m., green). Haloperidol restores PPI
levels to control levels (‘p < 0.05, N = 4). NS: not significant. (D) Left two bars: mean (+SEM) input resistance in the depolarized M-cell membrane (Ryresh, See text) without
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Runresh Teversing the effect of the auditory prepulse (right two bars). Adapted from Medan and Preuss (2011).

dopamine D2 receptor antagonists (Braff et al., 1978, 2001b). In
rodent models, similar deficits in PPI could be pharmacologically
reproduced by a dopaminergic agonist (apomorphine) injection
(Mansbach et al.,, 1988). These findings originated a research
model centered on the dopaminergic effects on PPI, which has
been extended to other neurotransmitters systems, namely
glutamate (Brody et al., 2004; Duncan et al., 2006), GABA
(Yeomans et al, 2010), serotonin (Dulawa et al, 2000) and
acetylcholine (Bosch and Schmid, 2006, 2008; Javitt, 2009;
Powell et al., 2009).

Indeed, teleost fishes and mammals exhibit similar pharmaco-
logical responses to dopamine and glutamate with respect to PPI.
For example, the dopaminergic agonist apomorphine disrupts
behavioral PPI in zebrafish which can be restored by haloperidol,
a dopamine D2 receptor antagonist (Burgess and Granato, 2007).
Recordings in goldfish M-cells showed that apomorphine indeed
disrupts the M-cell PPI, what is indicated by an increase of the
sound evoked (pulse) M-cell PSP after drug application (Fig. 6A,
black vs. red trace). Interestingly, this effect is restricted to a
specific prepulse/pulse interstimulus interval of 50 ms (Fig. 6B,
Medan and Preuss, 2011). Consistently, we found that haloperidol
had no general effect on PPI (indicating that there is no tonic
release of dopamine in the circuit), but does restore the apomor-
phine-induced effects on M-cell PPI at the 50 ms ISI (Fig. 6C). The
effect of apomorphine operates by restoring the nonlinear behav-
ior of the M-cell membrane upon depolarization (Fig. 5D), acting
specifically on the resistance near the firing threshold [Riyresh, S€€
above]. In control conditions, a 50 ms sound prepulse induces a
significant drop in resistance (Fig. 6D, left bars) (Medan and

Preuss, 2011; Neumeister et al., 2008) while after apomorphine
injection the same auditory prepulse fails to reduce the M-cell
membrane resistance and hence its nonlinear behavior is
restored. In other words, the M-cell becomes insensitive to the
prepulse only when it precedes the pulse by 50 ms (Fig. 6D, right
bars).

The fact that in vivo M-cell recording provides the entire inhib-
itory PPI time course in a single trial offers a significant experimen-
tal advantage. Interestingly, schizophrenia patients show PPI
deficits of the eye-blink reflex only at a 60 ms prepulse-pulse inter-
val (Braff et al., 1978, 2001a; Ludewig and Vollenweider, 2002;
Swerdlow et al., 2006) emphasizing the importance of studying
the time dependency of PPl mechanisms.

5. Conclusions and future avenues

The teleost M-cell system has proven an ideal model for a
multi-level analysis of fundamental questions, such as (i) what
are the central mechanisms underlying the adaptive modifications
of a relatively stereotyped sensorimotor reflex, (ii) what is the role
of inhibition in sensory information processing, beyond the classi-
cal concept of lateral inhibition and more recently and (iii) for the
inhibitory mechanism mediating sensorimotor gating (PPI) in the
vertebrate startle circuit.

The experimental accessibility of the M-cell lateral and ventral
dendrites for intracellular in vivo recordings will continue to
provide unique opportunities for understanding multimodal inte-
gration and its role in decision-making. The emerging prospects
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of in vivo imaging, computational modeling, and genetic or optical
manipulation of specific elements of the M-cell startle circuit
makes for an exciting and bright future, indeed.
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