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Abstract: An exact approach for free transverse vibrations of a Timoshenko beam with ends elastically restrained against rotation and 

translation and arbitrarily located internal restraints is presented. The calculus of variations is used to obtain the equations of motion, 

the boundary conditions and the transitions conditions which correspond to the described mechanical system. The derived differential 

equations are solved individually for each segment of the beam with the corresponding boundary and transitions conditions. The 

derived mathematical formulation generates as particular cases, and several mathematical models are used to simulate the presence of 

cracks. Some cases available in the literature and the presence of some errors are discussed. New results are presented for different end 

conditions and restraint conditions in the intermediate elastic constraints with their corresponding modal shapes. 
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1. Introduction  

The behavior of the natural frequencies of beams has 

been extensively analyzed to detect the presence, size 

and location of cracks. Several approaches have been 

implemented to model cracks in Euler-Bernoulli and 

Timoshenko beams. The most relevant techniques of 

crack detection were usually based on changes in 

natural frequencies, but approaches based on 

measuring dynamics flexibility or comparison of mode 

shapes, have also been implemented. Due to the great 

amount of information, it is not the intention to review 

the literature and in consequence, only some relevant 

papers will be cited. Ostachowicz and Krawczuk [1] 

and Farghaly [2] modeled the crack as a continuous 

flexibility using the displacement field in the vicinity of 

the crack modeled with fracture mechanics methods. 

Dimarogonas [3] presented a state of the art review. 

Chondros et al. [4] developed a consistent cracked 
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beam vibration theory. Shifrin and Ruotolo [5] 

analyzed a beam with an arbitrary number of cracks by 

representing cracks as massless springs and using a 

continuous mathematical model of the beam in 

transverse vibration. Chondros et al. [6] modeled a 

continuous simply supported beam with a breathing 

crack for the prediction of changes in transverse 

vibration. Zheng and Fan [7] tackled the problem of 

beams with arbitrary number of cracks with a new 

Fourier series method. Li [8, 9] presented a model of 

massless rotational spring adopted to analyze the free 

vibrations of multi-step uniform and non-uniforms 

beams, with an arbitrary number of cracks and 

concentrated masses. Fernández-Sáez and Navarro [10] 

implemented the method of flexibility influence 

functions to approximate the fundamental frequency 

for bending vibrations of cracked Euler-Bernoulli 

beams with different boundary conditions. Lele and 

Maiti [11] presented the method of detection of 

location of cracks in beams based on frequency 

measurements and Timoshenko beam theory. Lin et al. 

[12] proposed a solution for simply supported cracked 
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Timoshenko beams by deriving a closed form solution. 

Khiem and Lien [13] formulated a multi-crack 

detection method for beam by natural frequencies in 

the form of a non-linear optimization problem. Ruotolo 

and Surace [14] proposed the extension of the smooth 

function method for bending vibrations to the 

calculation of longitudinal natural frequencies of a 

vibrating isotropic bar with an arbitrary finite number 

of symmetric transverse open cracks. Binici [15] 

proposed a method to determine eigenfrequency 

changes of axially loaded beams where cracks are 

modeled as rotational springs. Hsu [16] applied the 

differential quadrature method to solve the eigenvalue 

problems of a clamped-free and a hinged-hinged 

Bernoulli-Euler beams on elastic foundation with a 

single edge crack, axial loading and excitation force. 

Loya et al. [17] derived exact and perturbation 

solutions for the natural frequencies for vibrations of 

cracked Timoshenko beams. Khaji et al. [18] 

developed an analytical approach for crack 

identification procedure in uniform Timoshenko beams 

with a crack model where the cracked section of the 

beam was modeled as a local flexibility that can be 

regarded as a rotational spring. Zhou [19] studied the 

free vibration of multi-spam Timoshenko beams by the 

Rayleigh-Ritz method. 

The main purpose of the present paper is to present 

an approach based on modeling a cracked beam as two 

segments connected by a general elastic restraint, 

composed by several rotational and translational 

springs. It is also assumed that the beam ends are 

elastically restrained against rotation and translation 

(Fig. 1).  

The method of separation of variables is used for the 

determination of the exact natural frequencies and 

mode shapes. In order to obtain an indication of the 

accuracy of the developed mathematical model, some 

cases available in the literature have been considered 

and comparisons of numerical results are included. 

Particularly, a comparison of numerical values with 

those obtained by Khaji et al. [18] is included.  

The procedure proposed in this work made it 

possible to detect an error in two coefficients 

presented in Ref. [17]. A comparison with the 

corrected eigenvalues is included. Since the developed 

algorithm can be applied to a wide range of the 

different elastic restraint conditions, a great number of 

problems were solved but results are presented for 

only a few cases. 

