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This paper deals with the use of calculus of variations to derive the boundary value problems which
describe the dynamical behaviour of two and three-bar frames with inclined members, and with ends
and intermediate points elastically restrained. The determination of exact eigenfrequencies and modes
in the case of free vibrations is included. A rigorous and complete development is presented. First, a brief
description of textbooks and papers previously published is included. Second the variational formulation
of the problem is presented. Third, the Hamilton principle is rigorously stated and the corresponding
boundary value problem is obtained. Finally, the method of separation of variables is used for the deter-
mination of the exact frequencies and mode shapes. In order to obtain an indication of the accuracy of the
developed mathematical model, some cases available in the literature have been considered and a special
code implementing the finite element method have been developed and used. New results are presented
for different geometrical configurations and mechanical parameters.
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1. Introduction

There are two basic approaches to obtaining the boundary prob-
lems that describe the dynamical behaviour of mechanical sys-
tems. One is based on Newton’s law of motion; the other is to
use Hamilton’s principle to determine the trajectory of the system
which minimises the action integral. The first approach is more
intuitive but it is not adequate for systems where there are many
degrees of freedoms, interacting members and deformable solids.

In structural dynamics, the variational approach is extremely
important and Hamilton’s principle provides a straightforward
method for determining the boundary value problems that de-
scribe the dynamical behaviour of mechanical systems. The use
of the mentioned principle and the techniques of the calculus of
variations constitute an excellent procedure in the case of the
determination of the equations of motion, the boundary conditions
and the intermediate conditions of systems with many degrees of
freedom and many interacting members. Thus, this approach is
particularly useful for frame structures with inclined members,
whose ends and intermediate points, are elastically restrained
against rotation and translation.

Substantial literature has been devoted to the theory and appli-
cations of the calculus of variations. For instance, the textbooks [1–
8] present the theoretical aspects of the mentioned discipline and
some of these works include applications in the statics and dynam-
ics of structural elements such as beams and plates.
ll rights reserved.

.

On the other hand several textbooks and monographs deal with
vibrating frames [9–15]. Also, there has been extensive research
into the vibration of frame structures and many different configu-
rations and complexities, have been treated. The majority of this
work has been in the area of closed frames [16–25].

A number of papers have been published on vibrating planar
frame structures with elastically restrained ends. Filipich and Laura
[26,27] analysed the in-plane vibrations of portal frames with elas-
tically restrained ends. Laura, Valerga and Filipich [28] dealt with
the determination of the fundamental frequency of a frame elasti-
cally restrained at the ends, carrying concentrated masses. Alba-
rracín and Grossi [29] dealt with the exact determination of
eigenfrequencies of a frame which consists of a beam supported
by a column, with intermediate elastic constraints and ends elasti-
cally restrained. Grossi and Albarracín [30] used the calculus of
variations to derive the boundary problems that describe the
dynamical behaviour of portal frames, with ends and intermediate
points elastically restrained and determined the exact frequencies
and mode shapes.

There is only a limited amount of information on the vibration
of elastically restrained frames with inclined members. The book
by Chin Hao Chang [15] includes the mechanics of elastic struc-
tures with inclined members. A model established for the vibration
of inclined bars is applied to frames with inclined members. The
cases of all joints hinged, two ends fixed and the central joint
hinged, and all joints rigidly connected, are investigated. Neverthe-
less, the case of ends and intermediate points elastically restrained
against rotation and translation has not been treated.

The aim of the present paper is to investigate the natural
frequencies and mode shapes of two and three-bar frames with

http://dx.doi.org/10.1016/j.apacoust.2012.07.014
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Nomenclature

Ai cross-sectional area of the ith beam
D(F) space of admissible functions of functional F
Da(F) space of admissible directions
EiIi flexural rigidity of the ith beam
F Energy functional
li length of the ith beam
rðiÞj spring constant of the jth rotational restraint
R set of real numbers
tðiÞj spring constant of the jth translational restraint
t time
TS kinetic energy of the mechanical system
US strain energy of the mechanical system
ui axial displacement along the ith beam
~ui admissible direction at ui

wi lateral deflection along the ith beam
~wi admissible direction at wi

xi coordinate along the ith beam axis

X(G), Y(G) global coordinates
u vector (u1,u2,u3)
~u vector ð~u1; ~u2; ~u3Þ
v vector (u,w)
~v vector ð~u; ~wÞ
w vector (w1,w2,w3)
~w vector ð~w1; ~w2; ~w3Þ
ai angles of inclination
dFðw; ~wÞ variation of functional F
k non-dimensional frequency parameter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq0A0=E0I0Þx2

i
4
q

l0
x circular frequency of the structure (rad/unit time)
Xi [0, li] � [ta, tb]
qi material density of the ith beam
U C2(X1) � C2(X2) � C2(X3)
W C4(X1) � C4(X2) � C4(X3)
U �W linear product space
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inclined members with ends and intermediate points elastically re-
strained against rotation and translation, intending the develop-
ments within each section to be rigorous and complete. A
condensed notation has been implemented by introducing several
differential operators. The use of the proposed condensed notation
avoids complicated and obscure formulae and allows including all
the analytical details.

The vague ‘‘operator’’ d which leads to the extensively used
mechanical ‘‘d method’’, constitutes a sometimes convenient short-
hand tactic, but its lack of rigour can be a source of confusion and
can arise as a disadvantage. Consequently, one of the motivations
of the present paper is to present a rigorous procedure, by introduc-
ing the functional adequate to the formulation of the Hamilton’s
principle and the corresponding spaces of admissible functions
and admissible directions.

Hamilton’s principle requires that between times ta and tb, at
which the positions of the mechanical system are known, it should
execute a motion which makes stationary the functional given by
the Hamilton’s action integral

FðwÞ ¼
Z tb

ta

ðTSðwÞ � USðwÞÞdt; ð1Þ

where L = TS � US is the well known Lagrangian for the motion. It
must be noted that the frame is a structural system which cannot
be studied using as admissible functions neither w(�, t) 2 C4[0, l]
(used in beams) nor wð�; �; tÞ 2 C4ðXÞ; X # R2 (used in plates). So,
it is necessary to clearly determine the space of admissible func-
tions D of the functional defined by (1) and the space Da of admis-
sible directions. The procedure adopted is particularly important in
the determination of the analytical expressions of the correspond-
ing natural boundary conditions and the intermediate conditions.

