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Abstract This paper deals with the formulation of an analytical model for the dynamic behavior of anisotropic
plates, with an arbitrarily located internal line hinge with elastic supports and piecewise smooth boundaries
elastically restrained against rotation and translation among other complicating effects. The equations of motion
and its associated boundary and transition conditions are derived using Hamilton’s principle. By introducing
an adequate change of variables, the energies that correspond to the different elastic restraints are handled in a
general framework. The concept of transition conditions and the determination of the analytical expressions are
presented. Analytical examples are worked out to illustrate the range of applications of the developed analytical
model. One of the essential features of this work is to demonstrate how the commonly formal derivations used
in the applications of the calculus of variations can be made rigorous.

1 Introduction

It is well known that the calculus of variations is concerned with the problem of extremizing functionals, a
generalization of the problem of finding extremes of functions of several variables. This discipline has a long
history of interaction with other fields of mathematics and physics, particularly with mechanics. For centuries,
scientists tried to formulate laws of natural sciences as extremal problems called variational principles and
to use the techniques of the calculus of variations as mathematical tools to derive and investigate the motion
and equilibrium in nature. Its applications now embrace a great variety of disciplines, such us optimal control,
economics, quantum mechanics, etc. Engineers and applied mathematicians increasingly used the techniques
of calculus of variations to solve a large number of problems. Nevertheless, in this discipline, the “operator”
δ has been assigned special properties and handled using heuristic procedures. A mechanical “δ-method” has
been developed and extensively used, as can be observed in the current engineering literature. Commonly, the
domain of definition of a functional and the space of admissible directions of the variation of this functional
are not clearly stated; thus, most of the analytical manipulations, for instance involving integration by parts,
are confusing and not mathematically precise. The desire to fill this gap gave rise to the writing of this paper.

On the other hand, the calculus of variations has called the attention of several mathematicians, who made
important contributions to its development, and we have reached a stage where many technical details are hardly
available to a non-mathematician. Nevertheless, the concepts needed to its application in solid mechanics can
be easily established. For instance, the notion of variation of a functional is a straightforward generalization of
the definition of the directional derivative of a real-valued function defined on a subset of R

n . This definition
is applied in the present paper together with a clear specification of the domain of the action integral, which
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corresponds to a plate with an arbitrarily located internal line hinge, and the space of admissible directions of
the first variation of this functional. Also, a complete rigorous application of Hamilton’s principle is developed
for the derivation of equations of motion and its associated boundary and transition conditions. All the energy
functional terms are expressed by using definite integrals. This approach allows the direct application of the
fundamental lemma of the calculus of variations and provides a better understanding of the mathematical
manipulations in the case of non-smooth boundaries and, particularly when an internal line hinge is present.

Substantial literature has been devoted to the formulation, by means of the calculus of variations of bound-
ary value problems in the statics and dynamics of isotropic plates [1–10]. On the other hand, several books
are devoted to the study of anisotropic plates including the determination of static, buckling and vibrations
characteristics [11–14]. It is not the intention to review the literature consequently; only some of the published
papers related to the present work will be cited. A great number of articles treated the dynamical behavior of
plates with complicating effects [15–19]. Most of the available mathematical theories about plates deal with
smooth boundaries. However, the majority of the plate problems that arise in practice are naturally posed in
domains whose geometry is simple but not smooth. This is the case of quadrilateral and triangular plates. In
[20] and [21], the calculus of variations was used to derive the boundary value problems that describe the static
and dynamic behaviors of anisotropic plates with corner points. Also, there is only a very limited amount for
plates with internal hinges [22,23].

The present paper deals with anisotropic plates with an arbitrarily located internal line hinge with elastic
supports and piecewise smooth boundaries elastically restrained against rotation and translation, among other
complicating effects.

This paper is organized in the following way. In Sects. 2 and 3, a detailed treatment of techniques of the
calculus of variations to obtain the governing differential equations, the boundary conditions and the transitions
conditions is presented. In Sect. 4, the transitions conditions are analyzed. Several plate problems are treated,
by using the derived general mathematical model, in Sect. 5. Finally, Sect. 6 contains the conclusions of this
paper.

2 The variation of the energy functional

Let us consider an anisotropic plate that, in the equilibrium position, covers the two-dimensional domain G,
with piecewise smooth boundary ∂G elastically restrained against rotation and translation. The plate has an
intermediate line hinge elastically restrained against rotation and translation, as it is shown in Fig. 1.

In order to analyze the transverse displacements of the system under study, we suppose that the vertical
position of the plate at any time t is described by the function w = w(x1, x2, t), where (x1, x2) ∈ Ḡ, Ḡ =
G ∪ ∂G and that the domain G is divided into two parts G(1) and G(2)(with boundaries ∂G(1) and ∂G(2),
respectively) by the line �(c) (see Fig. 1).

Fig. 1 Mechanical system under study
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Fig. 2 Domains and boundaries

We assume that each subdomain G(i) consists of a finite number of smooth arcs and therefore possesses
at most a finite number of corners. We consider here the case where different rigidities D(i)

kl (x1, x2) and mass
density ρ(i)(x1, x2)h(i)(x1, x2) of the anisotropic material correspond to the subdomains G(1) and G(2). The
extreme points of the line �(c) divide the boundary curve ∂G into two arcs given by:

�(i) = ∂G(i) − �(c), i = 1, 2 such that ∂G = �(1) ∪ �(2).

Let us assume that the boundary curve ∂G is described by a piecewise smooth path γ in R
2 defined in

the compact interval [0, l], where l = l(∂G) is the length of the path γ . Then, γ is a continuous function
γ : [0, l] → R

2; and the derivative γ ′ is continuous everywhere on [0, l] except possibly at a finite number of
points. The image of [0, l] under γ (the graph of γ ) is the boundary curve ∂G and will be denoted by im(γ ).
We also assume that the curves �(1) and �(2) are described, respectively, by the piecewise smooth paths:

γ (i) :
[
0, l(i)

]
→ R

2; γ (i) (s) =
(
γ

(i)
1 (s), γ (i)

2 (s)
)

, s ∈
[
0, l(i)

]
, i = 1, 2, (1)

where s denotes the arc length measured from the point P(i) of the curve �(i) (see Fig. 2), l(i) = l(�(i)) is the
length of the path γ (i) and the following is verified: γ (1)(l(1)) = γ (2)(0), γ (1)(0) = γ (2)(l(2)).

Then, we have the function

γ (s) =
{

γ (1) (s) if s ∈ [
0, l(1)

]
,

γ (2)
(
s − l(1)

)
if s ∈ [

l(1), l(1) + l(2)
]
,

l = l(1) + l(2),

(2)

where s denotes the arc length measured from the point P(1) of the curve ∂G.
That is, ∂G is described by the path γ given by (2) and the curves �(1) and �(2) are traced out by the paths

γ (1) and γ (2) given by (1).
It is well known [24,25] that if f : im(β) → R is a continuous function defined on the image � of a

piecewise smooth path β : [c, d] → R
2, the curvilinear integral of f along � is given by:

∫

�

f (x1, x2) ds =
d∫

c

( f ◦ β) (r)
∥∥β ′(r)

∥∥ dr, (3)

where ( f ◦ β) (r) = f (β (r)) and the norm
∥∥β ′(r)

∥∥ is given by
(
β ′2

1(r) + β ′2
2(r)

)1/2
. In the case of a real

continuous function f defined on the image of the path γ (given by (2)), i.e. the boundary curve ∂�, the
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definition (3) when s is taken as the parameter r leads to:

∫

∂G

f (x1, x2) ds =
l∫

0

( f ◦ γ ) (s)
∥∥γ ′(s)

∥∥ ds =
l∫

0

( f ◦ γ ) (s)ds (4)

and ∫

∂G

f (x1, x2) ds =
∫

�(1)

f (x1, x2) ds+
∫

�(2)

f (x1, x2) ds. (5)

The additive property (5) will prove valuable when defining functions and functionals over ∂�, since they can
be established independently for �(1) and �(2) by using Eq. (1). Thus, we assume that the rotational rigidities
of the elastic restrains along the boundary are given by the functions: k(i)

r : im(γ (i)) → R, i = 1, 2 and
k(c)

r : im(γ (c)) → R, where γ (c) is the path that describes the line �(c). In the same manner, the translational
rigidities are given by the functions

k(i)
t : im(γ (i)) → R, i = 1, 2 and k(c)

t : im(γ (c)) → R.

