Polyphenolic profile of butterhead lettuce cultivar by ultrahigh performance liquid chromatography coupled online to UV-visible spectrophotometry and quadrupole time-of-flight mass spectrometry

Gabriela E. Viacava ${ }^{\mathrm{a}}$, Sara I. Roura ${ }^{\mathrm{a}}$, Diana M. López-Márquez ${ }^{\mathrm{b}}$, Luis A. Berrueta ${ }^{\mathrm{b}}$, Blanca Gallo ${ }^{\text {b }}$, Rosa M. Alonso-Salces ${ }^{\text {¢,* }}$
${ }^{a}$ a Grupo de Investigación en Ingeniería en Alimentos, CONICET, Departamento de Ingeniería Química y en Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, 7600 Mar del Plata, Argentina
${ }^{\text {b }}$ Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
${ }^{c}$ Departamento de Biología, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350 , 7600 Mar del Plata, Argentina

A R T I C LE IN F O

Chemical compounds studied in this article::
5-Caffeoylquinic acid (PubChem CID: 12310830)

Caffeoylmalic acid (PubChem CID: 4484594)
4-Hydroxyphenylacetic acid (PubChem CID: 127)

Quercetin-3-O-galactoside (PubChem CID:
90657624)

Quercetin-3-O-glucuronide (PubChem CID: 5274585)

Kaempferol-3-O-glucuronide (PubChem CID: 5318759)

Luteolin 7-glucoside (PubChem CID: 5280637)
Luteolin 7-rutinoside (PubChem CID:
44258082)

Esculetin-6-O-glucoside (PubChem CID:
5281417)

Syringaresinol (PubChem CID: 100067)
Keywords:
Lactuca sativa
Lettuce
Phenolic compounds
UHPLC-QToF
Mass spectrometry
$M S^{\mathrm{E}}$

Abstract

In the present study, the butterhead lettuce cultivar was analyzed by ultrahigh performance liquid chromatography (UHPLC) coupled online to diode array detection (DAD), electrospray ionization (ESI) and quadrupole time-of-flight mass spectrometry ($\mathrm{QToF} / \mathrm{MS}$) in the positive and negative ion mode in order to characterize its polyphenolic profile for the first time. The instrument acquisition mode MS^{E} was used to collect automatic and simultaneous information of exact mass at high and low collision energies of precursor ions as well as other ions produced as a result of their fragmentation. One hundred eleven phenolic compounds were identified in the acidified hydromethanolic extract of freeze-dried leaves of butterhead lettuce cultivar: 40 hydroxycinnamic acid derivatives, 21 hydroxybenzoic acid derivatives, 2 hydroxyphenylacetic acid derivatives, 18 flavonols, 9 flavones, one flavanone, 7 coumarins, one hydrolysable tannin and 12 lignans. Forty-seven of these compounds have been tentatively identified for the first time in lettuce.

1. Introduction

Phenolic compounds are secondary plant metabolites ubiquitous in the plant kingdom involved in protection mechanisms against biotic and abiotic stresses, in the regulation of plant growth and development, and in the organoleptic quality of plant-based foods (Dai \& Mumper,
2010). Moreover, the intake of phenolic compounds through fruits and vegetables have been proved to provide beneficial effects attributed to their antioxidant capacity against oxidative stress, cancer and cardiovascular diseases, among others (Watson, Preedy, \& Zibadi, 2014). Lettuce (Lactuca sativa L.) is one of the most popular leafy vegetables. In particular, the butterhead lettuce is one of the most commonly

[^0]https://doi.org/10.1016/j.foodchem.2018.03.151
Received 13 March 2017; Received in revised form 15 March 2018; Accepted 31 March 2018
Available online 03 April 2018
0308-8146/ © 2018 Elsevier Ltd. All rights reserved.
consumed variety worldwide (Agüero, Viacava, Ponce, \& Roura, 2013); however, its polyphenolic profile has not been characterized yet to the authors' knowledge. The main classes of phenolic compounds found in different varieties of lettuce are phenolic acids and flavonols, followed by flavones and anthocyanins (only in red varieties) (Alarcón-Flores, Romero-González, Martínez Vidal, \& Garrido Frenich, 2016; Marin, Ferreres, Barberá, \& Gil, 2015; Pepe et al., 2015). Most analytical methods used to determine polyphenols in lettuce are based on high or ultrahigh performance liquid chromatography (HPLC or UHPLC) coupled to diode array detection (DAD) and/or mass spectrometry (MS and MS/MS) (Abu-Reidah, Contreras, Arráez-Román, Segura-Carretero, \& Fernández-Gutiérrez, 2013; Alarcón-Flores et al., 2016; Altunkaya \& Gökmen, 2009; Llorach, Martínez-Sánchez, Tomás-Barberán, Gil, \& Ferreres, 2008; Pepe et al., 2015; Ribas-Agustí, Gratacós-Cubarsí, Sárraga, García-Regueiro, \& Castellari, 2011). UHPLC achieves rapid analysis and better peak separation than HPLC, and coupled to ToF or QToF instruments provides a highly attractive analytical technique with very high resolution and accurate mass measurements of the precursor and fragment ions (Ramirez-Ambrosi, et al., 2013). This technique has been already used to characterize 95 phenolic compounds in three lettuce cultivars (baby, romaine, and iceberg) (Abu-Reidah et al., 2013). Technological advances such as the so called MS^{E} data acquisition mode has been successfully used for the structural elucidation of phenolic compounds in complex plant extracts (Ramirez-Ambrosi et al., 2013). MS^{E} acquisition method maximizes the QToF instrument duty cycle performing simultaneous collection of precursor ions as well as other ions produced as a result of their fragmentation in exact mass mode over a single experimental run. Since many compounds still remain unidentified in lettuce cultivars and the utilization of analytical edge technology can provide new structural information and allow the identification of unknown polyphenols, the present study exploits the use of UHPLC-DAD-ESI-QToF/MS ${ }^{\mathrm{E}}$ for the characterization of the polyphenolic profile of the butterhead lettuce cultivar, which is here reported for the first time to the authors' knowledge.

2. Materials and methods

2.1. Reagents, solvents and standards

Water, methanol, acetonitrile, and formic acid (Fisher Scientific, Fair Lawn, NJ, USA) were of Optima ${ }^{\circledR}$ LC/MS grade; ascorbic acid (Panreac, Barcelona, Spain), analytical grade; and glacial acetic acid (Merck, Darmstadt, Germany), Suprapur ${ }^{\circledR}$ quality. Leucine Enkephalin acetate hydrate and sodium formate solution were provided by SigmaAldrich Chemie (Steinheim, Germany). Luteolin-7-O-glucoside, kaempferol-3-O-glucoside, quercetin-3-O-galactoside, quercetin-3-Orhamnoside were purchased from Extrasynthèse (Genay, France); caffeoyltartaric acid and quercetin-3-O-glucoside, from Chromadex (Irvine, CA, USA); 5-O-caffeoylquinic acid, p-coumaric acid, 1,5-dicaffeoylquinic acid, 1,3-dicaffeoylquinic acid, and quercetin-3-O-rutinoside, from Sigma-Aldrich Chemie (Steinheim, Germany); and ferulic acid, caffeic acid, and 3,4-dihydroxybenzoic acid, from Fluka Chemie (Steinheim, Germany). Standard stock solutions of phenolic compounds were prepared in methanol; and a reference solution of these compounds ($5 \mu \mathrm{~g} / \mathrm{mL}$), in methanol-water-acetic acid (30:65:5, v/v/v).

2.2. Plant material

Heads of butterhead lettuce (Lactuca sativa var. Lores) were obtained from a local producer in Sierra de los Padres (Mar del Plata, Argentina). Lettuce samples were frozen with liquid nitrogen and freeze-dried, homogenized and crushed to obtain a homogeneous powder, which was stored at room temperature in dark in a desiccator until analysis.

2.3. Extraction of polyphenols in lettuce

Freeze-dried lettuce (0.1 g) was extracted with 5 mL of methanol--water-acetic acid (30:65:5, v/v/v) containing ascorbic acid ($2 \mathrm{~g} / \mathrm{L}$) in an ultrasonic bath for 10 min . Then, the extract was centrifuged at 6000 rpm during 15 min at $4^{\circ} \mathrm{C}$, and the supernatant was filtered through a $0.45 \mu \mathrm{~m}$ PTFE filter (Waters, Milford, CA, USA) prior to injection into the UHPLC system.