In the present paper the method of separation of variables is
used for the determination of the exact frequencies and mode
shapes. Tables are given for frequencies and two-dimensional plots
are given for mode shapes in some selected cases. In order to ob-
tain an indication of the accuracy of the developed mathematical
model, some particular cases available in the literature has been
considered, and a particular code with the application of the finite
element method has been developed.

The present paper is organised in the following way. First the
brief story stated above. In Section 2, the variational formulation
of the problem is described. In Section 3 the Hamilton principle
is rigorously stated by introducing adequate vectorial functions
and a particular product space. Also the corresponding boundary
value problem is obtained. In Section 4 the implementation of
the method of separation of variables is described for the determi-
nation of the results of exact frequencies and mode shapes. The pa-
per is concluded in Section 5 with some discussions.

2. Variational formulation of the problem

The frame considered is composed by three inclined beams of
lengths l1, l2 and l3 respectively as it is shown in Fig. 1, where the
coordinate systems has been adopted to help the analytical devel-
opments. The angles of inclination are given by ai, i = 1, 2, 3. The
behaviours of the individual members of the frame are assumed
to be governed by Euler’s beam theory with the axial deformations
effects included. In practice, the frame corners and ends may expe-
rience partial resistance to rotation and translation, and this situa-
tion can be modelled by considering ends and joints elastically
restrained against rotation and translation. For this reason, the fol-
lowing elastic restraints have been included:

(1) Four rotational restraints characterised by the spring con-
stants ri, i = 1, . . ., 4.

(2) Eight translational restraints characterised by the spring
constants tix, tiy, i = 1, 2, 3, 4.

The longitudinal and transverse displacements of the beams are
related to their local axes at any time t and described respectively
by the functions

uiðxi; tÞ;wiðxi; tÞ; xi 2 ½0; li�; i ¼ 1;2;3: ð2Þ

In the joints of connection, there exist constrained conditions which
lead to the following compatibility equations (see Fig. 1):

cos a1u1ðl1; tÞ � sin a1w1ðl1; tÞ ¼ cos a2u2ð0; tÞ � sin a2w2ð0; tÞ; ð3Þ

sin a1u1ðl1; tÞ þ cos a1w1ðl1; tÞ ¼ sin a2u2ð0; tÞ þ cos a2w2ð0; tÞ; ð4Þ

@w1

@x1
ðl1; tÞ ¼

@w2

@x2
ð0; tÞ; ð5Þ

cos a2u2ðl2; tÞ � sin a2w2ðl2; tÞ ¼ cos a3u3ð0; tÞ � sin a3w3ð0; tÞ; ð6Þ

sin a2u2ðl2; tÞ þ cos a2w2ðl2; tÞ ¼ sin a3u3ð0; tÞ þ cos a3w3ð0; tÞ; ð7Þ

@w2

@x2
ðl2; tÞ ¼

@w3

@x3
ð0; tÞ: ð8Þ

At time t, the kinetic energy of the mechanical system under study
is given by
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Fig. 1. Frame with inclined members and with ends and intermediate points elastically restrained.
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TS ¼
1
2

X3

i¼1

Z li

0
qiAi

@ui

@t
ðxi; tÞ

� �2

þ @wi

@t
ðxi; tÞ

� �2
 !

dxi; ð9Þ

where qiAi denotes the mass per unit length of the ith member of
the frame. The total potential energy due to the elastic deformation
of the beams, the springs at the ends restraints and the springs at
the intermediate restraints is given by:

US ¼
1
2

X3

i¼1

Z li

0
EiAi

@ui

@xi
ðxi; tÞ

� �2

þ EiIi
@2wi

@x2
i

ðxi; tÞ
 !2

0
@

1
Adxi

þ 1
2

X3

i¼1

kðiÞ11u2
i ð0; tÞ þ kðiÞ22w2

i ð0; tÞ þ kðiÞ33
@wi

@xi
ð0; tÞ

� �2
"

þ 2kðiÞ12uið0; tÞwið0; tÞ�

þ 1
2

kð4Þ11 u2
3ðl3; tÞ þ kð4Þ22 w2

3ðl3; tÞ þ kð4Þ33
@w3

@x3
ðl3; tÞ

� �2
"

þ 2kð4Þ12 u3ðl3; tÞw3ðl3; tÞ�; ð10Þ

where EiIi denotes the flexural rigidity of the ith member of the
frame and the rigidities kðlÞij generated by the elastic restraints are
defined in Appendix A. So, the energy functional to be considered
is given by

F¼1
2

X3

i¼1

Z tb

ta

Z li

0
qiAi

@ui

@t
ðxi;tÞ

� �2

þ @wi

@t
ðxi;tÞ

� �2
" #

dxidt�1
2

X3

i¼1

Z tb

ta

�
Z li

0
EiAi

@ui

@xi
ðxi;tÞ

� �2

þEiIi
@2wi

@x2
i

ðxi;tÞ
 !2

2
4

3
5dxidt

�1
2

X3

i¼1

Z tb

ta

kðiÞ11u2
i ð0;tÞþkðiÞ22w2

i ð0;tÞþkðiÞ33
@wi

@xi
ð0;tÞ

� �2

þ2kðiÞ12uið0;tÞwið0;tÞ
" #

dt

�1
2

�
Z tb

ta

kð4Þ11 u2
3ðl3;tÞþkð4Þ22 w2

3ðl3;tÞþkð4Þ33
@w3

@x3
ðl3;tÞ

� �2

þ2kð4Þ12 u3ðl3;tÞw3ðl3;tÞ
" #

dt:

ð11Þ
3. Product spaces and the concept of variation of the energy
functional

A simple examination of (11) reveals that it defines a functional
F which depends on the six real functions

ui; wi; i ¼ 1;2;3;

so, it is convenient to introduce the following vectorial functions:

v ¼ ðu;wÞ; u ¼ ðu1;u2;u3Þ; w ¼ ðw1;w2;w3Þ: ð12Þ

Now we recall the definition of product vector spaces, see for in-
stance [31,32].