At time t , the kinetic energy of the plate is given by

EK (w) = 1

2

2∑
i=1

∫

G(i)

ρ(i)h(i)
(

∂w

∂t

)2

dx, (6)

where x = (x1, x2) , dx = dx1dx2, w = w (x, t) , ρ(i)h(i) = (
ρ(i)h(i)

)
(x).

On the other hand, at time t , the total potential energy due to the elastic deformation of the plate deformed
by a load of density q = q (x, t) acting on Ḡ, the deformation of the elastic restraints on the boundary ∂G and
the elastic restraints at the intermediate line �(c) is given by

ED (w) = 1

2

2∑
i=1

⎧⎪⎨
⎪⎩

∫

G(i)

⎡
⎣D(i)

11

(
∂2w

∂x2
1

)2

+ 2D(i)
12

∂2w

∂x2
1

∂2w

∂x2
2

+ D(i)
22

(
∂2w

∂x2
2

)2

+ 4
∂2w

∂x1∂x2

(
D(i)

16
∂2w

∂x2
1

+ D(i)
26

∂2w

∂x2
2

)
+ 4D(i)

66

(
∂2w

∂x1∂x2

)2

− 2q(i)w

]
dx

+
∫

�(i)

k(i)
t (x)w2 (x, t) ds +

∫

�(i)

k(i)
r (x)

(
∂w

∂ �n(i)
(x, t)

)2

ds

⎫⎪⎬
⎪⎭

+ 1

2

∫

�(c)

k(c)
t (x) w2 (x, t) ds + 1

2

∫

�(c)

k(c)
r (x)

[
∂w

∂x1

]2

ds, (7)

where w = w (x, t) , D(i)
kl = D(i)

kl (x) and ∂w/∂ �n(i) is the directional derivative of w with respect to the
outward normal unit vector �n(i) to the curve �(i). The outward unit normal vector �n to the boundary ∂G is
given by

�n (x) =
{ �n(1) (x) if x ∈ �(1),

�n(2) (x) if x ∈ �(2),
(8)

where �n(i) (x) =
(

n(i)
1 (x) , n(i)

2 (x)
)

, i = 1, 2 and

n(i)
1 (x)

∣∣∣
x∈�(i)

= n(i)
1

(
γ

(i)
1 (s), γ (i)

2 (s)
)

= cos α
(
γ

(i)
1 (s), γ (i)

2 (s)
)

,

n(i)
2 (x)

∣∣∣
x∈�(i)

= n(i)
2

(
γ

(i)
1 (s), γ (i)

2 (s)
)

= sin α
(
γ

(i)
1 (s), γ (i)

2 (s)
)

, (9.1, 2)

s ∈
[
0, l(i)

]
, i = 1, 2,
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where α denotes the angle made by the outward normal �n(i) to �(i) with the positive x1 in the point(
γ

(i)
1 (s), γ (i)

2 (s)
)

as it is shown in Fig. 2. We assume that α is a continuous function of s except possibly at a

finite number of corners. The symbol [∂w/∂x1], used in (7), denotes the difference
[

∂w

∂x1

]
= ∂w

∂x1

∣∣∣∣
(+)

(c, x2, t) − ∂w

∂x1

∣∣∣∣
(−)

(c, x2, t) . (10)

Since w is a continuous function, the lateral derivatives in (10) are defined as

∂w

∂x1

∣∣∣∣
(−)

(c, x2, t) = lim
x1 → c
x1 < c

w (x1, x2, t) − w (c, x2, t)

x1 − c
,

∂w

∂x1

∣∣∣∣
(+)

(c, x2, t) = lim
x1 → c
x1 > c

w (x1, x2, t) − w (c, x2, t)

x1 − c
.

Finally, we have

q (x, t) =
{

q(1) (x, t) if x ∈ Ḡ(1),

q(2) (x, t) if x ∈ Ḡ(2).

It can be observed that the strain energy due to the rotational restraint of the internal line hinge in (7) is
computed by

1

2

∫

�(c)

k(c)
r (x)

(
∂w

∂x1

∣∣∣∣
(+)

(c, x2, t) − ∂w

∂x1

∣∣∣∣
(−)

(c, x2, t)

)2

ds,

which implies that the distributed springs are connected at points of G(1) and at points of G(2).
It is convenient from now on to introduce a change of variables in order to deal with the points that corre-

spond to the curves �(1) and �(2). Let us consider the new variables (y1, y2) where y1 is a distance measured
from the boundary and along the normal to ∂G and y2 is the arc length measured from the point P(1) of
the boundary ∂G (see Fig. 2). More specifically, given a point (x1, x2), the new variable y2 is obtained by
determining first the shortest normal to ∂G through (x1, x2) and then the intersection of this normal with ∂G.
The distance from (x1, x2) to ∂G along the normal determines the new variable y1. It must be noted that y1 > 0
if (x1, x2) /∈ Ḡ and y1 ≤ 0 if (x1, x2) ∈ Ḡ. It is assumed that through each point (x1, x2) there be a uniquely
determined shortest normal to ∂G. We can, without loss of generality, impose this condition since the new
variables y1, y2 will be used only in the evaluation of functions on ∂G, thus for y1 = 0. Since the boundary
curve ∂G is described by the path given by (2), let us consider the following functions:

g(i) : �(i) → R
2, �(i) ⊂ R

2, u : A → R, A ⊂ R
2, g(i)

(
�(i)

)
⊂ A, i = 1, 2

where

�(i) =
{
(y1, y2) , y1 ∈

[
a(i), ∞

)
, y2 ∈

[
0, l(i)

]}
, a(i) ≤ 0 (11)

and

(y1, y2)
g(i)

→ (x1, x2)
u(i)→ z = u(i)

[
g(i)

1 (y1, y2) , g(i)
2 (y1, y2)

]
= ũ(i) (y1, y2) ,

(y1, y2) ∈ �(i), i = 1, 2,

where ũ(i) = u(i) ◦ g(i) denotes the composition of u(i) and g(i). Throughout this paper, this notation will be
used for different composite functions. The function u is given by:

u (x) =
{

u(1) (x) if x ∈ Ḡ(1),

u(2) (x) if x ∈ Ḡ(2).
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We have the occasion below to employ u replaced by w, the function which is defined only on Ḡ, is also
dependent on the variable t and describes the vertical position of the plate. The components of functions
g(i)are defined by:

g(i)
1 (y1, y2) = γ

(i)
1 (y2) + y1 cos α

(
γ

(i)
1 (y2) , γ

(i)
2 (y2)

)
,

g(i)
2 (y1, y2) = γ

(i)
2 (y2) + y1 sin α

(
γ

(i)
1 (y2) , γ

(i)
2 (y2)

)
, (12.1, 2)

(y1, y2) ∈ �(i), i = 1, 2,

where α is the angle defined in (9.1, 2). These expressions can now be rewritten as

g(i)
j (y1, y2) = γ

(i)
j (y2) + y1ñ(i)

j (y2) , (y1, y2) ∈ �(i), i, j = 1, 2, (13)

where ñ(i)
j = n(i)

j ◦ γ (i).