2.4. UHPLC-DAD-ESI-QToF/MS ${ }^{E}$

Lettuce extract was analyzed using an ACQUITY UPLC ${ }^{\text {TM }}$ system from Waters (Milford, MA, USA), equipped with a binary solvent delivery pump, an autosampler, a column compartment a PDA detector, and controlled by MassLynx v4.1 software. A reverse phase Acquity UPLC BEH C18 column ($2.1 \mathrm{~mm} \times 100 \mathrm{~mm}, 1.7 \mu \mathrm{~m}$) and a Acquity UPLC BEH C18 VanGuard ${ }^{\mathrm{TM}}$ pre-column $(1.7 \mu \mathrm{~m})$ from Waters (Milford, USA) were used. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$; injection volume, $5 \mu \mathrm{~L}$; column and autosampler temperatures, $40^{\circ} \mathrm{C}$ and $4^{\circ} \mathrm{C}$ respectively. Mobile phases consisted of $0.1 \%(\mathrm{v} / \mathrm{v})$ acetic acid in water (A) and 0.1% (v / v) acetic acid in methanol (B). The elution conditions applied were: $0-8.5 \mathrm{~min}$, linear gradient $0-13 \% \mathrm{~B} ; 8.5-11 \mathrm{~min}, 13 \% \mathrm{~B}$ isocratic; $11-12.3 \mathrm{~min}$, linear gradient $13-15 \% \mathrm{~B} ; 12.3-13.8 \mathrm{~min}$, linear gradient $15-19 \% \mathrm{~B} ; 13.8-17.3 \mathrm{~min}$, linear gradient $19-23 \% \mathrm{~B} ; 17.3-19 \mathrm{~min}$, 23\% B isocratic; 19-24 min, linear gradient 23-30\% B; 24-26 min, 30\% B isocratic; 26-27 min, linear gradient $30-100 \% \mathrm{~B} ; 27-28 \mathrm{~min}, 100 \%$ B isocratic; and finally reconditioning of the column with 100% A isocratic. UV-visible spectra were recorded from 210 to 500 nm (20 Hz , 1.2 nm resolution). Hydroxybenzoic acids were monitored at 254 nm ; flavanones at 280 nm ; hydroxycinnamic acids and coumarins at 320 nm ; flavonols and flavones at 370 nm .

All MS data acquisitions were performed on a SYNAPT ${ }^{\text {mM }}$ G2 HDMS with a quadrupole time of flight (QToF) configuration (Waters, Milford, MA, USA) equipped with an electrospray ionization (ESI) source operating in both positive and negative modes. The capillary voltage was set to $0.7 \mathrm{kV}(\mathrm{ESI}+)$ or 0.5 kV (ESI -). Nitrogen was used as the desolvation and cone gas at flow rates of $900 \mathrm{~L} / \mathrm{h}$ and $10 \mathrm{~L} / \mathrm{h}$, respectively. The source and desolvation temperatures were $120^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ respectively. Leucine-enkephalin solution ($2 \mathrm{ng} / \mu \mathrm{L}$) in $0.1 \%(\mathrm{v} / \mathrm{v})$ formic acid in acetonitrile-water ($50: 50, \mathrm{v} / \mathrm{v}$) was used for the lock mass correction ($m / z 556.2771$ and 278.1141, or $m / z 554.2615$ and 236.1035 , depending on the ionization mode, were monitored at scan time 0.2 s , interval 10 s , scans to average 3 , mass window $\pm 0.5 \mathrm{Da}$, cone voltage 30 V , at a flow rate $10 \mu \mathrm{~L} / \mathrm{min}$). Data acquisition was recorded in the mass range $50-1200 u$ in resolution mode ($F W H M \approx 20,000$) with a scan time of 0.2 s and an interscan delay of the 0.024 s , and automatically corrected during acquisition based on the lock mass. Before analysis, the mass spectrometer was mass calibrated with the sodium formate solution. To perform MS^{E} mode analysis, the cone voltage was set to $20 \mathrm{~V}(\mathrm{ESI}+$) or 30 V (ESI -) and the quadrupole operated in a wide band RF mode only. Two discrete and independent interleaved acquisition functions were automatically created. The first function, typically set at 6 eV in trap cell of the T-Wave, collects low energy or unfragmented data while the second function collects high energy or fragmented data typically using 6 eV in trap cell and a collision ramp $10-40 \mathrm{eV}$ in transfer cell. In both cases, Argon gas was used for Collision Induced Dissociation (CID). Data were recorded in continuous mode. For instrument control, data acquisition and processing MassLynxTM software Version 4.1 (Waters MS Technology, Milford, USA) was used.

2.5. Identification of phenolic compounds

The identification of the phenolic compounds for which standards were available was carried out by the comparison of their retention times, their UV-vis spectra and MS^{E} spectra recorded in positive and negative mode with those obtained by injecting standards in the same
conditions. The identity of the rest of compounds was elucidated using the following analytical data: i) the UV-vis spectrum when it was available to assign the phenolic class (Abad-García, Berrueta, GarmónLobato, Gallo, \& Vicente, 2009), since each class exhibits a characteristic UV-vis spectrum (Markham, 1982); ii) the low collision energy MS^{E} spectrum in positive and negative ion mode to determine the molecular weight; and since only the protonated/deprotonated molecules are able to form in the electrospray ionization source adducts, clusters and/or molecular complexes with mobile phase species (e.g. adducts with sodium $[\mathrm{M}+\mathrm{Na}]^{+}$at $22 u$ above the protonated molecule, $[2 \mathrm{M}+\mathrm{Na}]^{+}$of monoacyl hydroxycinnamic acids, the dehydrated protonated molecule ($\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$) of phenolic acids and diacyl hydroxycinnamic acids in positive mode; and adducts with $\mathrm{HSO}_{4}{ }^{-}(97 u)$ and $\mathrm{AcO}^{-}(43 \mathrm{u})$ and the deprotonated dimer ion $[2 \mathrm{M}-\mathrm{H}]^{-}$of monoacyl hydroxycinnamic acid in negative mode), their presence in the low collision energy spectra allows the unequivocal identification of the $[\mathrm{M}+\mathrm{H}]^{+}$or $[\mathrm{M}-\mathrm{H}]^{-}$ions; and iii) the high collision energy MS^{E} spectrum provides the polyphenol fragmentation patterns, which afford structural information related to the type of carbohydrates, the sequence of the glycan part, interglycosidic linkages and the aglycone moiety, allowing to assign the protonated aglycone $\left[\mathrm{Y}_{0}\right]^{+}$and/or the deprotonated aglycone $\left[\mathrm{Y}_{0}\right]^{-}$. The identification of the aglycone was carried out based on the observation of ${ }^{\mathrm{i}, \mathrm{j}} \mathrm{A}^{+}$and ${ }^{\mathrm{i}, \mathrm{j}} \mathrm{B}^{+}$ions (Ma, Li, Van den Heuvel, \& Claeys, 1997). Furthermore, the chromatographic elution order aided in some structural assignments, as well as bibliographic references. IUPAC nomenclature and recommended numbering system (Lozac'h, 1975) were used for chlorogenic acids and flavonoids; and common names were used for other phenolic acid derivatives, coumarins, hydrolysable tannins and lignan derivatives. Structures of each family of compounds studied are presented in Fig. 1.

3. Results and discussion

A total of 111 phenolic compounds were tentatively identified in the butterhead lettuce cultivar by UHPLC-DAD-ESI-QToF/MS ${ }^{\text {E }}$. The UV-visible and MS spectral data are summarized in Table 1. DAD and MS chromatograms are shown in Figs. 1S-5S (supplementary material). The high and low energy function MS spectra of compounds from the different phenolic families detected in this cultivar are displayed in Figs. 2 and 3, and in Figs. 6S-9S (supplementary material).