Definition. Let V1, V2, . . ., Vn, be linear spaces. The product space

V ¼ V1 � V2 � � � � � Vn

consists of all the n-tuples u = (u1,u2, . . . ,un) where

ui 2 Vi for i ¼ 1;2; . . . ;n:

The algebraic operations:

uþ v ¼ ðu1 þ v1;u2 þ v2; . . . ;un þ vnÞ; 8u;v 2 V ;

au ¼ ðau1; au2; . . . ; aunÞ; 8a 2 R; 8u 2 V ;

transforms the space V in a linear space.
It is worth pointing out that the notion of product space allows

to clearly specify the degree of smoothness of the functions in-
volved in (11). For this purpose, we will make the following
assumptions:

uiðxi; tÞ 2 C2ðXiÞ and wiðxi; tÞ 2 C4ðXiÞ where Xi

¼ ½0; li� � ½ta; tb�; i ¼ 1;2;3:

Now if we introduce the spaces

U ¼ C2ðX1Þ � C2ðX2Þ � C2ðX3Þ ð13Þ

and
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W ¼ C4ðX1Þ � C4ðX2Þ � C4ðX3Þ; ð14Þ

it is immediately that u 2 U, w 2W and v 2 U �W. Consequently,
the functional defined by (11) depends on v and it can be written
F = F(v). It is quite easy to check that the product space U �W can
be transformed in a linear space with the following operations:

ðuð1Þ;wð1ÞÞ þ ðuð2Þ;wð2ÞÞ ¼ ðuð1Þ þ uð2Þ;wð1Þ þwð2ÞÞ; cðu;wÞ
¼ ðcu; cwÞ;

where u(1),u(2) 2 U, w(1),w(2) 2W and c 2 R. Now it is possible to
clearly specify the domain of admissible functions which is given by

DðFÞ ¼ v; v 2 U �W; fulfils the compatility conditionsf
ð3Þ—ð8Þ and has prescribed values at t ¼ ta and t ¼ tbg: ð15Þ

Since the domain of the functional F = F(v) has been determined,
it is possible to define the variation of the functional by

dFðv; ~vÞ ¼ dF
de
ðv þ e~vÞ

����
e¼0
; ð16Þ

where dFðv; ~vÞ denotes the variation of functional F in the point
v 2 D(F) and in the direction ~v 2 DaðFÞ. The admissible directions
~v at v 2 D(F) are those for which v þ e~v 2 DðFÞ; 8 sufficiently small
e and exists dFðv; ~vÞ. In consequence, in view of (15), ~v is an admis-
sible direction at v for D(F) if and only if ~v 2 DaðFÞ where

DaðFÞ ¼ ~v; ~v 2 U �W; fulfils the compatibility conditionsf
ð3Þ—ð8Þ and ~vðxi; taÞ ¼ ~vðxi; tbÞ ¼ 0; 8xi 2 ½0; li�; i ¼ 1;2;3g: ð17Þ

The application of (16) to the functional defined by (11) leads to
a rather lengthy algebraic procedure which can be condensed by
introducing the following differential operators:

Piðx; tÞ ¼ bi
@2wj

@x2
j

ðx; tÞ þ ci
@2wj�1

@x2
j�1

ðxþ lj�1; tÞ � kðiÞ33
@wj

@xj
ðx; tÞ; ð18Þ

Q iðx; tÞ ¼ di
@uj

@xj
ðx; tÞ þ ei

@3wj�1

@x3
j�1

ðxþ lj�1; tÞ þ fi
@uj�1

@xj�1
ðx

þ lj�1; tÞ � kðiÞ11ujðx; tÞ � kðiÞ12wjðx; tÞ; ð19Þ

Riðx; tÞ ¼ �bi
@3wj

@x3
j

ðx; tÞ � kðiÞ22wjðx; tÞ � kðiÞ12ujðx; tÞ þ gi
@3wj�1

@x3
j�1

�ðxþ lj�1; tÞ þ hi
@uj�1

@xj�1
ðxþ lj�1; tÞ; ð20Þ

where j = i if i = 1, 2, 3 and j = i � 1 if i = 4. Thus we have (see Appen-
dix A for more details):

dFðv; ~vÞ¼�
X3

i¼1

Z tb

ta

�
Z li

0
qiAi

@2ui

@t2 �EiAi
@2ui

@x2
i

 !
~uiþ qiAi

@2wi

@t2 þEiIi
@4wi

@x4
i

 !
~wi

" #
dxidt

þ
X4

i¼1

Z tb

ta

@ ~wi

@xi
ðai;tÞPiðai;tÞdtþ

X4

i¼1

Z tb

ta

~uiðai;tÞQiðai;tÞdt

þ
X4

i¼1

Z tb

ta

~wiðai;tÞRiðai;tÞdt;

ð21Þ

where ai ¼ 0; i ¼ 1;2;3; a4 ¼ l3; ~w4 ¼ ~w3; ~u4 ¼ ~u3.
Now the stationary condition which corresponds to Hamilton’s

principle takes the following rigorous form:

dFðv; ~vÞ ¼ 0; 8~v 2 DaðFÞ: ð22Þ

Restricting attention to those ~v 2 DaðFÞ which verify the conditions
~wiðai; tÞ ¼ ~uiðai; tÞ ¼
@ ~wi