The points of the curves �(1) and �(2) are determined from (13) as:

x j = g(i)
j (0, y2) = γ

(i)
j (y2) , y2 ∈

[
0, l(i)

]
, x j ∈ �(i), i, j = 1, 2. (14)

These functions also give natural parametric representations for the first two curvilinear integrals of the func-
tional (7). Thus, from Eqs. (4) and (14), it follows that

∫

�(i)

k(i)
t (x)w2 (x, t) ds =

l(i)∫

0

(
k(i)

t ◦ g(i)
)

(0, y2)
((

w ◦ g(i)
)

(0, y2, t)
)2

dy2

=
l(i)∫

0

k̃(i)
t (0, y2) w̃2 (0, y2, t)dy2 (15)

and

∫

�(i)

k(i)
r (x)

(
∂w

∂ �n(i)
(x, t)

)2

ds

=
l(i)∫

0

(
k(i)

r ◦ g(i)
)

(0, y2)

((
∂w

∂ �n(i)
◦ g(i)

)
(0, y2, t)

)2

dy2. (16)

In Eq. (15), the expression
(
w ◦ g(i)

)
(0, y2, t)denotes the composition given byw

(
g(i)

1 (0, y2) , g(i)
2 (0, y2) , t

)

and similarly for
(

∂w

∂ �n(i) ◦ g(i)
)

(0, y2, t) in Eq. (16). By the formula of derivation of composite functions, we

have

∂w̃

∂y1
(y1, y2, t) =

2∑
j=1

∂w

∂x j
(x1, x2, t)

∂g(i)
j

∂y1
(y1, y2) ,

where xk = g(i)
k (y1, y2) , k = 1, 2 and (y1, y2) ∈ �(i), i = 1, 2. From (13), it follows that

∂g(i)
j

∂y1
(y1, y2) = ñ(i)

j (y2) , i, j = 1, 2 (17)
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and

∂w̃

∂y1
(y1, y2, t) =

2∑
j=1

∂w

∂x j
(x1, x2, t)ñ(i)

j (y2) , xk = g(i)
k (y1, y2) , k = 1, 2,

(y1, y2) ∈ �(i), i = 1, 2. (18)

It must be noted that in (18) the condition (y1, y2) ∈ �(i) clearly indicates which restriction of w corre-
sponds. In particular, we have

∂w̃

∂y1
(0, y2, t)

∣∣∣∣
y2∈[0,l(i)]

=
2∑

j=1

∂w

∂x j

(
g(i)

1 (0, y2) , g(i)
2 (0, y2) , t

)
ñ(i)

j (y2) , i = 1, 2. (19)

The directional derivative involved in (16) is commonly determined by

∂w

∂ �n(i)
(x, t)

∣∣∣∣
x∈�(i)

=
2∑

j=1

∂w

∂x j
(x, t)

∣∣∣∣
x∈�(i)

ñ(i)
j (y2)

=
2∑

j=1

∂w

∂x j

(
g(i)

1 (0, y2) , g(i)
2 (0, y2) , t

)
ñ(i)

j (y2) , i = 1, 2. (20)

From Eqs. (19) and (20), we have

(
∂w

∂ �n(i)
◦ g(i)

)
(0, y2, t) = ∂w̃

∂y1
(0, y2, t)

∣∣∣∣
y2∈[0,l(i)]

, i = 1, 2. (21)

By substituting (21) into (16), we obtain

∫

�(i)

k(i)
r (x)

(
∂w

∂ �n(i)
(x, t)

)2

ds =
l(i)∫

0

k̃(i)
r (0, y2)

(
∂w̃

∂y1
(0, y2, t)

)2

dy2. (22)

A simple parametric representation of the last two terms of functional (7) can be obtained by using

γ (c) (x2) =
(
γ

(c)

1 (x2) , γ
(c)

2 (x2)
)

= (c, x2) , x2 ∈ [a, b] , (23)

where a = γ
(1)
2 (l(1)), b = γ

(1)
2 (0) (see Fig. 2). Thus, we have

∫

�(c)

k(c)
t (x) w2 (x, t) ds =

b∫

a

k(c)
t (c, x2) w2 (c, x2, t)dx2, (24)

∫

�(c)

k(c)
r (x)

[
∂w

∂x1

]2

ds =
b∫

a

k(c)
r (c, x2)

(
∂w

∂x1

∣∣∣∣
(+)

(c, x2, t) − ∂w

∂x1

∣∣∣∣
(−)

(c, x2, t)

)2

dx2. (25)

Hamilton’s principle requires that between times t0 and t1, at which the positions of the mechanical system
are known, it should execute a motion that makes stationary the functional F(w) = ∫ t1

t0
(EK − ED) dt , on
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the space of admissible functions. In consequence, from (6) and (7), it follows that the action integral to be
considered is given by

F (w) = 1

2

t1∫

t0

⎧⎪⎨
⎪⎩

2∑
i=1

⎡
⎢⎣
∫

G(i)

⎛
⎝ρ(i)h(i)

(
∂w

∂t

)2

− D(i)
11

(
∂2w

∂x2
1

)2

− 2D(i)
12

∂2w

∂x2
1

∂2w

∂x2
2

− D(i)
22

(
∂2w

∂x2
2

)2

− 4
∂2w

∂x1∂x2

(
D(i)

16
∂2w

∂x2
1

+ D(i)
26

∂2w

∂x2
2

)

− 4D(i)
66

(
∂2w

∂x1∂x2

)2

+ 2q(i)w

)
dx −

l(i)∫

0

k̃(i)
t (0, y2) w̃2 (0, y2, t)dy2

−
l(i)∫

0

k̃(i)
r (0, y2)

(
∂w̃

∂y1
(0, y2, t)

)2

dy2

⎤
⎥⎦ − R

⎫⎪⎬
⎪⎭

dt, (26)

where

R =
b∫

a

k(c)
t (c, x2) w2 (c, x2, t)dx2

+
b∫

a

k(c)
r (c, x2)

(
∂w

∂x1

∣∣∣∣
(+)

(c, x2, t) − ∂w

∂x1

∣∣∣∣
(−)

(c, x2, t)

)2

dx2.

The condition of stationary functional for (26) requires that

δF (w; v) = 0, ∀v ∈ Da, (27)

where δF (w; v) is the first variation of F at w in the direction v and Da is the space of admissible directions
at w for the domain D of this functional.

The definition of the variation of F at w in the direction v is given as a generalization of the definition of
the directional derivative of a real-valued function defined on a subset of R

n , [10]. Consequently, the definition
of the first variation of F at w in the direction v is given by

δF (w; v) = dF

dε
(w + εv)

∣∣∣∣
ε=0

. (28)

In order to make the mathematical developments required by the application of the techniques of the calculus
of variations, we assume that

ρ(i)h(i) ∈ C
(

Ḡ(i)
)

, q(i) (•, t) ∈ C
(

Ḡ(i)
)

, D(i)
kl ∈ C2

(
Ḡ(i)

)
, w (x, •) ∈ C2 [t0, t1] ,

w (•, t) ∈ C
(
Ḡ
)
, and w (•, t)|Ḡ(i) ∈ C4

(
Ḡ(i)

)
, Ḡ(i) = G(i) ∪ ∂G(i), i = 1, 2,

where the following notation has been used: Ck (S) denotes the set of all real functions u : G → R that have
continuous partial derivatives of orders m = 0, 1, 2, . . . , k, and Ck

(
S̄
)

denotes the set of all u ∈ Ck (S) for
which all partial derivatives of order m = 0, 1, 2, . . . , k, can be extended continuously to the closure S̄ of
S. It must be noted that as a consequence of the presence of the line hinge, the derivative ∂w/∂x1 and the
corresponding derivatives of greater order do not necessarily exist in the domain G, so it is necessary to impose
the conditions w (•, t)|Ḡ(i) ∈ C4

(
Ḡ(i)

)
, i = 1, 2.
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In view of all these observations and since Hamilton’s principle requires that at times t0 and t1 the positions
are known, the space D is given by

D = {
w;w (x, •) ∈ C2 [t0, t1] , w (•, t) ∈ C

(
Ḡ
)
, w (•, t)|Ḡ(i) ∈ C4

(
Ḡ(i)

)
,

i = 1, 2, w (x, t0) , w (x, t1) prescribed
}
.