This paper is organized in the following way: In 

Section 2, a summary of the treatment of techniques of 

the calculus of variations to obtain the governing 

differential equations and the boundary and transition 

conditions is presented; In Section 3, the exact solution 

obtained with the method of separation of variables is 

presented; In Section 4, comparison studies with some 

cases available in the literature and new results are 

presented for the natural frequency and their 

corresponding modal shapes; Finally, Section 5 

contains the conclusions of this paper. 

2. Theory and Formulations 

Let us consider a uniform Timoshenko beam of 

length ,l  which has elastically restrained ends, and also 

is constrained at an intermediate point with a general 

elastic restraint composed by several rotational and 

translational springs, as shown in Fig. 1.  

Fig. 1  Beam model description.

The beam system is made up of two different spans, 

which correspond to the intervals [0, c] and [c, l],

respectively. It is assumed that the ends and the 

intermediate point c are elastically restrained against 

translation and/or rotation. The rotational restraints are 

characterized by the spring constants r1, r2, r12 and rc 

and the translational restraints by the spring constants t1,

t2, t12 and tc. Adopting the adequate values of       



Variational Approach of Timoshenko Beams with Internal Elastic Restraints 493

the parameters ri and  ti, i = 1, 2, all the possible 

combinations of classical end conditions, (i.e., clamped, 

pinned, sliding and free) can be generated. On the other 

hand, adopting the adequate values of the parameters 

, ,c 12 12r r t  and ct  different constraints at the 

intermediate point x c  can be generated. 

According to Timoshenko beam theory, two 

independent variables: the transverse deflection w

and the normal rotational angle  due to bending are 

used to describe the deformation of the beam.  

Hamilton’s principle requires that between times at

and bt  at which the positions are known, the motion 

will make stationary the action integral 

( ) d
t

F L t
b

at
u  on the space of admissible functions, 

where the Lagrangian L  is given by ,L T U

whereU  is the elastic strain energy due to the beam 

and to the elastic restraints at any instant t; and T  is 

the kinetic energy of the beam at any instant t  [20]. In 

consequence, the energy functional to be considered is 

given by  
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where 

1 0,D c ,
2 ,D c l

,q x t  is the distributed load, 
i
E  is the Young’s 

modulus, 
i
G  is the transverse shear modulus, 

i
I  is 

the moment of inertia, i
A  is the area of the 

cross-section, i
k  is the shear correction factor and i

is the mass per unit volume. The index i = 1, 2 denotes 

the i-th span.  

The notations c  and c  imply the use of lateral 

limits. It can be observed that the strain energy due to 

the rotational restraint 12r  is computed by means of the 

expression: 

2

12 ( , ) ( , )r c t c t

which implies that the spring is connected at the right 

end of the first span and at the left end of the second 

span. Meanwhile the expression 
2

( )cr c ,t  indicates 

that the rotational spring is connected at the right end of 

the first span and is connected to a fixed wall. An 

analogue situation arises for the translational elastic 

restrictions 12
t  and .

c
t  For a rigorous application of the 

calculus of variations, it is assumed that 12
.t

Notice that this implies that w  is continuous in x c .

Then, this spring is considered heuristically in order to 

compare values with those of Ref. [17]. The 

application of the techniques of the calculus of 

variations Ref. [20] leads to the conclusion that the 

functions w  and  must satisfy the following 

differential equations: 
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The mentioned procedure also yields the following 

boundary and transition conditions: 
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Since the domain of definition of the problem is 

0,D = l  and this is an open interval in ,  the 

boundary is given by two points, i.e., 0, .D l

Consequently, c  is an interior point and Eqs. (5)-(8) 

are the transition conditions. So, Eqs. (3), (4), (9) and 

(10) correspond to the boundary conditions.  

In the present paper, it is possible to simulate the 

crack with an internal elastic rotational constrain 

adopting 12
0 ,r  12

,t  and 0c ct r .

In Ref. [17], the proposed crack model includes a 

rotational and a translational elastic constrains and 

their values vary with the crack size. To represent this 

model in present work one must adopt 12
0 ,r

12
0 ,t 0,c ct r  and Eq. (5) must be replaced 

with 

12
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and Eq. (7) with 
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3. Exact Solution 

Using the well-known method of separation of 

variables, when the mass per unit length and the 

flexural rigidity at the i-th span are constant, we 

assume as solutions of Eq. (2) the expressions 

,
1

( , ) ( )cos( ), 1,2i i n

n

w x t W x t i         (13) 

,
1
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n
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where ,
( )

i n
W x  are the corresponding n-th modes of 

natural vibration. 