@xi
ðai; tÞ ¼ 0; 8t 2 ðta; tbÞ; i

¼ 1; . . . ;4; ð23Þ

we have from (21) and (22) that

dFðv; ~vÞ ¼
X3

i¼1

Z tb

ta

�
Z li

0
qiAi

@2ui

@t2 �EiAi
@2ui

@x2
i

 !
~uiþ qiAi

@2wi

@t2 þEiIi
@4wi

@x4
i

 !
~wi

" #
dxidt

¼ 0; 8~v 2DaðFÞ:
ð24Þ

Since ~ui and ~wi are arbitrary smooth functions and verify the condi-
tions (23), the fundamental lemma of the calculus of variations can
be applied to Eq. (24) to conclude that the functions ui and wi must
respectively satisfy the following differential equations:

EiAi
@2ui

@x2
i

ðxi; tÞ � qiAi
@2ui

@t2 ðxi; tÞ ¼ 0; 8xi 2 ð0; liÞ; i

¼ 1;2;3; 8t 2 ½ta; tb�; ð25Þ

EiIi
@4wi

@x4
i

ðxi; tÞ þ qiAi
@2wi

@t2 ðxi; tÞ ¼ 0; 8xi 2 ð0; liÞ; i

¼ 1;2;3; 8t 2 ½ta; tb�: ð26Þ

Now it is possible to remove the restrictions (23), and since the
functions ui must satisfy Eq. (25) and the functions wi Eq. (26),
the expression (21) reduces to

dFðv; ~vÞ ¼
X4

i¼1

Z tb

ta

@ ~wi

@xi
ðai; tÞPiðai; tÞdt

þ
X4

i¼1

Z tb

ta

~uiðai; tÞQ iðai; tÞdt

þ
X4

i¼1

Z tb

ta

~wiðai; tÞRiðai; tÞdt: ð27Þ

Since the functions ~wiðai; tÞ; ~uiðai; tÞ; @ ~wi
@xi
ðai; tÞ; 8t 2 ðta; tbÞ; i ¼ 1;

. . . ;4, are smooth and arbitrary, the stationary condition (22)
leads to the corresponding natural boundary conditions. To reduce
the number of defining variables and parameters the following
non-dimensional variables and parameters are introduced:

X ¼ Xi ¼ xi=li; i ¼ 1; . . . ;3; ð28aÞ

Ri ¼
rili
EiIi

; i ¼ 1; . . . ;4; l4 ¼ l3; E4I4 ¼ E3I3; ð28bÞ

Tix ¼
tixl3

i

EiIi
; Tiy ¼

tiyl3
i

EiIi
; i ¼ 1;2; ð28cÞ

Tix ¼
tixl3

i�1

Ei�1Ii�1
; Tiy ¼

tiyl3
i�1

Ei�1Ii�1
; i ¼ 3;4; ð28dÞ

Lij ¼
li

lj
; Aij ¼

Ai

Aj
; ði; jÞ 2 fð1;0Þ; ð2;0Þ; ð3;0Þ; ð2;1Þ; ð3;2Þg; ð28eÞ

Eij ¼
Ei

Ej
; Iij ¼

Ii

Ij
; ði; jÞ 2 fð1;0Þ; ð2;0Þ; ð3;0Þ; ð1;2Þ; ð2;3Þg; ð28fÞ

J0 ¼
I0

A0l2
0

; Ji ¼
Ii

Ail
2
i

; qi0 ¼
qi

q0
; i ¼ 1;2;3; ð28gÞ

where l0, q0, A0, E0 and I0 are generic parameters.
By assuming separable solutions in the form

uiðX; tÞ ¼ UiðXÞ cos xt; ð29Þ
wiðX; tÞ ¼WiðXÞ cos xt; i ¼ 1;2;3; X 2 ½0;1�; t P 0; ð30Þ



Table 1a
First five exact values of the frequency parameter k for a frame with one inclined
member and ends rigidly clamped, for different values of L30.

L30 k1 k2 k3 k4 k5

1 1.51405646 2.02926280 3.39508597 4.19589016 4.59485951
6/5 1.41721109 2.01115388 3.28370976 3.78347996 4.42294976
7/5 1.34001905 1.99328729 3.03178225 3.51625304 4.35387959
8/5 1.27532429 1.97142612 2.72980005 3.36862073 4.26535142
9/5 1.21867577 1.94462321 2.46273729 3.23723455 4.07086141
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the natural boundary conditions and the compatibility conditions
can be written as:

d2W1

dX2 ð0Þ � Kð1Þ33
dW1

dX
ð0Þ ¼ 0; ð31Þ

dU1

dX
ð0Þ � J1Kð1Þ11 U1ð0Þ � J1Kð1Þ12 W1ð0Þ ¼ 0; ð32Þ

d3W1

dX3 ð0Þ þ Kð1Þ22 W1ð0Þ þ Kð1Þ12 U1ð0Þ ¼ 0; ð33Þ

d2W3ð1Þ
dX2 þ Kð4Þ33

dW3ð1Þ
dX3

¼ 0; ð34Þ

dU3

dX
ð1Þ þ J3Kð4Þ11 U3ð1Þ þ J3Kð4Þ12 W3ð1Þ ¼ 0; ð35Þ

d3W3

dX3 ð1Þ � Kð4Þ22 W3ð1Þ � Kð4Þ12 U3ð1Þ ¼ 0; ð36Þ

cos a1U1ð1Þ � sin a1W1ð1Þ � cos a2U2ð0Þ þ sin a2W2ð0Þ ¼ 0; ð37Þ
sina1U1ð1Þ þ cos a1W1ð1Þ � sina2U2ð0Þ � cos a2W2ð0Þ ¼ 0; ð38Þ

L21
dW1

dX
ð1Þ � dW2

dX
ð0Þ ¼ 0; ð39Þ

cos a2U2ð1Þ � sin a2W2ð1Þ � cos a3U3ð0Þ þ sin a3W3ð0Þ ¼ 0; ð40Þ
sina2U2ð1Þ þ cos a2W2ð1Þ � sina3U3ð0Þ � cos a3W3ð0Þ ¼ 0; ð41Þ