(29)

The only admissible directions v at w ∈ D are those for which w + εv ∈ D for all sufficiently small ε and
δF (w; v) exists. In consequence, and in view of (29), v is an admissible direction at w for D if, and only if,
v ∈ Da where

Da = {
v; v (x, •) ∈ C2 [t0, t1] , v (•, t) ∈ C

(
Ḡ
)
, v (•, t)|Ḡ(i) ∈ C4

(
Ḡ(i)

)
,

i = 1, 2, v (x, t0) = v (x, t1) = 0, ∀x ∈ Ḡ
}
.

(30)

Performing the derivative (28) with F given by (26), together with the classical decomposition of symmetric
terms, we have

δF (w; v) =
t1∫

t0

⎧⎪⎨
⎪⎩

2∑
i=1

⎡
⎢⎣
∫

G(i)

(
ρ(i)h(i) ∂w

∂t

∂v

∂t
−D(i)

11
∂2w

∂x2
1

∂2v

∂x2
1

−D(i)
12

(
∂2w

∂x2
1

∂2v

∂x2
2

+ ∂2w

∂x2
2

∂2v

∂x2
1

)

−D(i)
22

∂2w

∂x2
2

∂2v

∂x2
2

− 2D(i)
16

(
∂2w

∂x1∂x2

∂2v

∂x2
1

+ 1

2

∂2w

∂x2
1

∂

∂x1

(
∂v

∂x2

)
+1

2

∂2w

∂x2
1

∂

∂x2

(
∂v

∂x1

))

−2D(i)
26

(
∂2w

∂x1∂x2

∂2v

∂x2
2

+1

2

∂2w

∂x2
2

∂

∂x1

(
∂v

∂x2

)
+ 1

2

∂2w

∂x2
2

∂

∂x2

(
∂v

∂x1

))
−2D(i)

66

(
∂2w

∂x1∂x2

∂

∂x1

(
∂v

∂x2

)

+ ∂2w

∂x2∂x1

∂

∂x2

(
∂v

∂x1

))
+q(i)v

)
dx −

l(i)∫

0

k̃(i)
t (0, y2) w̃ (0, y2, t) ṽ (0, y2, t)dy2

−
l(i)∫

0

k̃(i)
r (0, y2)

∂w̃

∂y1
(0, y2, t)

∂ṽ

∂y1
(0, y2, t)dy2

⎤
⎥⎦ − RV

⎫
⎪⎬
⎪⎭

dt, (31)

where

RV =
b∫

a

k(c)
t (c, x2) w (c, x2, t) v (c, x2, t)dx2 +

b∫

a

k(c)
r (c, x2)

[
∂w

∂x1

] [
∂v

∂x1

]
dx2, (32)

with
[

∂v
∂x1

]
= ∂v

∂x1

∣∣∣
(+)

(c, x2, t) − ∂v
∂x1

∣∣∣
(−)

(c, x2, t).

Let us consider the first term of (31). Since w (x, •) , v (x, •) ∈ C2 [t0, t1], we can integrate by parts with
respect to t , and if we apply the conditions imposed in (30), i.e.: v (x, t0) = v (x, t1) = 0,∀x ∈ Ḡ, we obtain

t1∫

t0

∫

G(i)

ρ(i)h(i) ∂w

∂t

∂v

∂t
dxdt =

∫

G(i)

ρ(i)h(i) ∂w

∂t
v

∣∣∣∣∣∣∣

t1

t0

dx,

−
t1∫

t0

∫

G(i)

ρ(i)h(i) ∂
2w

∂t2 vdxdt = −
t1∫

t0

∫

G(i)

ρ(i)h(i) ∂
2w

∂t2 vdxdt .

(33)
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To transform the terms of (31) that are multiplied by a coefficient D(i)
kl , we employ the well-known Green’s

formula:
∫

G

u (x)
∂v

∂x j
(x)dx =

∫

∂G

u (x) v (x) n j (x) ds −
∫

G

v (x)
∂u

∂x j
(x)dx,

j = 1, 2, u, v ∈ C (1)(Ḡ),

(34)

where n j denotes the j − th component of the outward unit normal to the boundary ∂G and the curve that
corresponds to the boundary is a piecewise smooth Jordan curve [24]. We have, upon applying (34) twice by
succession and using (33)

δF (w; v) =
t1∫

t0

⎧⎪⎨
⎪⎩

2∑
i=1

⎡
⎢⎣
∫

G(i)

(
−ρ(i)h(i) ∂

2w

∂t2 + ∂2 M (i)
1

∂x2
1

+ ∂2 M (i)
2

∂x2
2

+ 2
∂2 H (i)

12

∂x1∂x2

+ q(i)
)

vdx +
∫

∂G(i)

M (i)
12 ds −

∫

∂G(i)

⎛
⎝

2∑
j=1

N (i)
j n(i)

j

⎞
⎠ vds

−
l(i)∫

0

k̃(i)
t (0, y2) w̃ (0, y2, t) ṽ (0, y2, t)dy2

−
l(i)∫

0

k̃(i)
r (0, y2)

∂w̃

∂y1
(0, y2, t)

∂ṽ

∂y1
(0, y2, t)dy2

⎤
⎥⎦ − RV

⎫
⎪⎬
⎪⎭

dt, (35)

where RV is given by (32) and

M (i)
1 = −

(
D(i)

11
∂2w

∂x2
1

+ D(i)
12

∂2w

∂x2
2

+ 2D(i)
16

∂2w

∂x1∂x2

)
, (36)

M (i)
2 = −

(
D(i)

22
∂2w

∂x2
2

+ D(i)
12

∂2w

∂x2
1

+ 2D(i)
26

∂2w

∂x1∂x2

)
, (37)

H (i)
12 = −

(
D(i)

16
∂2w

∂x2
1

+ D(i)
26

∂2w

∂x2
2

+ 2D(i)
66

∂2w

∂x1∂x2

)
, (38)

N (i)
1 = ∂ M (i)

1

∂x1
+ ∂ H (i)

12

∂x2
, (39)

N (i)
2 = ∂ M (i)

2

∂x2
+ ∂ H (i)

12

∂x1
, (40)

M (i)
12 = M (i)

1
∂v

∂x1
n(i)

1 + M (i)
2

∂v

∂x2
n(i)

2 + H (i)
12

(
∂v

∂x1
n(i)

2 + ∂v

∂x2
n(i)

1

)
. (41)

3 The determination of the boundary value problem

According to the condition of stationary functional (27), the variation (35) must vanish for the function w cor-
responding to the actual motion of the plate for all admissible directions v, and in particular for all admissible
v, satisfying on the whole contours ∂G(i) the conditions:

v(x, t)|∂G(i) = 0,
∂v(x, t)

∂x1

∣∣∣∣
∂G(i)

= 0,
∂v(x, t)

∂x2

∣∣∣∣
∂G(i)

= 0, i = 1, 2. (42.1–3)
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In this case, since the functions ṽ and ∂ṽ/∂y1 verify analog conditions, the curvilinear integrals and the
one-dimensional definite integrals in Eq. (35) vanish, and only the double integrals remain:

δF (w; v) =
t1∫

t0

⎡
⎢⎣

2∑
i=1

∫

G(i)