In the case that , 0,q x t  and considering that 

iE E ,
iI I , A Ai

,
iG G, i , i , i = 1, 

2, the general solutions of the differential Eq. (2) 

considering Eqs. (13) and (14) are given by
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The coefficient 
2A

= l
EI

 is the dimensionless 

natural frequency parameter. 

Substituting Eqs. (15)-(18) into the boundary and 

transition conditions given by Eqs. (3)-(10), we obtain 

a set of eight homogeneous equations in the constants 

i
C . Since the system is homogeneous for existence of a 

non-trivial solution, the determinant of coefficients 

must be equal to zero. This procedure yields the 

frequency equation: 
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frequency parameter were obtained with the classical 

bisection method. 

4. Comparison Studies and New Numerical 

Results 

The terminology to be used throughout the 

remainder of the paper for describing the boundary 

conditions of the beam considered will now be 

introduced. In all tables and figures, the symbols F, S 

and C denote free, simply supported and clamped ends, 

respectively, and for example in the designation SC, 

the first symbol indicates that the boundary condition at 

0x  is a simply supported end and the second 

symbol indicates that at x l  the beam is clamped.  

In order to establish the accuracy and applicability of 

the approach developed and discussed in the previous 

sections, numerical results were computed for a 

number of problems for which comparison values were 

available in the literature. Additionally, new numerical 

results were generated for elastically restrained ends 

with an internal hinge.  

Through all the present analysis, beams were 

modeled with shear correction factor k = 5/6 and 

Poisson’s ratio  = 0.3. 

A comparison study of the first four values of the 

dimensionless frequency parameter  with those of Ref. 

[19] is presented in Table 1. A SS and a CC beam with 

a rigid intermediate support located at /c l 0.4 for 

/h l 0.1 are considered. An excellent agreement of 

numerical values can be observed. 

Also in the present work, a comparison with the 

model used in Ref. [18] is presented. The discontinuity 

in the slope of the beam was modeled as 

Table 1  Comparison study of the first four values of the 

frequency parameter  of a two-span Timoshenko beam 

(Tc  , T12   and R12  ) located at c/l = 0.4 for h/l = 

0.1 with those obtained in Ref. [19]. 

BC Ref. 1 2 3 4

SS 
Present work 31.3371 66.9552 103.9196 185.3183

Reference 31.3370 66.9554 103.9200 185.3186

CC
Present work 44.8970 89.3751 120.2982 202.0519

Reference 44.8968 89.3762 120.3006 202.0673

2 1 2

x cx c

w w

x x x
         (26) 

where 26 ( )f h l  is the non-dimensional crack 

sectional flexibility and depends on the extension of the 

crack, /a h  is the crack depth ratio where a is the 

crack depth. The function f  adopted is given by 
2 3

4 5 6

( ) 0.6384 1.035 3.7201 5.1773

7.553 7.332 2.4909

f
 (27) 

To perform a comparison of frequency results with 

those obtained in Ref. [18], the relationship between 

the non-dimensional rigidity of the rotational spring 

12R  and the non-dimensional crack sectional flexibility 

was determined by 

12

1
R =                     (28) 

Tables 2 and 3 depict the results of the first four 

natural frequencies for a SS and SC beam with  equal 

to 0.20, 0.35 and 0.70, / 0.5c l  and /h l 0.25. Table 

2 shows the results obtained in Ref. [18] and Table 3 

shows the results obtained in the present work. The 

methodology proposed in Refs. [17, 18] has also been 

Table 2  First four values of the frequency parameter  of 

a two-span Timoshenko beam (Tc = 0, T12   and 0 < R12 < 

) located at c/l = 0.5 for h/l = 0.25 obtained from Ref. [18]. 

BC R12 1 2 3 4

SS

0.20 9.6689 8.2760 29.6610 52.1525 80.6253 

0.35 2.9396 7.1126 29.6610 48.9134 80.6253 

0.70 0.5185 4.2726 29.6610 43.9407 80.6253 

SC

0.20 9.6689 12.0286 33.0248 54.3153 81.7510 

0.35 2.9396 11.1045 32.9459 51.0196 81.7050 

0.70 0.5185 9.1955 32.7702 46.0750 81.6194 

Table 3  First four values of the frequency parameter  of 

a two-span Timoshenko beam (Tc = 0, T12   and 0 < R12< 

) located at c/l = 0.5 for h/l = 0.25 (present work).  