L32
dW2

dX
ð1Þ � dW3

dX
ð0Þ ¼ 0; ð42Þ

d2W2

dX2 ð0Þ � Kð2Þ33
dW2

dX
ð0Þ � E12I12L2

21
d2W1

dX2 ð1Þ ¼ 0; ð43Þ

d2W3

dX2 ð0Þ � Kð3Þ33
dW3

dX
ð0Þ � E23I23L2

32
d2W2

dX2 ð1Þ ¼ 0; ð44Þ

A21

L21E12J1

dU2

dX
ð0Þ � Kð2Þ11

L3
21E12I12

U2ð0Þ �
Kð2Þ12

L3
21E12I12

W2ð0Þ þ sinða2

� a1Þ
d3W1

dX3 ð1Þ �
G1

J1

dU1

dX
ð1Þ

¼ 0; ð45Þ

A32

L32E23J2

dU3

dX
ð0Þ � Kð3Þ11 U3ð0Þ � Kð3Þ12 W3ð0Þ � sinða2 � a3Þ

� d3W2

dX3 ð1Þ �
G2

J2

dU2

dX
ð1Þ

¼ 0; ð46Þ

d3W2

dX3 ð0Þ þ Kð2Þ22 W2ð0Þ þ Kð2Þ12 U2ð0Þ � cosða2 � a1ÞE12I12L3
21

� d3W1

dX3 ð1Þ þ G3
E12L21

A21J2

dU1

dX
ð1Þ

¼ 0; ð47Þ

�d3W3

dX3 ð0Þ � L3
32E23I23Kð3Þ22 W3ð0Þ � L3

32E23I23Kð3Þ12 U3ð0Þ

þ cosða2 � a3ÞE23I23L3
32

d3W2

dX3 ð1Þ � G4
E23L32

A32J3

dU2

dX
ð1Þ

¼ 0; ð48Þ

where the coefficients KðlÞij are obtained from the expression of kðlÞij

replacing tixand tiy respectively by Tix and Tiy. The coefficients Gi

are listed in Appendix A. Now, Eqs. (25) and (26) reduce to

d2Ui

dX2 ðXÞ þ k4C2iUiðXÞ ¼ 0; 8X 2 ð0;1Þ; i ¼ 1;2;3; ð49Þ

d4Wi

dX4 ðXÞ � k4C1iWiðXÞ ¼ 0; 8X 2 ð0;1Þ; i ¼ 1;2;3; ð50Þ
where

C1i ¼ ðqi0Ai0ÞðEi0Ii0Þ�1L4
i0; C2i ¼ ðqi0Ai0ÞðEi0Ai0Þ�1J0L2

i0 and k4

¼ q0A0

E0I0
x2l4

0:

In conclusion, the boundary problem which describes the natural
vibrations of the mechanical system under study is given by Eqs.
(49) and (50) and the boundary or compatibility conditions (31)–
(48). It must be noted that the angles of inclination must verify
the conditions a1 – 0 and a2 – np/2, n = 1, 2, . . . .
4. Numerical results

Using the well-known separation of variables method, the solu-
tions of Eqs. (49) and (50) are respectively assumed to be of the
form:

UiðXÞ ¼ dðiÞ1 cos k2
ffiffiffiffiffiffi
C2i

p
X

� �
þ dðiÞ2 sin k2

ffiffiffiffiffiffi
C2i

p
X

� �
; ð51Þ

WiðXÞ ¼ cðiÞ1 cosh k
ffiffiffiffiffiffi
C1i

4
p

X
� �

þ cðiÞ2 sinh k
ffiffiffiffiffiffi
C1i

4
p

X
� �

þ cðiÞ3

� cos k
ffiffiffiffiffiffi
C1i

4
p

X
� �

þ cðiÞ4 sin k
ffiffiffiffiffiffi
C1i

4
p

X
� �

; i

¼ 1;2;3: ð52Þ

Replacing Eqs. (51) and (52) into the conditions (31)–(48), we ob-
tain a set of eighteen homogeneous equations in the constants cðiÞj

and dðiÞj . Since the system is homogeneous, for existence of a non-
trivial solution, the determinant of coefficients must be equal to
zero. This procedure yields the frequency equation:

GðR;Tx;Ty; kÞ ¼ 0; ð53Þ

where the components of R, Tx and Ty are given by Eqs. (28b–d).
In order to obtain an indication of the accuracy of the developed

mathematical model, the classical problems analysed in Refs.
[9,29,30] have been solved. In all the cases an excellent agreement
has been observed.

Since the algorithm developed allows and great number of con-
figurations and mechanical characteristics and the number of cases
is prohibitively large, results are presented for only a few cases. All
the numerical results have been obtained with the following gen-
eric parameters: q0 = q1, E0 = E1, I0 = I1, A0 = A1 and l0 = l1.

Table 1a depicts values of coefficients ki, i = 1, 2, . . ., 5 where
k4

i ¼
q0A0
E0 I0

x2
i l4

0; for a frame with rigidly clamped ends and one in-
clined member. The geometric and mechanical parameters values
are given by:

E12 ¼ E23 ¼ 1; I12 ¼ I23 ¼ 1; A21 ¼ A32 ¼ 1; J1 ¼ 1=30000;
L10 ¼ 1;a1 ¼ p=2; a3 ¼ �p=2

and the remaining values are given in Table 1b except the values of
a2, J2, J3, L21, L32 and L20 which vary with L30, and are depicted in Ta-
ble 1c. It can be observed that the values of ki, i = 1, 2, . . ., 5 decrease
when the values of the parameter L30 increase. The first five mode



Table 1c
Values of the characteristic parameters a2, J2, J3, L21, L32 and L20 which vary with L30

and correspond to the case depicted in Table 1a.