(
−ρ(i)h(i) ∂

2w

∂t2 + ∂2 M (i)
1

∂x2
1

+ ∂2 M (i)
2

∂x2
2

+ 2
∂2 H (i)

12

∂x1∂x2
+ q(i)

)
vdx

⎤
⎥⎦ dt. (43)

Since v is an arbitrary smooth function satisfying conditions (42), we have from the fundamental lemma of
the calculus of variations that the restrictions of the function w to G(1) and to G(2) must, respectively, satisfy
the following differential equations:

∂2

∂x2
1

(
D(i)

11
∂2w

∂x2
1

+ D(i)
12

∂2w

∂x2
2

+ 2D(i)
16

∂2w

∂x1∂x2

)

+ ∂2

∂x2
2

(
D(i)

12
∂2w

∂x2
1

+ D(i)
22

∂2w

∂x2
2

+ 2D(i)
26

∂2w

∂x1∂x2

)

+ ∂2

∂x1∂x2

(
2D(i)

16
∂2w

∂x2
1

+ 2D(i)
26

∂2w

∂x2
2

+ 4D(i)
66

∂2w

∂x1∂x2

)

+ρ(i)h(i) ∂
2w

∂t2 − q(i) = 0, ∀x ∈ G(i), i = 1, 2, ∀t ≥ 0. (44)

The fourth-order partial differential equations (44) describe the dynamical behavior of the vibrating plate.
If we set q ≡ 0 so that there is no external forces acting on the plate, the equations (44) reduce to the equations
of free vibrations of the anisotropic plate. On the other hand, if we set ∂2w/∂t2 ≡ 0 and it is assumed that all
variables are independent of time, the equations (44) reduce to the equations that describe the statical behavior
of the mentioned plate when a load of density q = q(x) is applied on Ḡ. Next, we remove the conditions
(42.1–3), and since the restrictions of w must satisfy (44), the functional (35) reduces to

δF (w; v) =
t1∫

t0

⎧⎪⎨
⎪⎩

2∑
i=1

⎡
⎢⎣

∫

∂G(i)

M (i)
12 (x, t) ds −

∫

∂G(i)

⎛
⎝

2∑
j=1

N (i)
j (x, t) n(i)

j (x)

⎞
⎠ v (x, t)ds

−
l(i)∫

0

k̃(i)
t (0, y2) w̃ (0, y2, t) ṽ (0, y2, t)dy2

−
l(i)∫

0

k̃(i)
r (0, y2)

∂w̃

∂y1
(0, y2, t)

∂ṽ

∂y1
(0, y2, t)dy2

⎤
⎥⎦

−
b∫

a

k(c)
t (c, x2) w (c, x2, t) v (c, x2, t)dx2 −

b∫

a

k(c)
r (c, x2)

[
∂w

∂x1

] [
∂v

∂x1

]
dx2

⎫
⎪⎬
⎪⎭

dt. (45)

Since ∂G(i) = �(i) ∪ �(c), we first consider the curvilinear integral

∫

�(i)

M (i)
12 (x, t) ds, (46)
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where M (i)
12 is given by (41). In the manner of achieving (18), we have

∂ṽ

∂y1
(y1, y2, t) =

2∑
j=1

∂v

∂x j
(x1, x2, t)

∂g(i)
j

∂y1
(y1, y2) ,

∂ṽ

∂y2
(y1, y2, t) =

2∑
j=1

∂v

∂x j
(x1, x2, t)

∂g(i)
j

∂y2
(y1, y2) ,

(47.1, 2)

where xk = g(i)
k (y1, y2) , k = 1, 2 and (y1, y2) ∈ �(i), i = 1, 2. From Eqs. (12.1, 2) and the well-known

relations

dγ
(i)
1

dy2
(y2) = −ñ(i)

2 (y2) ,
dγ

(i)
2

dy2
(y2) = ñ(i)

1 (y2) , (48)

it follows:

∂g(i)
j

∂y2
(y1, y2) = (−1) j ñ(i)

3− j (y2) F (y1, y2) , j = 1, 2, (49.1, 2)

where

F (y1, y2) = 1 + y1
dα̃

dy2
(y2) , α̃ = α ◦ γ (i), i = 1, 2. (50)

From Eqs. (17), (47.1, 2), (49.1, 2) and (50), we obtain

∂ṽ

∂y1
(y1, y2, t) =

2∑
j=1

∂v

∂x j
(x1, x2, t)ñ(i)

j (y2) ,

∂ṽ

∂y2
(y1, y2, t) = F (y1, y2)

2∑
j=1

(−1)i ∂v

∂x j
(x1, x2, t)ñ(i)

3− j (y2) , i = 1, 2.

(51.1, 2)

If we solve the equations (51.1, 2) for ∂v/∂x1 and ∂v/∂x2, we get

∂v

∂x1
(x1, x2, t) =

2∑
j=1

(−1) j+1 ∂ṽ

∂y j
(y1, y2, t)G j (y1, y2) ñ(i)

j (y2) ,

∂v

∂x2
(x1, x2, t) =

2∑
j=1

∂ṽ

∂y j
(y1, y2, t)G j (y1, y2) ñ(i)

3− j (y2) ,

(52.1, 2)

with xk = g(i)
k (y1, y2) , k = 1, 2, (y1, y2) ∈ �(i), i = 1, 2 and

G j (y1, y2) =
{

1 if j = 1,

(F (y1, y2))
−1 if j = 2.

(53)

The expressions of the second partial derivatives of w̃ are obtained differentiating (18) with respect to y1 or
y2, and it follows that in abbreviated form:

w̃y1 y1 (y, t) = wx1x1 (x, t) ñ(i)2
1 (y2) + wx2x2 (x, t) ñ(i)2

2 (y2)

+ 2wx1x2 (x, t)
(

ñ(i)
1 ñ(i)

2

)
(y2) , (54)



Boundary value problems for anisotropic plates 137

and in analogous form, we get w̃y2 y2 and w̃y1 y2 . Since (52.1, 2) hold for any differentiable function, we can
obtain wx1 and wx2 simply replacing v by w, and if we solve the equation (54) and those which correspond to
w̃y2 y2 and w̃y1 y2 for wx1x1, wx2x2 and wx1x2 , we obtain:

wx1x1 (x, t) = w̃y1 y1 (y, t) ñ(i)2
1 (y2) + w̃y2 y2 (y, t) G2

2 (y) ñ(i)2
2 (y2)

− 2w̃y1 y2 (y, t) G2 (y)
(

ñ(i)
1 ñ(i)

2

)
(y2) + w̃y1 (y, t) G2 (y) α̃′ (y2) ñ(i)2

2 (y2)

+ w̃y2 (y, t)
[
2G2

2 (y) α̃′ (y2)
(

ñ(i)
1 ñ(i)

2

)
(y2) − y1G3

2 (y) α̃′′ (y2) ñ(i)2
2 (y2)

]
, (55)

and in analogous form we get wx2x2 and wx1x2 . Then, substituting Eq. (55) and those which correspond to
wx2x2 and wx1x2 with y1 = 0 into (36)–(38), we obtain the expressions of M̃ (i)

1 = M̃ (i)
1 (y1, y2, t) , M̃ (i)

2 =
M̃ (i)

2 (y1, y2, t) and H̃ (i)
12 = H̃ (i)

12 (y1, y2, t). Further, in an analogous form, we can obtain, on direct although

lengthy analytical procedure, the expressions of Ñ (i)
1 = Ñ (i)

1 (y1, y2, t) and Ñ (i)
2 = Ñ (i)

2 (y1, y2, t).
According to the adopted parametric representation, the first term of (46) is given by

∫

�(i)

M (i)
1 (x, t)

∂v

∂x1
(x, t) n(i)