3.1. Phenolic acid derivatives

For the identification of phenolic acid derivatives, mainly negative ion mode mass spectra were taken into account, although the positive ion mode was used for verification. In the high collision energy MS spectra, losses of $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$ and CO were regularly observed, which have also been described by other authors using IT, QqQ, and QToF (Gómez-Romero, Segura-Carretero, \& Fernandez-Gutierrez, 2010; Ramirez-Ambrosi et al., 2013).

3.1.1. Hydroxycinnamic derivatives

3.1.1.1. Caffeoylquinic acids. Three major chromatographic peaks (1, 3, 6), presenting the same UV spectra as the standard trans-5caffeoylquinic acid (trans-5-CQA), were detected in the chromatograms extracted from the Total Ion Current (TIC) MS scan chromatogram in negative and positive modes at $m / z 353$ and 355 respectively, which were due to three caffeoylquinic acid (CQA) isomers (Fig. $2 S$ in the supplementary material). Compound $\mathbf{3}$ ($\mathrm{Rt}=7.32 \mathrm{~min}, \lambda_{\max }=300,324 \mathrm{~nm}$) was identified unambiguously as trans-5-caffeoylquinic acid by comparison with its standard: the deprotonated molecule $[\mathrm{M}-\mathrm{H}]^{-}$at $\mathrm{m} / \mathrm{z} 353$ yielded fragment ions at $m / z 191,173$ and 135; and the protonated molecule $[\mathrm{M}+\mathrm{H}]^{+}$, at m / z 163 and 145. Moreover, its sodium adducts, $[\mathrm{M}+\mathrm{Na}]^{+}$and $[2 \mathrm{M}+\mathrm{Na}]^{+}$ at $m / z 377$ and 731 respectively, were also observed (Fig. 6S in the supplementary material). Compounds 1 ($\mathrm{Rt}=4.74 \mathrm{~min}, \lambda_{\max }=301$,

323 nm) and 6 (Rt $\left.=10.23 \mathrm{~min}, \lambda_{\text {max }}=301,316 \mathrm{~nm}\right)$ had the same fragmentation pattern as 5-CQA, and their m / z values for $[M+H]^{+}$and $[\mathrm{M}-\mathrm{H}]^{-}$were confirmed with the sodium adduct at $m / z 377$ in positive ionization mode, and the $[2 \mathrm{M}-\mathrm{H}]^{-}$ion at $\mathrm{m} / \mathrm{z} 707$ in negative mode. All three peaks (1, 3, 6) yielded the same base peak at $m / z 191$ due to the deprotonated quinic moiety in the negative high energy function. None of the peaks yielded an intense fragment ion at $m / z 173$ ([quinic acid- $\left.\mathrm{H}_{-} \mathrm{H}_{2} \mathrm{O}\right]^{-}$). This dehydrated ion of quinic acid is characteristically formed in the negative ion mode when the cinnamoyl group is bonded to the quinic moiety at position 4, as already noted by other authors using other QqQ/MS (Alonso-Salces, Guillou, \& Berrueta, 2009) or IT/MS (Clifford, Johnston, Knight, \& Kuhnert, 2003). Peak 1 also gave intense ions from the caffeoyl moiety ([caffeic acid $\left.-\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$) at $m / z 135$ (71% relative abundance (RA)) and ([caffeic acid-H] ${ }^{-}$) at $m / z 179$ (32\% RA), characteristic intense ions of the fragmentation pattern of 3-CQA by QqQ/MS (Alonso-Salces et al., 2009). The relative hydrophobicity of cinnamoyl derivatives depends on the position, the number and the identity of the cinnamoyl residues. In general, those chlorogenic acids (CGAs) with a greater number of free equatorial hydroxyl groups in the quinic acid are more hydrophilic than those with a greater number of free axial hydroxyl groups (Clifford, Knight, \& Kuhnert, 2005). Taking into account the fact that the hydroxyl groups in the quinic acid are axial in position 1 and 3, and equatorial in positions 4 and 5 (Clifford, Knight, Surucu, \& Kuhnert, 2006), the elution order observed for monoacyl-CGAs on C18 reversedphase LC is 3-CGA, 5-CGA and 4-CGA. This empirical rule was observed by several authors (Abu-Reidah et al., 2013; Alonso-Salces et al., 2009; Clifford et al., 2003). So, isomers substituted in position 3 were the most hydrophilic; and in position 4 the most hydrophobic, although in some packings 4-CQA precedes 5-CQA. On the other hand, the ease of removal of the caffeoyl residue during fragmentation is $1 \approx 5>3>4$ (Clifford et al., 2005). In the negative low energy function, the base peaks were $[\mathrm{M}-\mathrm{H}]^{-}$at $m / z 353$ for peak 1 , and [quinic acid-H] ${ }^{-}$at $m / z 191$ for peaks 3 and 6 , revealing that the caffeoyl moiety in peak 1 was bonded to the quinic structure in a stronger position. So, peak 1 was tentatively assigned to a 3-CQA isomer.

Besides the three major peaks (1, 3, 6), other four caffeoylquinic acid isomers ($2, \mathrm{Rt}=6.65 \mathrm{~min} ; 4, \mathrm{Rt}=8.12 \mathrm{~min} ; 5, \mathrm{Rt}=8.36 \mathrm{~min} ; 7$, $\mathrm{Rt}=15.06 \mathrm{~min}$) were detected in the chromatograms extracted at m / z 353 (ESI -) and 355 (ESI +), presenting the same fragmentation pattern in the positive mode as the former isomers. Chlorogenic acid isomers 1-CQA, 3-CQA (neochlorogenic acid), cis-3-CQA, 4-CQA (cryptochlorogenic acid), cis-4-CQA and cis-5-CQA have been previously found in different Asteraceae species (Clifford, Wu, Kirkpatrick, \& Kuhnert, 2007; Jaiswal, Kiprotich, \& Kuhnert, 2011). In the negative low energy function, compounds 2, 4 and 7 yielded the deprotonated molecule $[\mathrm{M}-\mathrm{H}]^{-}$, whereas all four peaks presented the same base peak at m / z 191 due to the deprotonated quinic moiety in the negative high energy function. Furthermore, peak 4 yielded ions at $m / z 135$ (21% RA) and at $m / z 179$ (12% RA); and peak 5, at $m / z 173$ (13\% RA), whereas for all other isomers, this ion was less than 4% RA. Peak 5, presenting the most intense $m / z 173$ and eluting later than 5-CQA (3), was ascribed to a 4CQA isomer.

It is widely accepted that trans isomers are the substrates and products of the main phenylproponanoid biosynthetic pathway, being the predominant species detected in plant tissues. However it is also known that conversion to the cis form occurs readily, especially after exposure to UV light, and therefore cis isomers might reasonably be expected in plant extracts (Clifford, Kirkpatrick, Kuhnert, Roozendaal, \& Salgado, 2008). Indeed, cis-3-CQA, cis-4-CQA and cis-5-CQA have been previously found in different Asteraceae species (Clifford et al., 2005; Clifford et al., 2007; Jaiswal et al., 2011). Cis isomers fragment identically to the more common trans isomers, however cis and trans isomers are easily resolved by chromatography. Cis-5-acyl and cis-1-acyl CGAs are more hydrophobic, thus elute later than their trans isomers, whereas