L30 a2 L20 = L21 J2 J3 L32

1 0.00E+0 2 1/120000 1/30000 1/2
6/5 7.60E�3

ffiffiffiffiffiffiffiffiffi
101
p

=5 1/121200 1/43200 6
ffiffiffiffiffiffiffiffiffi
101
p

=101
7/5 7.73E�3 2

ffiffiffiffiffiffi
26
p

=5 1/124800 1/55800 7
ffiffiffiffiffiffi
26
p

=52
8/5 7.77E�3

ffiffiffiffiffiffiffiffiffi
109
p

=5 1/130800 1/76800 8
ffiffiffiffiffiffiffiffiffi
109
p

=109
9/5 7.79E�3 2

ffiffiffiffiffiffi
29
p

=5 1/139200 1/97200 9
ffiffiffiffiffiffi
29
p

=58

(a) First mode shape (b) Second mode shape 

(c) Third mode shape (d) Fourth mode shape  

(e) Fifth mode shape 

Fig. 2. Mode shapes of the frame with the same parameters used in Table 1a in the
case L30 = 9/5: (a) first mode shape, (b) second mode shape, (c) third mode shape,
(d) fourth mode shape, (e) fifth mode shape.
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shapes which correspond to the case L30 = 9/5 are presented in
Fig. 2a–e.

Table 2a depicts values of coefficients ki, i = 1, 2, . . ., 5 for a
frame with rigidly clamped ends and one inclined member. The
geometric and mechanical parameters values are given by:

L21¼2; E12¼E23¼1; I12¼ I23¼1; A21¼A32¼1; J1¼1=30000;
J2¼1=120000; L10¼1; L20¼2; a1¼p=2; a2¼0;

and the remaining values are given in Table 2b except the values of
J3, L32 and L30 which vary with a3 and are depicted in Table 2c. The
first five mode shapes which correspond to the case a3 = � p/4 are
presented in Fig. 3a–e.

Table 3a depicts values of coefficients ki, i = 1, 2, . . ., 5 for a
frame with a fixed geometry and two intermediate points elasti-
cally restrained. The geometric and mechanical parameters values
are given by:

R1¼R4¼1; R3¼0; T1x¼T4x¼T1y¼T4y¼1; T2x¼T2y¼0;

L21¼
ffiffiffi
2
p

; L32¼
ffiffiffi
2
p

=2; E12¼E23¼1; I12¼ I23¼1; A21¼A32¼1;

and the remaining values are given in Table 3b. It can be observed
that the values of ki, i = 1, 2, . . ., 5 increase with the increment of the
values of the parameters T3x, T3y, and R2. The first five mode shapes
which correspond to the case T3x = T3y = R2 = 100, are presented in
Fig. 4a–e.

Table 4a depicts values of coefficients ki, i = 1, 2, . . ., 5 for a clas-
sical portal frame with ends elastically restrained against rotation.
The geometric and mechanical parameters values are given by:

R2 ¼ R3 ¼ 0; L21 ¼ 2; L32 ¼ 1=2; E12 ¼ E23 ¼ 1;
I12 ¼ I23 ¼ 1; A21 ¼ A32 ¼ 1;

and the remaining values are given in Table 4b. In this case, the val-
ues of ki, i = 1, 2, . . ., 5 increase with the increment of the values of
the parameters R1 and R4.

Comparison of Tables 3a and 4a shows that the translational re-
straints generally have greater influence on the frequencies than
the rotational restraints.

The model established for the vibration of a frame with three
inclined members can be applied to a two-bar frame. For such a
frame it is sufficient to adopt the condition a2 = a3.

Table 5a depicts values of coefficients ki, i = 1, 2, . . ., 5 for a two-
bar frame with ends elastically restrained against rotation and
translation. The geometric and mechanical parameters values are
given by:

L21 ¼ 1=2; L32 ¼ 1; E12 ¼ E23 ¼ 1; I12 ¼ I23 ¼ 1;
A21 ¼ A32 ¼ 1;

and the remaining values are given in Table 5b. In this case, the
values of ki, i = 1, 2, . . ., 5 increase with the increment of the values
of K. The first five mode shapes which correspond to the case K = 1
and K = 1000 are respectively presented in Fig. 5a–e and Fig. 6a–e.

For all the cases depicted by Tables 1a–5a, the finite element
method was implemented and a special code developed where
25 Euler beam elements have been employed to divide each beam.
The numerical values obtained with this method, coincide at least
Table 1b
Values of characteristic parameters Ri, Tix, Tiy, Ii0, Ai0, Ei0 and qi0 which correspond to
the case depicted in Table 1a.

i Ri Tix Tiy Ii0 Ai0 Ei0 qi0

1 1 1 1 1 1 1 1
2 0 0 0 1 1 1 1
3 0 0 0 1 1 1 1
4 1 1 1 – – – –

ends and one inclined member, for different values of a3.

a3 k1 k2 k3 k4 k5

�p/4 1.44215592 2.01495355 3.04552404 3.62061372 4.42211965
�3p/

8
1.52216252 2.03384784 3.35909676 4.03838813 4.52411483

�p/2 1.51405646 2.02926280 3.39508597 4.19589016 4.59485951
�5p/

8
1.42440808 2.03930622 3.38256465 4.03291179 4.46872486

�3p/
4

1.21392548 2.07675290 3.08866802 3.55039980 4.34065004



Table 2b
Values of characteristic parameters Ri, Tix, Tiy, Ii0, Ai0, Ei0 and qi0 which correspond to
the case depicted in Table 2a.

i Ri Tix Tiy Ii0 Ai0 Ei0 qi0

1 1 1 1 1 1 1 1
2 0 0 0 1 1 1 1
3 0 0 0 1 1 1 1
4 1 1 1 – – – –

Table 2c
Values of the characteristic parameters J3, L30 and L32 which vary with a3 and
correspond to the case depicted in Table 2a.

a3 J3 L30 L32

�p/4 1.67E�5 1.414 0.707
�3p/8 2.85E�5 1.082 0.541
�p/2 3.33E�5 1.000 0.500
�5p/8 2.85E�5 1.082 0.541
�3p/4 1.67E�5 1.414 0.707

(a) First mode shape (b) Second mode shape  

(c) Third mode shape (d) Fourth mode shape 

(e) Fifth mode shape  

Fig. 3. Mode shapes of the frame with the same parameters used in Table 2a in the
case a3 = �p/4: (a) first mode shape, (b) second mode shape, (c): third mode shape,
(d) fourth mode shape, (e) fifth mode shape.