1 (x) ds

=
l(i)∫

0

M̃ (i)
1 (0, y2, t)

⎛
⎝

2∑
j=1

(−1) j+1 ∂ṽ

∂y j
(0, y2, t) ñ(i)

j (y2)

⎞
⎠ ñ(i)

1 (y2)dy2, (56)

where the expression of vx1 (x, t) has been obtained from (52.1, 2) and (53), taking into account from (50)
that F (0, y2) = 1. Operating in a similar fashion for the rest of the terms from (46), we obtain:

∫

�(i)

M (i)
12 (x, t) ds

=
l(i)∫

0

(
P̃(i) (0, y2, t)

∂ṽ

∂y1
(0, y2, t) +R̃(i) (0, y2, t)

∂ṽ

∂y2
(0, y2, t)

)
dy2, (57)

where

P̃(i) (0, y2, t) = M̃ (i)
1 (0, y2, t)

(
ñ(i)

1 (y2)
)2 + M̃ (i)

2 (0, y2, t)
(

ñ(i)
2 (y2)

)2

+ 2H̃ (i)
12 (0, y2, t) ñ(i)

1 (y2) ñ(i)
2 (y2) , (58)

R̃(i) (0, y2, t) =
(

M̃ (i)
2 (0, y2, t) − M̃ (i)

1 (0, y2, t)
)

ñ(i)
1 (y2) ñ(i)

2 (y2)

+ H̃ (i)
12 (0, y2, t)

((
ñ(i)

1 (y2)
)2 −

(
ñ(i)

2 (y2)
)2
)

. (59)

After integration by parts of the second term of the integrand in (57), we obtain

l(i)∫

0

R̃(i) (0, y2, t)
∂ṽ

∂y2
(0, y2, t) dy2

= R̃(i) (0, y2, t) ṽ (0, y2, t) |l(i)0 −
l(i)∫

0

∂ R̃(i)

∂y2
(0, y2, t) ṽ (0, y2, t)dy2. (60)
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On the other hand, it is immediate that the second term in (45), evaluated along �(i), is given by

∫

�(i)

⎛
⎝

2∑
j=1

N (i)
j (x, t) n(i)

j (x)

⎞
⎠ v (x, t)ds

=
l(i)∫

0

⎛
⎝

2∑
j=1

(
N (i)

j ◦ g(i)
)

(0, y2, t)
(

n(i)
j ◦ g(i)

)
(0, y2)

⎞
⎠(

v ◦ g(i)
)

(0, y2, t) dy2

=
l(i)∫

0

⎛
⎝

2∑
j=1

Ñ (i)
j (0, y2, t) ñ(i)

j (y2)

⎞
⎠ṽ (0, y2, t) dy2. (61)

Now let us consider the curvilinear integrals over �(c). From the parametric representation (23), using
(39)–(40) and �n(1) = (1, 0), we obtain

∫

�(c)

2∑
j=1

N (1)
j (x, t) n(1)

j (x) v (x, t)ds =
b∫

a

(
N1|(−) .v

)
(c, x2, t) dx2, (62)

where N1|(−) (c, x2, t) is given by (39) with i = 1 and the derivatives replaced by the corresponding left
lateral derivatives. Similarly, from (41), upon integrating by parts, we have

∫

�(c)

M (1)
12 ds =

b∫

a

[(
M1|(−) .

∂v

∂x1

∣∣∣∣
(−)

)
(c, x2, t)

−
(

∂ H12

∂x2

∣∣∣∣
(−)

.v

)
(c, x2, t)

]
dx2 + (

H12|(−) .v
)
(c, x2, t)

∣∣b
a . (63)

A path that describes the line �(c), when it is considered as a part of the boundary ∂G(2), is given by

γ (c) (x2) =
(
γ

(c)

1 (x2) , γ
(c)

2 (x2)
)

= (c, b − x2) , x2 ∈ [0, b − a] , (64)

and since �n(2) = (−1, 0), in the manner of achieving (62)–(63), we have:

∫

�(c)

2∑
j=1

N (2)
j n(2)

j vds = −
b−a∫

0

(
N1|(+) .v

)
(c, b − x2, t) dx2, (65)

∫

�(c)

M (2)
1 ds =

b−a∫

0

[
−
(

M1|(+) .
∂v

∂x1

∣∣∣∣
(+)

)
(c, b − x2, t)

+
(

∂ H12

∂x2

∣∣∣∣
(+)

.v

)
(c, b − x2, t)

]
dx2 − (

H12|(+) .v
)

(c, b − x2, t)|b−a
0 . (66)
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Then, substitution of (57), (60)–(63) and (65)–(66) into (45) gives

δF (w; v) =
t1∫

t0

⎧⎪⎨
⎪⎩

2∑
i=1

⎡
⎢⎣

l(i)∫

0

⎛
⎝
⎛
⎝−

2∑
j=1

Ñ (i)
j (0, y2, t) ñ(i)

j (y2) − ∂ R̃(i)

∂y2
(0, y2, t)

− k̃(i)
t (0, y2) w̃ (0, y2, t)

⎞
⎠ ṽ (0, y2, t)

+
(

P̃(i) (0, y2, t) − k̃(i)
r (0, y2)

∂w̃

∂y1
(0, y2, t)

)
∂ṽ

∂y1
(0, y2, t)

⎞
⎠ dy2

+
(

R̃(i)ṽ
)

(0, y2, t)
∣∣∣
l(i)

0

⎤
⎥⎦ + S

⎫⎪⎬
⎪⎭

dt (67)

where

S =
b∫

a

[
−
((

N1|(−) + ∂ H12

∂x2

∣∣∣∣
(−)

)
v

)
(c, x2, t) +

(
M1|(−)

∂v

∂x1

∣∣∣∣
(−)

)
(c, x2, t)

]
dx2

+
b−a∫

0

[((
N1|(+) + ∂ H12

∂x2

∣∣∣∣
(+)

)
v

)
(c, b − x2, t) −

(
M1|(+)

∂v

∂x1

∣∣∣∣
(+)

)
(c, b − x2, t)

]
dx2

−
b∫

a

k(c)
t (c, x2) w (c, x2, t) v (c, x2, t)dx2 −

b∫

a

k(c)
r (c, x2)

[
∂w

∂x1

] [
∂v

∂x1

]
dx2

+ (
H12|(−) .v

)
(c, x2, t)

∣∣b
a − (

H12|(+) .v
)
(c, b − x2, t)

∣∣b−a
0 . (68)

Since we can independently choose v and its derivatives and the interval [t0, t1] is arbitrary, the condition of
stationary functional (27) applied to (67) leads, in the manner for achieving Eq. (44), to the following natural
boundary conditions that establish requirements on the bending moments and on the shear forces, respectively:

k̃(i)
r (0, y2)

∂w̃

∂y1
(0, y2, t) = P̃(i) (0, y2, t) , y2 ∈

[
0, l(i)

]
, i = 1, 2, (69.1, 2)

k̃(i)
t (0, y2) w̃ (0, y2, t) = −

2∑
j=1

Ñ (i)
j (0, y2, t) ñ(i)

j (y2) − ∂ R̃(i)

∂y2
(0, y2, t) ,

y2 ∈
[
0, l(i)

]
, i = 1, 2, (70.1, 2)

where P̃(i) and R̃(i) are, respectively, given by (58) and (59).
It must be noted from (67) that if the boundary ∂G is smooth, the continuity conditions

R̃(1)
(

0, l(1), t
)

ṽ
(

0, l(1), t
)

= R̃(2) (0, 0, t) ṽ (0, 0, t) ,

R̃(1) (0, 0, t) ṽ (0, 0, t) = R̃(2)
(

0, l(2), t
)