BC R12 1 2 3 4

SS

0.20 9.6689 8.2733 29.6509 52.1349 80.5979 

0.35 2.9396 7.1102 29.6509 48.8968 80.5979 

0.70 0.5185 4.2711 29.6509 43.9256 80.5979 

SC

0.20 9.6689 12.0246 33.0135 54.2969 81.7232 

0.35 2.9396 11.1007 32.9348 51.0023 81.6774 

0.70 0.5185 9.1919 32.7591 46.0592 81.5917 
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implemented and the following coefficients have been 

derived: 

2 2

1

1

1

s
m  and 

2 2

2

2

2

.
s

m

Unfortunately, it seems that the expressions of the i
m

parameters have been incorrectly derived in Ref. [17]. 

Table 4 provides a comparison between the results 

obtained with the procedure proposed in Ref. [17] and 

the results obtained in the present work with the 

corresponding formulae. The results were obtained for 

a beam with E = 72 GPa, G = 27 GPa, c/l  = 0.25, 

h/l  = 0.25 and SS boundary condition. To represent the 

crack model proposed in Ref. [17], the values of the 

elastic constrains in the transition conditions were 

adopted as 
12

l s GA
t

h r q
,

12
,

l EI
r

h
0

c
t  and 

0.
c
r  The parameters that vary with crack depth were 

given by 
2

2

3 4

0.22 3.82 1.54
1

14.64 9.60

q
       (29) 

2

2

3 4

2 5.93 19.69 37.14
1

35.84 13.12

       (30) 

In Table 4 the crack depth ratio considered was 

0.85. 

Table 4  Comparison study of the first five values of the 

frequency parameter  which correspond to the crack 

model proposed in Ref. [17] and the present work with the 

crack model proposed in Ref. [17]. 

Mode sequence Ref. [17] Present work 

1 2.18 2.31 

2 17.57 18.99 

3 46.76 41.70 

4 79.93 60.29 

5 81.00 88.38 

Table 5 depicts the first four values of the frequency 

parameter  and their corresponding modal shapes of a 

two-span elastically restrained Timoshenko beam with 

12
0

c c
T R R  and 12

,T  located at 

/c l 0.25 with /h l 0.3, 1
,T

2
,T  and 

1 2
R R 10.  

Table 6 depicts the first four values of the frequency 

parameter  and their corresponding modal shapes of a 

two-span elastically restrained Timoshenko beam with 

12
0

c c
T R R  and 12

,T  located at /c l

0.6 with /h l 0.3, 1
,T

2
,T  and 

1 2
R R 1,000. 

Table 7 depicts the first four values of the frequency 

parameter  and their corresponding modal shapes of a 

two-span elastically restrained Timoshenko beam with 

12
0

c c
T R R  and 12

,T  located at 

/c l 0.6 with /h l 0.3, 1
,T

2
0,T

1
1000R  and 2

10.R

Table 8 depicts the first four values of the frequency 

parameter  and their corresponding modal shapes of a 

two-span elastically restrained Timoshenko beam with 

12
0,R ,

c
T 100,

c
R  and 

12
,T  located at 

/c l 0.7 with /h l 0.1, ,
c
T 0,

c
R

12
,T

12
100,R

1
,T

1
,R

2 2
T R 0. 

Table 5  First four values of the frequency parameter  

and their corresponding modal shapes of an elastically 

restrained beam with a free internal hinge located at c/l = 

0.25 with h/l = 0.3, T1  , T2  , and R1 = R2 = 10. 

Mode sequence  Modal shape 

1 3.5185 

2 4.8021 

3 6.8277 

4 8.4264 

Table 6  First four values of the frequency parameter  

and their corresponding modal shapes of an elastically 

restrained beam with a free internal hinge located at c/l = 

0.6 with h/l = 0.3, T1  , T2  , and R1 = R2 = 1000.
 

Mode sequence  Modal shape 

1 3.4776 

2 5.3272 

3 6.7365 

4 7.8887 
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Table 7  First four values of the frequency parameter  

and their corresponding modal shapes of an elastically 

restrained beam with a free internal hinge located at c/l = 

0.6 with h/l = 0.3, T1  , T2 = 0, R1 = 1000 and R2 = 10. 

Mode sequence  Modal shape 

1 2.0804 

2 3.9720 

3 5.3897 

4 7.6500 

 

Table 8  First four values of the frequency parameter  

and their corresponding modal shapes of an elastically 

restrained beam with an internal hinge elastically 

restrained located at c/l = 0.7 with h/l = 0.1, Tc  , Rc = 0, 

T12  , R12 = 100, T1  , R1  , T2 = R2 = 0. 

Mode sequence  Modal shape 

1 4.2467 

2 6.2195 

3 9.5334 

4 12.1018 

5. Conclusions 

The free transverse vibrations of a Timoshenko 

beam with ends elastically restrained against rotation 

and translation, and arbitrarily located internal 

restrictions against rotation and translation are studied. 