Fig. 1. Chemical structures of phenolic compounds found in butterhead lettuce cultivar. Abbreviations for the phenolic moieties: C, caffeoyl; pCo, p-coumaroyl; F, feruloyl; dhC, dihydrocaffeoyl; Sp, sinapoyl; 4-OH-Bz, 4-hydroxybenzoyl; 3,4-diOH-Bz, 3,4dihydroxybenzoyl; Gal, galloyl; Syr, syringoyl; 4-OHPhAc, 4-hydroxyphenylacetoyl; Que, quercetin $\left(\mathrm{Z}_{1}=\mathrm{OH}, \mathrm{Z}_{2}=\mathrm{OH}\right)$; Kaemp, kaempferol ($\mathrm{Z}_{1}=\mathrm{H}$, $\mathrm{Z}_{2}=\mathrm{OH}$); Lut, luteolin ($\mathrm{Z}_{1}=\mathrm{OH}, \mathrm{Z}_{2}=\mathrm{H}$); Api, apigenin ($\mathrm{Z}_{1}=\mathrm{H}, \mathrm{Z}_{2}=\mathrm{H}$); 6,7-diOH-Cou, 6,7-dihidroxycoumarin. Abbreviations for the non-phenolic moieties: Q, quinic acid; Tar, tartaric acid, Mal, malic acid; Mln, malonic acid; Glcr, glucuronic acid; Glen, gluconic acid; Hex, hexose; Rha, rhamnose; Rut, rutinose (rhamnosylglucose). $\mathrm{R}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}$ and R_{5} in non-phenolic moieties can be esterified in position X of phenolic acids or etherified with phenolic OH groups.
the opposite happens with cis-3-acyl and cis-4-acyl CGAs on endcapped C18 and phenylhexyl packings (Clifford et al., 2008). These observations helped to tentatively identify some compounds. Thus, peak 6 was attributed to cis-5-CQA, taking into account the elution order of cis and trans isomers; the fact that absorption maximum for cis-CGA occurs at shorter wavelength than for their trans form (Dawidowicz \& Typek, 2011); and that it is a major peak as its trans isomer. Peaks 1 and 4, which showed similar fragmentation patterns, were designated to the
trans and cis isomers of 3-CQA respectively.
Peak 2 showed a similar fragmentation pattern to peaks 3 and 6. Indeed, 1-CQA and 5-CQA are not possible to be reliably distinguished by their fragmentation (Clifford et al., 2005). Fortunately, trans-5-CQA is readily available from commercial sources, and 1-CQA can be easily resolved in the chromatographic elution from this, so, in practice, discrimination is straightforward. Peak 2 eluted earlier than trans-5-CQA (3) and was assigned to a 1-acyl isomer. The remaining peak (7) eluted
Table 1
Retention times, UV-visible maxima and MS $^{\mathrm{E}}$ data of polyphenols identified by UHPLC-DAD-ESI-Q-ToF/MS in the butterhead lettuce cultivar. ${ }^{\text {a,b,c }}$

N°	LC	DAD	ESI(+)-QToF/MS			
	Rt(min)	UV bands(nm)	Exp. Acc. Mass $\left[\mathrm{M}+\mathrm{H}{ }^{+}\right.$	Error(mDa)	Formula $[\mathrm{M}+\mathrm{H}]^{+}$	Adducts \& fragment ions of [M $\begin{aligned} & +\mathrm{H}]^{+} \\ & m / z \end{aligned}$

Table 1 (continued)

N°	LC $\mathrm{Rt}(\mathrm{min})$	DAD UV bands(nm)	ESI(+)-QToF/MS			
			Exp. Acc. Mass $[\mathrm{M}+\mathrm{H}]^{+}$	Error(mDa)	Formula $[\mathrm{M}+\mathrm{H}]^{+}$	Adducts \& fragment ions of [M $\begin{aligned} & +\mathrm{H}]^{+} \\ & m / z \end{aligned}$
9	13.74	308	339.1133	5.3	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{8}$	$\begin{aligned} & 361.0892 \\ & 147.0451 \\ & 119.0500 \\ & 91.0556 \\ & 699.1916 \\ & 361.0907 \\ & 147.0453 \\ & 119.0500 \\ & 91.0561 \end{aligned}$
	9.06	$\begin{aligned} & 301 \text { sh, } \\ & 323 \end{aligned}$			$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{9}$	
p-Coumaroyltartaric acid						
	9.05	$\begin{aligned} & 301 \mathrm{sh}, \\ & 323 \end{aligned}$	297.0585	-2.5	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{8}$	$\begin{aligned} & 319.0429 \\ & 163.0404 \\ & 145.0297 \\ & 135.0447 \\ & 117.0348 \\ & 89.0397 \end{aligned}$
Dicaffeoylquinic acids and caffeoylquinic acid glycosides						
13	5.86	-	517.1548	0.9	$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{14}$	$\begin{aligned} & 539.1364 \\ & 355.1038 \\ & 163.0415 \\ & 145.0310 \\ & 135.0449 \\ & 117.0385 \\ & 89.0399 \end{aligned}$
14	7.56	-			$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{14}$	539.1367
15	20.20	321	517.1423	7.7	$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{12}$	$\begin{aligned} & 539.1155 \\ & 499.1237 \\ & 355.0985 \\ & 163.0403 \\ & 145.0159 \\ & 135.0451 \\ & 117.0350 \\ & 89.0404 \end{aligned}$
16	20.63	326	517.1332	-1.4	$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{12}$	$\begin{aligned} & 539.1155 \\ & 499.1230 \\ & 355.1016 \\ & 163.0401 \\ & 145.0291 \\ & 135.0450 \\ & 117.0346 \\ & 89.0401 \end{aligned}$

Table 1 (continued)

N°	LC	DAD	ESI(+)-QToF/MS			
	$\mathrm{Rt}(\mathrm{min})$	UV bands(nm)	Exp. Acc. Mass $[\mathrm{M}+\mathrm{H}]^{+}$	Error(mDa)	Formula $[\mathrm{M}+\mathrm{H}]^{+}$	Adducts \& fragment ions of [M $\begin{aligned} & +\mathrm{H}]^{+} \\ & m / z \end{aligned}$
17	24.17	331	517.1423	7.7	$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{12}$	539.1165
						499.1228
						473.2006
						355.0161
						163.0395
						135.0447
						117.0347
						89.0400
p-Coumaroylcaffeoylquinic acids						
18	23.58	312	501.1384	1.3	$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{11}$	523.1219
						483.1295
						163.0399
						147.0446
						145.0279
						135.0455
						119.0497
						117.0335
						91.0550
						89.0398
19	23.95	316	501.1377	2.0	$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{11}$	523.1216
						483.1281
						147.0445
						119.0493
						91.0550
Dicaffeoyltartaric acids						
20	10.53	$\begin{aligned} & 301 \text { sh, } \\ & 324 \end{aligned}$			$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{12}$	497.0677
						457.0698
						295.0577
						163.0397
						145.0292
						135.0448
						117.0343
						89.0396
21	12.54	$\begin{aligned} & 301 \mathrm{sh}, \\ & 323 \end{aligned}$			$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{12}$	295.0563
						163.0398
						145.0288
						135.0446
						117.0341
						89.0398
Other hydroxycinnamic acid derivatives						
22	5.39	-	343.1098	6.9	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{9}$	365.0878
						163.0394
						145.0104
						135.0497
						89.0401
23	5.64	-			$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{9}$	365.0833
						163.0389
						145.0289
						135.0473
						(continued on next p

Table 1 (continued)

N°	LC	DAD	ESI(+)-QToF/MS			
	$\mathrm{Rt}(\mathrm{min})$	UV bands(nm)	Exp. Acc. Mass $[\mathrm{M}+\mathrm{H}]^{+}$	Error(mDa)	Formula $[\mathrm{M}+\mathrm{H}]^{+}$	Adducts \& fragment ions of [M $\begin{aligned} & +\mathrm{H}]^{+} \\ & m / z \end{aligned}$
						117.0309
24	6.08	$\begin{aligned} & 301 \mathrm{sh}, \\ & 325 \end{aligned}$			$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{9}$	365.0844
25	7.69	-			$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{9}$	365.0843
26	8.44	-			$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{9}$	365.0855
						163.0405
						145.0137
						135.0455
						117.0343
						89.0383
27	9.01	-			$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{9}$	
28	9.52	-			$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{9}$	365.0837
						145.0078
						135.0471
						117.0334
						89.0275
29	9.64	-			$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{9}$	163.0380
						145.0338
						135.0482
						117.0348
						89.0275
30	8.01	$\begin{aligned} & 301 \mathrm{sh}, \\ & 325 \end{aligned}$	359.0802	3.5	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{8}$	163.0415
						145.0640
						135.0390
						117.0346
						89.0407
31	6.03	$\begin{aligned} & 301 \text { sh, } \\ & 326 \end{aligned}$			$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{10}$	409.1092
						225.0745
32	9.70	-			$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{10}$	409.0938
						225.0774
						207.0665
						192.0411
						175.0411
						129.0381
33	10.36	-			$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{10}$	409.1115
						192.0430
34	13.13	-			$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{10}$	409.1111
						225.0753
						207.0620
						192.0416
						175.0461
						129.0322
35	8.32	-			$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{8}$	349.0901
						147.0449
						119.0506
						91.0569
36	3.70	-			$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{9}$	
						367.0989
						(continued on next p