ṽ
(

0, l(2), t
)

lead to

2∑
i=1

R̃(i) (0, y2, t) ṽ (0, y2, t)
∣∣∣
l(i)

0
= 0. (71)
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The equations (69.1, 2)–(70.1, 2) are the boundary conditions along ∂G. Adopting the adequate values for the
parameters k̃(i)

r and k̃(i)
t all the classical boundary supports (i.e.: clamped, simply supported and free) can be

generated. In view of (69.1, 2)–(70.1, 2) and (71), the variation given by (67) reduces to

δF (w; v) =
t1∫

t0

Sdt, (72)

where S is given by (68). Finally, in the manner of achieving (69.1, 2)–(70.1, 2) and using the property

b−a∫

0

f (b − x2) dx2 =
b∫

a

f (x2) dx2

from (72), we obtain:

k(c)
r (c, x2)

(
∂w

∂x1

∣∣∣∣
(+)

(c, x2, t) − ∂w

∂x1

∣∣∣∣
(−)

(c, x2, t)

)
= − M1|(−) (c, x2, t) , x2 ∈ [a, b] , (73)

k(c)
r (c, x2)

(
∂w

∂x1

∣∣∣∣
(+)

(c, x2, t) − ∂w

∂x1

∣∣∣∣
(−)

(c, x2, t)

)
= − M1|(+) (c, x2, t) , x2 ∈ [a, b] , (74)

k(c)
t (c, x2) w (c, x2, t) = − N1|(−) (c, x2, t) − ∂ H12

∂x2

∣∣∣∣
(−)

(c, x2, t)

+ N1|(+) (c, x2, t) + ∂ H12

∂x2

∣∣∣∣
(+)

(c, x2, t) , x2 ∈ [a, b] , (75)

and the relations

H12|(−) (c, b, t) = − H12|(+) (c, b, t) , H12|(−) (c, a, t) = − H12|(+) (c, a, t) . (76.1, 2)

If the boundary ∂G is composed of a finite number of smooth arcs and therefore has at most a finite number
of corner points, the condition (71) is no longer valid. To be definite, let us assume that the curve �(1) consists
of two smooth arcs �(1),1 and �(1),2 of lengths l(1),1 and l(1),2, respectively, and that has a corner point of
coordinates (y1, y2) given by

(
0, l(1),1

)
. Let us suppose that �(1),1 is represented parametrically by the function

γ (1),1(s), s ∈ [
0, l(1),1

]
and �(1),2 by γ (1),2(s), s ∈ [

l(1),1, l(1)
]
, l(1) = l(1),1 + l(1),2. From Eq. (60) with

i = 1 we get

l(1)∫

0

R̃(1) (0, y2, t)
∂ṽ

∂y2
(0, y2, t)dy2 = R̃(1),1 (0, y2, t) ṽ (0, y2, t)

∣∣∣
l(1),1

0

+ R̃(1),2 (0, y2, t) ṽ (0, y2, t)
∣∣∣
l(1)

l(1),1
−

l(1)∫

0

∂ R̃(1)

∂y2
(0, y2, t) ṽ (0, y2, t)dy2, (77)

where R̃(1),i denotes the expression R̃(1) defined on �(1),i . Taking into account (69.1, 2)–(70.1, 2) and (73)–
(77), the variation (67) reduces to

δF (w; v) =
t1∫

t0

[(
R̃(1),1ṽ

)
(0, y2, t)

∣∣∣
l(1),1

0
+

(
R̃(1),2ṽ

)
(0, y2, t)

∣∣∣
l(1)

l(1),1

+
(

R̃(2)ṽ
)

(0, y2, t)
∣∣∣
l(2)

0

]
dt, (78)
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and adopting directions ṽ such that ṽ �= 0 in the corner point and ṽ = 0 along the curve �(2) (where the
function R̃(2)ṽ is defined), the condition of stationary functional (27) leads to:

R̃(1),1
(

0, l(1),1, t
)

ṽ
(

0, l(1),1, t
)

= R̃(1),2
(

0, l(1),1, t
)

ṽ
(

0, l(1),1, t
)

,

and since ṽ is continuous, we obtain

R̃(1),1
(

0, l(1),1, t
)

= R̃(1),2
(

0, l(1),1, t
)

. (79)

It must be noted that the condition v �= 0 in the corner point is encountered, for instance, when the plate along
the arcs �(1),1 and �(1),2 is free or elastically restrained against translation. In Sect. 5.1, the Eq. (79) is used
to obtain the corner conditions that correspond to an anisotropic rectangular plate.

4 The transition conditions

Since the domain of definition of the problem is G and this is an open set in R
2, given by G = G(1)∪G(2)∪�(c)

with boundary ∂G = ∂G(1) ∪ ∂G(2) − �(c), only the Eqs. (69.1, 2)–(70.1, 2) correspond to the boundary con-
ditions. All the points of the line �(c) are interior points of G, and the equations formulated on �(c) can be
called transition conditions. Then, (73)–(75) correspond to the transition conditions of the problem. Since
w (•, t) ∈ C

(
Ḡ
)
, there exists continuity of deflection at the points (c, x2), and this generate the transition

condition

w
(
c−, x2, t

) = w
(
c+, x2, t

) = w (c, x2, t) , x2 ∈ [a, b] ,

where w
(
c−, x2, t

)
denotes the limit from the left and w

(
c+, x2, t

)
the limit from the right. If (73) and (74)

are summed and then subtracted, more symmetric equations can be obtained, and the set of all the transitions
conditions of the problem can be expressed as:

w
(
c−, x2, t

) = w
(
c+, x2, t

) = w (c, x2, t) , x2 ∈ [a, b] . (80)

k(c)
r (c, x2)

(
∂w

∂x1

∣∣∣∣
(+)

(c, x2, t) − ∂w

∂x1

∣∣∣∣
(−)

(c, x2, t)

)

= −1

2

(
M1|(+) (c, x2, t) + M1|(−) (c, x2, t)

)
, x2 ∈ [a, b] , (81)

M1|(+) (c, x2, t) − M1|(−) (c, x2, t) = 0, x2 ∈ [a, b] , (82)

k(c)
t (c, x2) w (c, x2, t) = − N1|(−) (c, x2, t) − ∂ H12

∂x2

∣∣∣∣
(−)

(c, x2, t)

+ N1|(+) (c, x2, t) + ∂ H12

∂x2

∣∣∣∣
(+)

(c, x2, t) , x2 ∈ [a, b] . (83)

Different situations can be generated by substituting values and/or limiting values of the restraint parameters
k(c)

r and k(c)
t in (81) and (83).

It is well known that for a differential equation of order 2m, the boundary conditions containing the function
w and derivatives of w of orders not greater than m − 1 are called stable or geometric, and those containing
derivatives of orders higher than m −1 are called unstable or natural, [9]. In consequence, if 0 ≤ k̃(i)

r (0, y2) <

∞, 0 ≤ k̃(i)
t (0, y2) < ∞, the boundary conditions (69)–(70) are all unstable. If this classification is extended

to the transition conditions, we conclude that if 0 ≤ k(c)
r (c, x2) < ∞, 0 ≤ k(c)

t (c, x2) < ∞, the conditions
(81) and (83) are unstable. Obviously, the condition (80) is stable and (82) unstable.