For this purpose, an exact solution proposal was 

developed for the determination of natural frequencies. 

The algorithm is very general and it is characterized by 

its accuracy. The general intermediate elastic restraints 

implemented allow the analysis of several types of 

crack models. Close agreement with results presented 

by previous investigators is demonstrated for some 

examples and for a crack model.  

These results obtained may provide useful 

information for structural designers and engineers. The 

algorithms developed can be easily extended to a beam 

with a greater number of intermediate points elastically 

restrained against rotation and translation. 

References 

[1] W.M. Ostachowicz, M. Krawczuk, Analysis of the effect 

of cracks on the natural frequencies of a cantilever beam, 

Journal of Sound and Vibration 150 (2) (1991) 191-201. 

[2] S.H. Farghaly, Comments and further results on analysis 

of the effect of cracks on the natural frequencies of a 

cantilever beam, Journal of Sound and Vibration 169 (5) 

(1994) 704-708. 

[3] A.D. Dimarogonas, Vibration of cracked structures: A 

state of the art review, Engineering Fracture Mechanics 55 

(5) (1996) 831-857. 

[4] T.G. Chondros, A.D. Dimarogonas, J. Yao, A consistent 

cracked bar vibration theory, Journal of Sound and 

Vibration 200 (3) (1997) 303-313. 

[5] E.I. Shifrin, R. Ruotolo, Natural frequencies of a beam 

with an arbitrary number of cracks, Journal of Sound and 

Vibration 222 (3) (1999) 409-423. 

[6] T.G. Chondros, A.D. Dimarogonas, J. Yao, Vibration of a 

beam with a breathing crack, Journal of Sound and 

Vibration 239 (1) (2001) 57-67. 

[7] D.Y. Zheng, S.C. Fan, Natural frequencies of a 

non-uniform beam with multiple cracks via modified 

fourier series, Journal of Sound and Vibration 242 (4) 

(2001) 701-717. 

[8] Q.S. Li, Vibratory characteristics of multi-step beams with 

an arbitrary number of cracks and concentrated masses, 

Applied Acoustics 62 (2001) 691-706. 

[9] Q.S. Li, Free vibration analysis of non-uniform beams 

with an arbitrary number of cracks and concentrated 

masses, Journal of Sound and Vibration 252 (3) (2002) 

509-525.

[10] J. Fernández-Sáez, C. Navarro, Fundamental frequency of 

cracked beams in bending vibrations: An analytical 

approach, Journal of Sound and Vibration 256 (1) (2002) 

17-31.

[11] S.P. Lele, S.K. Maiti, Modelling of transverse vibration of 

short beams for crack detection and measurement of crack 

extension, Journal of Sound and Vibration 257 (3) (2002) 

559-583.

[12] H.P. Lin, S.C. Chang, J.D. Wu, Beam vibrations with an 

arbitrary number of cracks, Journal of Sound and 

Vibration 258 (5) (2002) 987-999. 

[13] N.T. Khiem, T.V. Lien, Multi-crack detection for beam by 

the natural frequencies, Journal of Sound and Vibration 

273 (2004) 175-184. 

[14] R. Ruotolo, C. Surace, Natural frequencies of a bar with 

multiple cracks, Journal of Sound and Vibration 272 (2004)  



Variational Approach of Timoshenko Beams with Internal Elastic Restraints 498

301-316.

[15] B. Binici, Vibration of beams with multiple open cracks 

subjected to axial force, Journal of Sound and Vibration 

287 (2005) 277-295. 

[16] M.H. Hsu, Vibration analysis of edge-cracked beam on 

elastic foundation with axial loading using the differential 

quadrature method, Computer Methods in Applied 

Mechanics and Engineering 194 (2005) 1-17. 

[17] J.A. Loya, L. Rubio, J. Fernandez-Saez, Natural 

frequencies for bending vibrations of Timoshenko cracked 

beams, Journal of Sound and Vibration 290 (2006) 

640-653.

[18] N. Khaji, M. Shafiei, M. Jalalpour, Closed-form solutions 

for crack detection problem of Timoshenko beams with 

various boundary conditions, International Journal of 

Mechanical Sciences 51 (2009) 667-681. 

[19] D. Zhou, Free vibration of multi-span Timoshenko beams 

using static Timoshenko beam functions, Journal of Sound 

and Vibration 241 (4) (2001) 725-734.  

[20] R.O. Grossi, Calculus of Variations: Theory and 

Applications  (in Spanish), CIMNE, Barcelona, Spain, 

2010.