Table 1 (continued)

N°	$\begin{aligned} & \mathrm{LC} \\ & \mathrm{Rt}(\mathrm{~min}) \end{aligned}$	DAD UV bands(nm)	ESI(+)-QToF/MS			
			Exp. Acc. Mass $[\mathrm{M}+\mathrm{H}]^{+}$	Error(mDa)	Formula $[\mathrm{M}+\mathrm{H}]^{+}$	Adducts \& fragment ions of [M $\begin{aligned} & +\mathrm{H}]^{+} \\ & m / z \end{aligned}$
37	3.83	-			$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{9}$	
38	11.81	307			$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4}$	
39	14.47	-			$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4}$	
40	16.48	-			$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4}$	
Hydroxybenzoic acid derivatives						
41	4.67	-		3.6	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4}$	138.0281
42	5.42	-			$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{4}$	
43	4.22	-			$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{8}$	
44	5.15	-			$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{8}$	
45	2.49	-			$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{9}$	
46	2.69	-			$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{9}$	
47	3.74	-			$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{9}$	
48	3.91	-			$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{9}$	
49	4.48	-			$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{9}$	
50	4.68	-			$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{9}$	
51	2.80	-				
52	2.88	-				
53	6.61	-				

Table 1 (continued)

N°	LC	DAD	ESI(+)-QToF/MS			
	$\mathrm{Rt}(\mathrm{min})$	UV bands(nm)	Exp. Acc. Mass $[\mathrm{M}+\mathrm{H}]^{+}$	Error(mDa)	Formula $[\mathrm{M}+\mathrm{H}]^{+}$	Adducts \& fragment ions of [M $+\mathrm{H}]^{+}$ m / z
54	5.90	-	361.1107	2.8	$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{10}$	97.0288
55	17.09	-			$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{12}$	
56	24.83	-			$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{12}$	
57	17.68	-			$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{11}$	

$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{11}$

$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{11}$
$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{11}$
${ }^{1 \mathrm{I}} \mathrm{O}^{\mathrm{Iz}} \mathrm{H}^{\mathrm{Oz}} \mathrm{J}$
487.0832
303.0501
145.0090
487.0834
Table 1 (continued)

N°	LC	DAD	ESI(+)-QToF/MS			
	Rt(min)	UV bands(nm)	Exp. Acc. Mass $[\mathrm{M}+\mathrm{H}]^{+}$	Error(mDa)	Formula $[\mathrm{M}+\mathrm{H}]^{+}$	Adducts \& fragment ions of [M $\begin{aligned} & +\mathrm{H}]^{+} \\ & m / z \end{aligned}$
66	20.25	367	465.1032	-0.1	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{12}$	303.0465
						229.0492
						153.0186
		252,				487.0840
		330				303.0504
						229.0492
67	18.44	$\begin{aligned} & 254, \\ & 349 \end{aligned}$	479.0826	0.0	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{13}$	501.0644
						303.0507
						257.0443
						153.0186
68	9.50	256,	641.1385	3.1	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{18}$	663.1232
		352				303.0515
69	10.58	-	641.1385	3.1	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{18}$	663.1232
						465.1066
						303.0515
70	21.52	$\begin{aligned} & 255, \\ & 352 \end{aligned}$	551.1039	0.2	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{15}$	573.0847
						303.0508
						273.0406
						229.0497
						153.0186
						145.0516
71	22.03	$\begin{aligned} & 252, \\ & 364 \end{aligned}$	551.1031	-0.6	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{15}$	573.0846
						303.0506
						273.0407
						229.0504
						153.0196
						145.0495
72	23.69	-	551.1041	0.4	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{15}$	573.0851
						303.0504
						273.0768
						229.0488
						153.0195
						147.0456
73	11.51	$\begin{aligned} & 253, \\ & 355 \end{aligned}$	727.1348	-1.0	$\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{O}_{21}$	749.1142
						479.0830
-						303.0494
74	13.82	$\begin{aligned} & 253, \\ & 350 \end{aligned}$	713.1565	0.0	$\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{20}$	735.1379
						465.1039
						303.0508
75	12.18	-	627.1580	1.9	$\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{17}$	649.1414
						303.0502
						137.0611
76	16.07	-	627.1556	-0.5	$\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{17}$	649.1367
						449.1805
						303.0522
						(continued on next p

Table 1 (continued)

Table 1 (continued)

N°	LC $\mathrm{Rt}(\mathrm{min})$	DAD UV bands(nm)	ESI(+)-QToF/MS			
			Exp. Acc. Mass $[\mathrm{M}+\mathrm{H}]^{+}$	Error(mDa)	Formula $[\mathrm{M}+\mathrm{H}]^{+}$	Adducts \& fragment ions of [M $\begin{aligned} & +\mathrm{H}]^{+} \\ & m / z \end{aligned}$
						$\begin{aligned} & 153.0146 \\ & 137.0894 \\ & 135.0776 \\ & 117.0767 \\ & 107.0500 \end{aligned}$
Flav 91	14.87	$\begin{aligned} & 284, \\ & 329 \text { sh } \end{aligned}$	465.1026	-0.7	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{12}$	$\begin{aligned} & 487.0830 \\ & 289.0715 \\ & 153.0187 \end{aligned}$
Coumarins						
92	6.50	$\begin{aligned} & 290, \\ & 340 \end{aligned}$	341.0866	-0.7	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{9}$	$\begin{aligned} & 363.0684 \\ & 179.0345 \\ & 133.0284 \\ & 123.0456 \end{aligned}$
93	7.31	-	179.0341	0.3	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$	$\begin{aligned} & 133.0292 \\ & 123.0437 \end{aligned}$
94	10.23	-	179.0344	0.0	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$	$\begin{aligned} & 133.0289 \\ & 123.0452 \end{aligned}$
95	12.02	$\begin{aligned} & 296, \\ & 330 \end{aligned}$	179.0339	0.0	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$	$\begin{aligned} & 133.0288 \\ & 123.0421 \end{aligned}$
96	9.05	-	295.0518	-6.4	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{8}$	$\begin{aligned} & 317.0241 \\ & 179.0376 \\ & 133.0286 \\ & 123.0463 \end{aligned}$
97	10.54	-	295.0510	-5.6	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{8}$	133.0288
98	12.54	-	295.0541	-8.7	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{8}$	$\begin{aligned} & 179.0348 \\ & 133.0446 \end{aligned}$
Hydrolysable tannins						
99	27.09	-			$\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{O}_{12}$	
Lignan derivatives						
100	21.00	-			$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{8}$	
101	13.90	-			$\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{13}$	$\begin{aligned} & 603.2055 \\ & 383.1479 \end{aligned}$
$\begin{aligned} & 102 \\ & 103 \end{aligned}$	$\begin{aligned} & 18.97 \\ & 19.63 \end{aligned}$	-			$\begin{aligned} & \mathrm{C}_{28} \mathrm{H}_{33} \mathrm{O}_{13} \\ & \mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{13} \end{aligned}$	603.2061
104	23.30	-			$\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{13}$	$\begin{aligned} & 603.2059 \\ & 383.1505 \end{aligned}$
105	15.06	$\begin{aligned} & 205, \\ & 280 \end{aligned}$			$\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{O}_{14}$	

Table 1 (continued)

N°	LC Rt(min)	DAD UV bands(nm)		ESI(+)-QToF/MS			
				Exp. Acc. Mass $\left[\mathrm{M}+\mathrm{H}{ }^{+}\right.$	Error(mDa)	Formula $[\mathrm{M}+\mathrm{H}]^{+}$	Adducts \& fragment ions of [M $\begin{aligned} & +\mathrm{H}]^{+} \\ & m / z \end{aligned}$
106	24.50	-				$\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{O}_{14}$	
107	24.63	-				$\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{O}_{14}$	
108	19.22	-				$\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{13}$	
109	19.39	-				$\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{13}$	
110	19.82	-				$\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{13}$	
111	16.37	-				$\mathrm{C}_{34} \mathrm{H}_{49} \mathrm{O}_{18}$	
N°	ESI(+)-QToF/MS	ESI(-)-QToF/MS					Assignment
	Adducts \& fragment ions of $\begin{aligned} & {[\mathrm{M}+\mathrm{H}]^{+}} \\ & m / z \end{aligned}$	Exp. Acc. Mass[M-H] ${ }^{-}$	Error(mDa)	Form		Adducts \& fragment ions of $[\mathrm{M}-\mathrm{H}]^{-}$ m / z	Tentative identification