The above classification is particularly important when using the Ritz method since we must choose a
sequence of functions vi which constitutes a base in the space of homogeneous stable boundary conditions.
So, in this case, there is no need to subject the functions vi to the natural boundary and transition conditions.
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5 Analytical examples

5.1 Anisotropic plate elastically restrained against rotation

If the anisotropic plate is elastically restrained only against rotation, letting k̃(i)
t (0, y2) → ∞ in (70.1, 2), we

get

w̃ (0, y2, t) = 0, y2 ∈
[
0, l(i)

]
, i = 1, 2. (84)

The above boundary conditions imply that the restrictions of the function w to G(1) and to G(2) vanish along
the corresponding boundary curve. By replacing the expression of P̃(i) into (69.1, 2), we get:

k̃(i)
r (0, y2)

∂w̃

∂y1
(0, y2, t) = ∂2w̃

∂y2
1

(0, y2, t)
3∑

j=1

A(i)
j + ∂2w̃

∂y2
2

(0, y2, t)
3∑

j=1

B(i)
j

+ ∂2w̃

∂y1∂y2
(0, y2, t)

2∑
j=1

C (i)
j + ∂w̃

∂y1
(0, y2, t)

dα̃

dy2
(y2)

3∑
j=1

B(i)
j

− ∂w̃

∂y2
(0, y2, t)

dα̃

dy2
(y2)

2∑
j=1

C (i)
j , y2 ∈

[
0, l(i)

]
, i = 1, 2, (85)

where

A(i)
1 = E (i)

1

(
ñ(i)

1

)2
, A(i)

2 = E (i)
2

(
ñ(i)

2

)2
, A(i)

3 = E (i)
3 ñ(i)

1 ñ(i)
2 ,

B(i)
1 = E (i)

1

(
ñ(i)

2

)2
, B(i)

2 = E (i)
2

(
ñ(i)

1

)2
, B(i)

3 = −A(i)
3 ,

C (i)
1 = 2

(
E (i)

2 − E (i)
1

)
ñ(i)

1 ñ(i)
2 , C (i)

2 = E (i)
3

((
ñ(i)

1

)2 −
(

ñ(i)
2

)2
)

,

E (i)
1 = −

(
D(i)

11

(
ñ(i)

1

)2 + D(i)
12

(
ñ(i)

2

)2 + 2D(i)
16 ñ(i)

1 ñ(i)
2

)
,

E (i)
2 = −

(
D(i)

12

(
ñ(i)

1

)2 + D(i)
22

(
ñ(i)

2

)2 + 2D(i)
26 ñ(i)

1 ñ(i)
2

)
,

E (i)
3 = −2

(
D(i)

16

(
ñ(i)

1

)2 + D(i)
26

(
ñ(i)

2

)2 + 2D(i)
66 ñ(i)

1 ñ(i)
2

)
.

Thus, the boundary conditions that correspond to this case are given by Eqs. (84) and (85).
Now, let us consider a rectangular plate with

G = {(x1, x2) , x1 ∈ (0, a) , x2 ∈ (0, b)} ,

G(1) = {(x1, x2) , x1 ∈ (0, c) , x2 ∈ (0, b)} ,

G(2) = {(x1, x2) , x1 ∈ (c, a) , x2 ∈ (0, b)} .

Then, we have

dα̃

dy2
(y2) ≡ 0, E (i)

1 = −D(i)
11

(
ñ(i)

1

)2 − D(i)
12

(
ñ(i)

2

)2
,

E (i)
2 = −D(i)

12

(
ñ(i)

1

)2 − D(i)
22

(
ñ(i)

2

)2
, E (i)

3 = −2

(
D(i)

16

(
ñ(i)

1

)2 + D(i)
26

(
ñ(i)

2

)2
)

,

with ñ(i)
1 = ±1, ñ(i)

2 = 0 for the sides parallel to x2 and ñ(i)
1 = 0, ñ(i)

2 = ±1 for the sides parallel to x1.
In consequence, from (85) it follows that the boundary condition that corresponds to the first side of the
boundary

�(1) = {(x1, b) , x1 ∈ [0, c]} ∪ {(0, x2) , x2 ∈ [0, b]} ∪ {(x1, 0) , x1 ∈ [0, c]}
is given by:
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k̃(1),1
r (0, y2)

∂w̃

∂y1
(0, y2, t)

= −D(1)
22 (0, y2)

∂2w̃

∂y2
1

(0, y2, t) − D(1)
12 (0, y2)

∂2w̃

∂y2
2

(0, y2, t)

+ 2D(1)
26 (0, y2)

∂2w̃

∂y1∂y2
(0, y2, t) , y2 ∈

[
0, l(1)

1

]
, l(1)

1 = c,

and analog expressions correspond to the sides �(1),2 and �(1),3. Using (51a) (with ṽ replaced by w̃) and the
expressions of w̃y1 y1, w̃y2 y2 and w̃y1 y2 , these boundary conditions can be expressed in the original variables.
Employing the same technique, we can obtain the boundary conditions which correspond to G(2).

It must be noted that in this case, the boundary is composed of four smooth arcs and has four corner
points. Let us consider in the (x1, x2) variables the corner point (0, b), and the Eq. (79), which is now given
by R(1),1 (0, b, t) = R(1),2 (0, b, t) and by virtue of Eq. (59), reduces to

H (1),1
12 (0, b, t) = H (1),1

12 (0, b, t) .

Then, from (38), this expression gives rise to the following corner condition:

D(1)
16 (x)

∂2w

∂x2
1

(x, t) + D(1)
26 (x)

∂2w

∂x2
2

(x, t) + 2D(1)
66 (x)

∂2w

∂x1∂x2
(x, t) = 0,

x = (0, b) .

In an analog form, we can obtain the remaining corner conditions. The transition conditions are directly given
by Eqs. (80)–(83).

5.2 Isotropic circular plate elastically restrained against rotation

Let us consider an isotropic circular plate whose boundary is elastically restrained against rotation. From (14),
we have

x j
∣∣
�(i) = g(i)

j (0, y2) = γ
(i)
j (y2) = x j0 + añ j (y2) , y2 ∈ [0, πa] , i, j = 1, 2,

where x10, x20 are the coordinates of the center of the circle. The case of isotropic plate is obtained replacing
the coefficients:

D(i)
11 = D(i)

22 = D(i), D(i)
12 = μD(i), D(i)

16 = D(i)
26 = 0, D(i)

66 = D(i)

2
(1 − μ) .

In this case, we have

E1 = −D(i)
((

ñ(i)
1

)2 + μ
(

ñ(i)
2

)2
)

,

E2 = −D(i)
(

μ
(

ñ(i)
1

)2 +
(

ñ(i)
2

)2
)

,

E3 = −2D(i) (1 − μ) ñ(i)
1 ñ(i)

2 .

Finally, since we have the relations y2 = aα̃ and y1 = r − a, it follows that dα̃/dy2 = a−1, and from
(69.1, 2)–(70.1, 2), we obtain the boundary conditions expressed in polar coordinates:

w (a, α, t) = 0, α ∈ [0, 2π] ,

k(i)
r (a, α)

∂w

∂r
(a, α, t) = −D(i)

(
∂2w

∂r2 (a, α, t) + μ

a2

∂2w

∂α2 (a, α, t) + μ

a

∂w

∂r
(a, α, t)

)
,

i = 1, 2, α ∈ [0, 2π] .
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6 Concluding remarks

This paper presents the formulation of an analytical model for the dynamic behavior of anisotropic plates, with
an arbitrarily located internal line hinge with elastic supports and piecewise smooth boundaries elastically
restrained against rotation and translation. The equations of motion and its associated boundary and transition
conditions were derived using Hamilton’s principle. By introducing an adequate change of variables, the ener-
gies that correspond to the different elastic restraints were handled in a rigorous framework. The concept of
transition conditions was introduced, and the corresponding analytical expressions were derived.

It has also been demonstrated that the presence of corner points, when the boundary is free or elastically
restrained against translation, generates additional conditions at those points. The proposed mathematical
manipulation offers an enhancement and generalization of the approaches that appear in the engineering liter-
ature and fills the gap existing as a consequence of the commonly used formal arguments. Finally, analytical
examples were worked out to illustrate the range of applications of the developed analytical model.
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