Table 3a
First five exact values of the frequency coefficient k for a frame with a fixed geometry
and two intermediate points elastically restrained.

T3x = T3y = R2 k1 k2 k3 k4 k5

0.1 2.05141270 2.74674211 4.15813108 4.40725873 5.56447003
1.0 2.05672993 2.76782191 4.17877712 4.41378971 5.56682495

10.0 2.10631121 2.87768329 4.27928093 4.49634494 5.58487356
100.0 2.46585465 2.99012833 4.32884668 4.75083373 5.63290958

1000.0 3.01195249 3.69232241 4.35373620 4.86254731 5.73338619

Table 3b
Values of the characteristic parameters Ji, ai, Li0, Ii0, Ai0, Ei0 and qi0 which correspond
to the case depicted in Table 3a.

i Ji ai Li0 Ii0 Ai0 Ei0 qi0

1 1/60000 p/4 1 1 1 1 1
2 1/120000 0

ffiffiffi
2
p

1 1 1 1

3 1/60000 �p/4 1 1 1 1 1

(a) First mode shape (b) Second mode shape 

(c) Third mode shape (d) Fourth mode shape 

(e) Fifth mode shape 

Fig. 4. Mode shapes of the frame with the same parameters used in Table 3a in the
case T3x = T3y = R2 = 100: (a) first mode shape, (b) second mode shape, (c) third mode
shape, (d) fourth mode shape, (e) fifth mode shape.

Table 4a
First five exact values of the frequency coefficient k for a classical portal frame with
ends elastically restrained against rotation, for different values of the parameters R1

and R4.

R1 = R4 k1 k2 k3 k4 k5

0 1.00735667 1.89604323 2.80366323 3.04479119 3.25339525
1 1.17056652 1.90684805 2.80616330 3.05528110 3.29161526

10 1.40024036 1.93009678 2.81123764 3.07324651 3.39089853
100 1.47149835 1.93941103 2.81315615 3.07893735 3.43797790

1000 1.48027594 1.94062957 2.81340241 3.07962756 3.44445612
10000 1.48117443 1.94075519 2.81342774 3.07969804 3.44512809

Table 4b
Values of the characteristic parameters Tix, Tiy, Ji, ai, Li0, Ii0, Ai0, Ei0 and qi0 which
correspond to the case depicted in Table 4a.

i Tix Tiy Ji ai Li0 Ii0 Ai0 Ei0 qi0

1 100 100 1/30000 p/2 1 1 1 1 1
2 0 0 1/120000 0 2 1 1 1 1
3 0 0 1/30000 �p/2 1 1 1 1 1
4 100 100 – – – – – – –

Table 5a
First five exact values of the frequency coefficient k for a two-beams frame with ends
elastically restrained against rotation and translation. The restraint parameter vary
with K, where T1x = T1y = T4x = T4y = R1 = R4 = K.

K k1 k2 k3 k4 k5

0 0.00000000 1.87059351 2.80025968 4.07815885 4.42332371
1 1.72257177 2.45065136 2.90116036 4.33543228 4.61859014

10 2.42449159 3.14301012 3.55770052 4.76792675 5.06750404
100 3.45649311 4.01623701 4.57459083 5.32647698 6.06926303

1000 3.87182675 4.60882552 5.92481310 6.78226633 7.64381353
10000 3.91843903 4.70916362 7.01271047 7.72026488 9.19332081

Table 5b
Values of the characteristic parameters Tix, Tiy, Ri, Ji, ai, Li0, Ii0, Ai0, Ei0 and qi0 which
correspond to the case depicted in Table 5a.

i Tix Tiy Ri Ji ai Li0 Ii0 Ai0 Ei0 qi0

1 K K K 1/10000 p/4 1 1 1 1 1
2 10 100 0 1/2500 �p/4 1/2 1 1 1 1
3 0 0 0 1/2500 �p/4 1/2 1 1 1 1
4 K K K – – – – – – –
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(a) First mode shape (b) Second mode shape 

(c) Third mode shape (d) Fourth mode shape 

(e) Fifth mode shape 

Fig. 5. Mode shapes of the frame with the same parameters used in Table 5a in the case K = 1: (a) first mode shape, (b) second mode shape, (c) third mode shape, (d) fourth
mode shape, (e) fifth mode shape.
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up to four decimal digits with the exact values, so they have not
been included in the tables.
5. Conclusions

In this paper the calculus of variations was used to derive the
boundary value problems which describe the dynamical behaviour
of two and three-bar frames with inclined members, and with ends
and intermediate points elastically restrained against rotation and
translation.

A rigorous procedure was used by introducing a functional ade-
quate to the formulation of the Hamilton’s principle and the corre-
sponding spaces of functions. The stationary condition for the
functional F defined by (11) on the space of admissible functions
has been clearly stated by defining the space of admissible func-
tions D(F) and the space Da(F) of admissible directions. It has been
shown that the introduction of the vectorial functions (12), the
spaces (13), (14) and the product space U �W, leads to the rigor-
ous definition of the variation of the functional F by means of the
derivative (16).

A simple, computationally efficient and accurate approach has
been developed for the determination of natural frequencies and
modal shapes of free vibration of the frames described above.
Numerical results for the first five natural frequencies in tabular
form and the corresponding mode shapes were included. In order
to obtain an indication of the accuracy of the mathematical model
obtained, some cases available in the literature have been consid-
ered and the finite element method has also been implemented. In
all cases excellent agreements have been determined. The algo-
rithm is very general and it is attractive regarding its versatility
in handling boundary and intermediate conditions. Besides, it al-
lows taking into account a great variety of complicating effects
and the adoption of different generic parameters l0, q0, A0, E0 and
I0, leads to different analytical expressions for the restraint param-
eters and the frequency coefficients.