Phenolic acids							
Caffeoylquinic acids							
1	$[\mathrm{M}+\mathrm{Na}]^{+}$	353.0872	-0.1	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{9}$	191.0556	[Quin-H] ${ }^{-}$(100)	3-trans-O-Caffeoylquinic acid
	[Caffeoyl $+\mathrm{H}{ }^{+}$				179.0348	[Caffeic-H] ${ }^{-}$(32)	
	$\left[\text { Caffeoyl }+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$				173.0437	[Quin- $\left.\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$(4)	
	$[\text { Caffeoyl }+\mathrm{H}-\mathrm{CO}]^{+}$				135.0446	[Caffeic-H- $\left.\mathrm{CO}_{2}\right]^{-}$(71)	
	$\begin{aligned} & {\left[\text { Caffeoyl }+\mathrm{H}-\mathrm{CO}-\mathrm{H}_{2} \mathrm{O}\right]^{+}} \\ & {\left[\text {Caffeooyl }+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}-2 \mathrm{CO}\right]^{+}} \end{aligned}$						
2	$[2 \mathrm{M}+\mathrm{Na}]^{+}$	353.0869	0.4	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{9}$	707.1821	$[2 \mathrm{M}-\mathrm{H}]^{-}$	1-trans-O-Caffeoylquinic acid
	$\left[^{2 M}+\text { Na-caffeic }\right]^{+}$				191.0561	[Quin-H] ${ }^{-}$(100)	
	$[\mathrm{M}+\mathrm{Na}]^{+}$						
	[Caffeoyl +H$]^{+}$						
	$\left[\text { Caffeoyl }+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$						
	$[\text { Caffeoyl }+\mathrm{H}-\mathrm{CO}]^{+}$						
							(continued on next

Table 1 (continued)

N°	ESI(+)-QToF/MS	ESI(-)-QToF/MS					Assignment Tentative identification	
	Adducts \& fragment ions of $\begin{aligned} & {[\mathrm{M}+\mathrm{H}]^{+}} \\ & m / z \end{aligned}$	Exp. Acc. Mass $[\mathrm{M}-\mathrm{H}]^{-}$	Error(mDa)	Formula $[\mathrm{M}-\mathrm{H}]^{-}$	Adducts \& m / z	$\mathrm{A}-\mathrm{H}]^{-}$		
59		435.0920	0.7	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{11}$			Hydroxybenzoyl-Odihydroxybenzoic acidhexoside	
60		435.0925	0.2	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{11}$	315.0471	[DiHBZhex-H] ${ }^{-}$or $\left[\mathrm{M}-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right]^{-}$	Hydroxybenzoyl-Odihydroxybenzoic acidhexoside	
					297.0611	[DiHBZhex-H- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$		
					152.0117	[DiHBZ-2H] ${ }^{-}$		
					137.0238	[$\mathrm{HBZ}-\mathrm{H}]^{-}$		
					108.0215	[DiHBZ-2H-CO2] ${ }^{-}$		
					93.0337	[$\left.\mathrm{HBZ}-\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$		
61		435.0927	0.0	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{11}$	315.0715	[DiHBZhex-H] ${ }^{-}$or $\left[\mathrm{M}-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right]^{-}$	Hydroxybenzoyl-Odihydroxybenzoic acidhexoside	
					297.0609	[DiHBZhex-H- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}$		
					153.0195	[DiHBZ-H] ${ }^{-}$		
					137.0240	[$\mathrm{HBZ}-\mathrm{H}]^{-}$		
					108.0215	[DiHBZ-2H-CO2] $]^{-}$		
					93.0341	[$\left.\mathrm{HBZ}-\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$		
Hydroxyphenylacetic derivatives								
62		151.0392	0.3	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}$	123.0439	[$\mathrm{M}-\mathrm{H}-\mathrm{CO}]^{-}$	4-hydroxyphenylacetic acid	
		107.0500			[M-H-CO2] ${ }^{-}$			
63			313.0923	0.0	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{8}$	151.0399	[$\mathrm{M}-\mathrm{H}-$ glucosyl] ${ }^{-}$	4-hydroxyphenylacetic acid-hexoside
		123.0447				[$\mathrm{M}-\mathrm{H}-$ glucosyl- CO^{-}		
		107.0499				[M-H-glucosyl- $\left.\mathrm{CO}_{2}\right]^{-}$		
Flavonoids								
Flavonols								
64	$[\mathrm{M}+\mathrm{Na}]^{+}$	463.0874	-0.3	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{12}$	301.0341		Quercetin-O-hexoside	
	$\left[\mathrm{Y}_{0}\right]^{+}$				255.0237	$\left[\mathrm{Y}_{0}-\mathrm{CHO}-\mathrm{OH}\right]^{-}$		
	$\left[\mathrm{Y}_{0}-\mathrm{CHO}-\mathrm{OH}-4 \mathrm{CO}\right]^{+}$				227.0332	[$\left.\mathrm{Y}_{0}-2 \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$		
					151.0027	$\left[^{1,3} \mathrm{~A}\right]^{-}$		
					133.0685			
65	$[\mathrm{M}+\mathrm{Na}]^{+}$	463.0888	1.1	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{12}$	301.0356	$\left[\mathrm{Y}_{0}\right]^{-}$	Quercetin-O-hexoside	
	$\left[\mathrm{Y}_{0}\right]^{+}$				255.0310	[Y_{0} - $\left.\mathrm{CHO}-\mathrm{OH}\right]^{-}$		
	$\left[\mathrm{Y}_{0}-\mathrm{CHO}-\mathrm{OH}-\mathrm{CO}\right]^{+}$				151.0037	$\left[{ }^{1,3} \mathrm{~A}\right]^{-}$		
	$\left[{ }^{1,3} \mathrm{~A}\right]^{+}$				107.0137	$\left.\left[^{0,2} \mathrm{~A}-2 \mathrm{CO}\right]^{-} ; \mathrm{[}^{0,2} \mathrm{~B}-\mathrm{CO}\right]^{-}$		
66		463.0880	0.3	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{12}$			Quercetin 3-O-galactoside	
	$\left[\mathrm{Y}_{0}\right]^{+}$				255.0303	$\left[\mathrm{Y}_{\mathrm{o}}-\mathrm{CHO}-\mathrm{OH}\right]^{-}$		
	$\left[\mathrm{Y}_{0}-\mathrm{CHO}-\mathrm{OH}-\mathrm{CO}\right]^{+}$				151.0039	$\left[^{1,3} \mathrm{~A}\right]^{-}$		
67	$[\mathrm{M}+\mathrm{Na}]^{+}$	477.0675	1.1	$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{13}$	301.0347	$\left[\mathrm{Y}_{0}\right]^{-}$	Quercetin-3-O-glucuronide	
	$\left[\mathrm{Y}_{0}\right]^{+}$				255.0293	[Y_{0} - $\left.\mathrm{CHO}-\mathrm{OH}\right]^{-}$		
	$\left[\mathrm{Y}_{\mathrm{o}}-\mathrm{CHO}-\mathrm{OH}\right]^{+}$				227.0346	$\left[\mathrm{Y}_{0}-2 \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$		
	$\left[{ }^{1,3} \mathrm{~A}\right]^{+}$				151.0036	$\left[{ }^{1,3} \mathrm{~A}\right]^{-}$		
68	$[\mathrm{M}+\mathrm{Na}]^{+}$	639.1168	-2.9	$\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{18}$	463.0865	$\left[\mathrm{Y}_{1}\right]^{-}$	Quercetin hexoseglucuronide	
	$\left[\mathrm{Y}_{0}\right]^{+}$				301.0360	$\left[\mathrm{Y}_{0}\right]^{-}$		
					135.0432	$\left.\left[^{0,2} \mathrm{~A}-\mathrm{CO}\right]^{-} ; \mathrm{i}^{0,2} \mathrm{~B}\right]^{-}$		
69	$[\mathrm{M}+\mathrm{Na}]^{+}$	639.1168	-2.9	$\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{18}$	463.0865	$\left[\mathrm{Y}_{1}\right]^{-}$	Quercetin hexoseglucuronide (continued on next page)	