(a) First mode shape (b) Second mode shape 

(c) Third mode shape (d) Fourth mode shape 

(e) Fifth mode shape 

Fig. 6. Mode shapes of the frame with the same parameters used in Table 5a in the case K = 1000: (a) first mode shape, (b) second mode shape, (c) third mode shape, (d)
fourth mode shape, (e) fifth mode shape.
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Appendix A

Rigidity coefficients of the functional defined by (10) and alge-
braic procedure to obtain the expression (21).

As a consequence of the existence of the angles of inclination ai,
i = 1, 2, 3, the rigidity coefficients tix and tiy generate the following
coefficients included in Eq. (10):

kðiÞ11 ¼ tix cos2 ai þ tiy sin2 ai;

kðiÞ12 ¼ kðiÞ21 ¼ �tix cos ai sinai þ tiy sin ai cos ai;

kðiÞ22 ¼ tix sin2 ai þ tiy cos2 ai;
kðiÞ33 ¼ ri; i ¼ 1;2;3; kð4Þ11 ¼ t4x cos2 a3 þ t4y sin2 a3; k
ð4Þ
12 ¼ kð4Þ21

¼ �t4x cos a3 sina3 þ t4y sin a3 cos a3; k
ð4Þ
22

¼ t4x sin2 a3 þ t4y cos2 a3; k
ð4Þ
33 ¼ r4:

The application of (16) to (11) leads to

dFðv; ~vÞ¼
X3

i¼1

Z tb

ta

Z li

0
qiAi

@ui

@t
ðxi;tÞ

@~ui

@t
ðxi;tÞþqiAi

@wi

@t
ðxi;tÞ

�

@ ~wi

@t
ðxi;tÞ

	
dxidt�

X3

i¼1

Z tb

ta

Z li

0
EiAi

@ui

@xi
ðxi;tÞ

@~ui

@xi
ðxi;tÞþEiIi

@2wi

@x2
i

ðxi;tÞ
"

@2 ~wi

@x2
i

ðxi;tÞ
#

dxidt�
X3

i¼1

Z tb

ta

kðiÞ11uið0;tÞ~uið0;tÞþkðiÞ22wið0;tÞ ~wið0;tÞ
h

þkðiÞ33
@wi

@xi
ð0;tÞ@

~wi

@xi
ð0;tÞþkðiÞ12uið0;tÞ ~wið0;tÞþkðiÞ12wið0;tÞ~uið0;tÞ

	
dt

�
Z tb

ta

kð4Þ11 u3ðl3;tÞ~u3ðl3;tÞþkð4Þ22 w3ðl3;tÞ ~w3ðl3;tÞþkð4Þ33
@w3

@x3
ðl3;tÞ

�
@ ~w3

@x3
ðl3;tÞþkð4Þ12 u3ðl3;tÞ ~wnðl3;tÞþkð4Þ12 w3ðl3;tÞ~u3ðl3;tÞ

	
dt:
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Using integration by parts we obtain

dFðv; ~vÞ¼�
X3

i¼1

Z tb

ta

Z li

0
qiAi

@2ui

@t2
~uiþqiAi

@2wi

@t2
~wi�EiAi

@2ui

@x2
i

~ui

"

þEiIi
@4wi

@x4
i

~wi

#
dxidtþ

X3

i¼1

Z tb

ta

EiIi
@2wið0;tÞ

@x2
i

@ ~wið0;tÞ
@xi

"

�EiIi
@2wiðli;tÞ

@x2
i

@ ~wiðli;tÞ
@xi

þEiIi
@3wiðli;tÞ

@x3
i

~wiðli;tÞ

�EiIi
@3wið0;tÞ

@x3
i

~wið0;tÞþEiAi
@ui

@xi
ð0;tÞ~uið0;tÞ�EiAi

@ui

@xi
ðli;tÞ~uiðli;tÞ

#
dt

�
X3

i¼1

Z tb

ta

kðiÞ11uið0;tÞ~uið0;tÞþkðiÞ22wið0;tÞ ~wið0;tÞþkðiÞ33
@wi

@xi
ð0;tÞ

�

@ ~wi

@xi
ð0;tÞþkðiÞ12uið0;tÞ ~wið0;tÞþkðiÞ12wið0;tÞ~uið0;tÞ

	
dt

�
Z tb

ta

kð4Þ11 u3ðl3;tÞ~u3ðl3;tÞþkð4Þ22 w3ðl3;tÞ ~w3ðl3;tÞþkð4Þ33
@w3

@x3
ðl3;tÞ

�
@ ~w3

@x3
ðl3;tÞþkð4Þ12 u3ðl3;tÞ ~w3ðl3;tÞþkð4Þ12 w3ðl3;tÞ~u3ðl3;tÞ

	
dt:

Because the admissible directions satisfy the compatibility Eqs.
(37), (38), (40) and (41) it is possible to collect terms adequately
and the use of the differential operators (18)–(20) evaluated at (ai,
t) with the following coefficients:

bi¼EiIi; c1¼0; c2¼�b1; c3¼�b2; b4¼�b3; c4¼0; di¼EiAi; i¼1;2;3; d4¼�d3;

e1¼0; e2¼ sinða2�a1ÞE1I1; e3¼�sinða2�a3ÞE2I2; f 1¼0; f 2¼�G1E1A1;

f3¼�G2E2A2; e4¼�d3; e4¼0; f 4¼0; g1¼0; h1¼0; g2¼cosða2�a1ÞE1I1;

h2¼�G3E1A1; g3¼cosða2�a3ÞE2I2; h3¼�G4E2A2; g4¼0; h4¼0:

In all cases, is j = i if i = 1, 2, 3 and j = i � 1 if i = 4.

G1 ¼
sin a2 � cos a1 sinða2 � a1Þ

sin a1
; G2 ¼

cos a3 � sin a2 sinða2 � a3Þ
cos a2

;

G3 ¼
cos a2 � cos a1 cosða2 � a1Þ

sin a1
; G4 ¼

sin a2 cosða2 � a3Þ � sin a3

cos a2
:
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