Table 1 (continued)

Table 1 (continued)

Table 1 (continued)

Table 1 (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mathrm{N}^{\circ}\)} \& ESI(+ --QToF/MS \& \multicolumn{5}{|l|}{ESI(-)-QToF/MS} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Assignment \\
Tentative identification
\end{tabular}} \\
\hline \& \[
\begin{aligned}
\& \text { Adducts \& fragment ions of } \\
\& {[\mathrm{M}+\mathrm{H}]^{+}} \\
\& m / z
\end{aligned}
\] \& Exp. Acc. Mass[M-H] \({ }^{-}\) \& Error(mDa) \& Formula \([\mathrm{M}-\mathrm{H}]^{-}\) \& \multicolumn{2}{|l|}{Adducts \& fragment ions of \([\mathrm{M}-\mathrm{H}]^{-}\) \(m / z\)} \& \\
\hline 103 \& \([\mathrm{M}+\mathrm{Na}]^{+}\) \& 579.2079 \& -0.1 \& \(\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{13}\) \& \[
\begin{aligned}
\& 417.1558 \\
\& 399.1493
\end{aligned}
\] \& \[
\begin{aligned}
\& {\left[\mathrm{M}-\mathrm{H}-\text { hexosyl] }{ }^{-}\right.} \\
\& {\left[\mathrm{M}-\mathrm{H}-\text { hexosyl }-\mathrm{H}_{2} \mathrm{O}\right]^{-}}
\end{aligned}
\] \& Syringaresinol-hexose \\
\hline 104 \& \[
\begin{aligned}
\& {[\mathrm{M}+\mathrm{Na}]^{+}} \\
\& {\left[\mathrm{M}+\mathrm{H}-\text { hexosyl } 2 \mathrm{H}_{2} \mathrm{O}\right]^{+}}
\end{aligned}
\] \& 579.2075 \& 0.3 \& \(\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{13}\) \& \[
\begin{aligned}
\& 417.1555 \\
\& 387.1104
\end{aligned}
\] \& \[
\begin{aligned}
\& {[\mathrm{M}-\mathrm{H}-\text { hexosyl] }} \\
\& {\left[\mathrm{M}-\mathrm{H}-\text { hexosyl }-2 \mathrm{CH}_{3}\right]^{-}}
\end{aligned}
\] \& Syringaresinol-hexose \\
\hline 105 \& \& 621.2198 \& -1.5 \& \(\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{O}_{14}\) \& \begin{tabular}{l}
417.1559 \\
402.1313 \\
399.1447 \\
387.1058
\end{tabular} \& \[
\begin{aligned}
\& {[\mathrm{M}-\mathrm{H}-\text { acetylhexosyl }]^{-}} \\
\& {[\mathrm{M}-\mathrm{H}-\text { acetylhexosyl-C- }} \\
\& \left.\mathrm{H}_{3}\right]^{-} \\
\& {\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{-}} \\
\& {\left[\mathrm{M}-\mathrm{H}-2 \mathrm{CH}_{3}\right]^{-}}
\end{aligned}
\] \& Syringaresinolacetylhexose \\
\hline 106 \& \& 621.2183 \& 0.0 \& \(\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{O}_{14}\) \& 417.1548
402.1313
387.1078
359.1111
181.0503
166.0268 \& \begin{tabular}{l}
\([\mathrm{M}-\mathrm{H}-\text { acetylhexosyl }]^{-}\) \\
[M-H - acetylhexosyl-C- \\
\(\left.\mathrm{H}_{3}\right]^{-}\) \\
[M-H-acetylhexosyl-2C- \\
\(\left.\mathrm{H}_{3}\right]^{-}\) \\
[M-H-acetylhexosyl-2C- \\
\(\mathrm{H}_{3}-\mathrm{CO}^{-}\) \\
[M-H-acetylhexosyl-2C- \\
\(\mathrm{H}_{3} \mathrm{O}-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{2}-\mathrm{CH}-\) \\
\(\left.\mathrm{O}-2\left(\mathrm{CH}_{2} \mathrm{CH}\right)\right]^{-}\) \\
[M-H-acetylhexosyl-2C- \\
\(\mathrm{H}_{3} \mathrm{O}-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{2}-\mathrm{CH}-\) \\
\(\left.\mathrm{O}-2\left(\mathrm{CH}_{2} \mathrm{CH}\right)-\mathrm{CH}_{3}\right]^{-}\) \\
[\(\mathrm{M}-\mathrm{H}-\) acetylhexosyl-2C- \\
\(\mathrm{H}_{3} \mathrm{O}-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{2}-\mathrm{CH}-\) \\
\(\left.\mathrm{O}-2\left(\mathrm{CH}_{2} \mathrm{CH}\right)-2 \mathrm{CH}_{3}\right]^{-}\) \\
[M-H - acetylhexosyl-2C- \\
\(\mathrm{H}_{3} \mathrm{O}-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{2}-\mathrm{CH}-\) \\
\(\left.\mathrm{O}-2\left(\mathrm{CH}_{2} \mathrm{CH}\right)-2 \mathrm{CH}_{3}-\mathrm{CO}\right]^{-}\)
\end{tabular} \& Syringaresinolacetylhexose \\
\hline 107 \& \& 621.2181 \& 0.2 \& \(\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{O}_{14}\) \& 417.1546
402.1313
387.1074
359.1084
181.0503

166.0269 \& | $[\mathrm{M}-\mathrm{H}-\text { acetylhexosyl] }]^{-}$ |
| :--- |
| [M-H - acetylhexosyl-C- |
| $\left.\mathrm{H}_{3}\right]^{-}$ |
| [M-H - acetylhexosyl-2C- |
| $\left.\mathrm{H}_{3}\right]^{-}$ |
| [M-H - acetylhexosyl-2C- |
| $\mathrm{H}_{3}-\mathrm{CO}^{-}$ |
| [M-H-acetylhexosyl-2C- |
| $\mathrm{H}_{3} \mathrm{O}-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{2}-\mathrm{CH}-$ |
| $\left.\mathrm{O}-2\left(\mathrm{CH}_{2} \mathrm{CH}\right)\right]^{-}$ |
| [M-H-acetylhexosyl-2C- |
| $\mathrm{H}_{3} \mathrm{O}-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{2}-\mathrm{CH}-$ |
| $\left.\mathrm{O}-2\left(\mathrm{CH}_{2} \mathrm{CH}\right)-\mathrm{CH}_{3}\right]^{-}$ |
| [M-H - acetylhexosyl-2C- |
| $\mathrm{H}_{3} \mathrm{O}-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{2}-\mathrm{CH}-$ |
| $\left.\mathrm{O}-2\left(\mathrm{CH}_{2} \mathrm{CH}\right)-2 \mathrm{CH}_{3}\right]^{-}$ | \& Syringaresinolacetylhexose

\hline 108 \& \& 581.2239 \& -0.5 \& $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{13}$ \& 341.1392

329.1390 \& $$
\begin{aligned}
& {\left[\mathrm{M}-\mathrm{H}-\text { hexosyl }-\mathrm{CH}_{3} \mathrm{COO}-\right.} \\
& \left.\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{-} \\
& {\left[\mathrm{M}-\mathrm{H}-\text { hexosyl }-\mathrm{CH}_{3} \mathrm{COO}-\right.} \\
& \left.\mathrm{H}-2 \mathrm{CH}_{3}\right]^{-}
\end{aligned}
$$ \& Dimethoxy-hexosyllariciresinol

\hline 109 \& \& 581.2238 \& -0.4 \& $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{13}$ \& 359.1494 \& $$
\begin{aligned}
& {\left[\mathrm{M}-\mathrm{H}-\text { hexosyl }-\mathrm{CH}_{3} \mathrm{COO}-\right.} \\
& \mathrm{H}]^{-}
\end{aligned}
$$ \& Dimethoxy-hexosyllariciresinol (continued on next

\hline
\end{tabular}

Table 1 (continued)

[^1]the latest of all CQA, therefore it was ascribed to the other 4-CQA isomer.

Taking into account all the above considerations, the chromatographic peaks were tentatively identified as: 1, trans-3-CQA; 2, trans-1CQA; 3, trans-5-CQA; 4, cis-3-CQA; 5, trans-4-CQA; 6, cis-5-CQA; and 7, cis-4-CQA. Only three CQA isomers had been reported previously in green lettuce, i.e. 5-CQA, 3-CQA and an unidentified CQA isomer (AbuReidah et al., 2013; Jeong et al., 2015). trans-5-CQA (3) was the major phenolic compound in butterhead lettuce, as occurs in other green lettuce cultivars (Llorach et al., 2008; Ribas-Agustí et al., 2011; Sobolev, Brosio, Gianferri, \& Segre, 2005). The following major CQAs were cis-5-CQA and trans-3-CQA (20% and 8% of the total intensity of trans-5-CQA).
3.1.1.2. p-Coumaroylquinic acids. Compounds 8 ($\mathrm{Rt}=9.82 \mathrm{~min}$, $\left.\lambda_{\text {max }}=312 \mathrm{~nm}\right)$ and $9\left(\mathrm{Rt}=13.74 \mathrm{~min}, \quad \lambda_{\text {max }}=308 \mathrm{~nm}\right)$ were identified as p-coumaroylquinic acid isomers on the basis of mass spectral data and UV spectra, which followed the pattern of the p coumaric acid standard. In both low and high energy positive ion mode, the sodium adduct $[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 361$ was the base peak for both compounds, and the ion at $m / z 147$ ([p-coumaroyl+H] ${ }^{+}$) was the secondary most intense ion. In the negative low energy function, the base peaks were $[\mathrm{M}-\mathrm{H}]^{-}$at $m / z 337$ for peak 8 (Fig. 3S in the supplementary material), and [quinic acid-H] ${ }^{-}$at $m / z 191$ for peak 9 , revealing that the p-coumaroyl moiety in peak 8 was bonded to the quinic structure in a stronger position. Moreover, peak 8 yielded in the high energy function an intense ion at $\mathrm{m} / \mathrm{z} 119$ due to its decarboxylation product [p-coumaric acid- $\left.-\mathrm{H}_{2}\right]^{-}$, which is characteristic of the fragmentation pattern of $3-p$-coumaroylquinic acid, thus this isomer was tentatively assigned to peak $\mathbf{8}$, for the first time in lettuce cultivars. The base peak of compound 9 at $\mathrm{m} / \mathrm{z} 191$ due to the deprotonated quinic moiety is characteristic of $5-p$ coumaroylquinic acid (Clifford et al., 2003). Similarly to CQA isomers, the elution order of both isomers on endcapped C18 packings agrees with these tentatively assignments. 5-pcoumaroylquinic acid and an unidentified isomer have been previously reported in bibliography in green lettuce cultivars (AbuReidah et al., 2013; Ribas-Agustí et al., 2011).
3.1.1.3. Caffeoyltartaric acid. A caffeoyltartaric acid (peak 10: $\mathrm{Rt}=9.06 \mathrm{~min}, \lambda_{\max }=301,323 \mathrm{~nm}$) was detected in the extracted MS chromatogram set at 311 in the negative ion mode (Fig. 3S in the supplementary material), presenting the corresponding fragmentation pattern: The dehydrated protonated molecule at $m / z 293$ was the base peak in low energy function; and intense fragments of the deprotonated tartaric ($m / z 149$) and caffeic ($m / z 179$) acids and the losses of water ($\mathrm{m} / \mathrm{z} 293$) and CO_{2} ($\mathrm{m} / \mathrm{z} 135$; base peak) were observed in the high energy function. Two isomers of caffeoyltartaric acid have been already reported in lettuce in literature (Abu-Reidah et al., 2013; Jeong et al., 2015; Lin, Harnly, Zhang, Fan, \& Chen, 2012; Ribas-Agustí et al., 2011; Santos, Oliveira, Ibáñez, \& Herrero, 2014).
3.1.1.4. p-Coumaroyltartaric acid. Peak $11 \quad(\mathrm{Rt}=15.63 \mathrm{~min}$, $\lambda_{\text {max }}=310 \mathrm{~nm}$), detected in the extracted MS chromatogram set at $m / z 295$ in the negative ion mode, yielded the base peak at $m / z 163$ due to the deprotonated p-coumaric acid, and two fragments at $m / z 149$ ($50 \% \mathrm{RA}$) and $m / z 119(60 \% \mathrm{RA})$ due to the deprotonated tartaric acid and the decarboxylation of p-coumaric acid in the low energy function. Thus, compound 11 was tentatively identified as p-coumaroyltartaric acid, which has been previously found in green lettuce cultivars (AbuReidah et al., 2013; Ribas-Agustí et al., 2011).
3.1.1.5. Caffeoylmalic acid. Caffeoylmalic acid (CMA) (peak 12: $\mathrm{Rt}=9.05 \mathrm{~min}, \lambda_{\max }=301,323 \mathrm{~nm}$) was detected when the m / z value for the extracted MS chromatogram was set at 295 (negative ion mode) or 297 (positive ion mode). Besides the UV spectra of peak

12 followed the pattern of caffeic acid standard. In the negative ion mode, the high energy function provided ions corresponding to malic acid: the base peak at $m / z 133$ was due to the deprotonated malic moiety; and fragment ions, to the losses of water and CO at $m / z 115$ and 105 respectively. MS^{E} experiments in the positive ion mode showed that CMA behaved as described above for CQA, yielding the same ions from the caffeoyl moiety, as well as the sodium adduct. CMA has been described before in different lettuce cultivars (Abu-Reidah et al., 2013; Lin et al., 2012; Ribas-Agustí et al., 2011; Santos et al., 2014).
3.1.1.6. Dicaffeoylquinic acids and caffeoylquinic acid glycosides. Both dicaffeoylquinic acids (diCQA) and caffeoylquinic acid-hexosides present an average molecular mass of $516 u$, and produce isobaric deprotonated or protonated molecules at $m / z 515$ and 517 in the negative and positive ion modes respectively. Five peaks were detected in the extracted MS chromatograms at these m / z values: peak 13 ($\mathrm{Rt}=5.86$), peak $14 \quad(\mathrm{Rt}=7.56), \quad$ peak $15 \quad(\mathrm{Rt}=20.20$, $\left.\lambda_{\text {max }}=321 \mathrm{~nm}\right)$, peak $16\left(\mathrm{Rt}=20.63, \lambda_{\text {max }}=326 \mathrm{~nm}\right)$ and peak 17 ($\mathrm{Rt}=24.17, \lambda_{\text {max }}=331 \mathrm{~nm}$). Based on their accurate masses and fragmentation patterns, these peaks were distinguished as either dicaffeoylquinic acids (15,16 and 17) with monoisotopic $[\mathrm{M}-\mathrm{H}]^{-}$at $\mathrm{m} /$ $z 515.1190\left(\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{12}\right)$ and monoisotopic $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 517.1346$ $\left(\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{12}\right)$, and caffeoylquinic acid-hexosides (13 and 14) with monoisotopic $[\mathrm{M}-\mathrm{H}]^{-}$at $\mathrm{m} / \mathrm{z} \quad 515.1401 \quad\left(\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{14}\right)$ and monoisotopic $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 517.1548\left(\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{14}\right)$, in the negative and positive ion modes respectively.

It is worth to note that the first fragments of the diCQA were due to the loss of one of the caffeoyl moieties, leading to the precursor ion of a CQA (Fig. 2S in the supplementary material); therefore, subsequent fragmentation of these ions yielded the same fragments as the corresponding CQA. In the positive low energy function, the sodium adducts at $m / z 539$ and the dehydrated protonated molecule at $m / z 499$ were detected with different $\%$ RA: peak 15, $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$base peak and $[\mathrm{M}+\mathrm{Na}]^{+} 80 \% \mathrm{RA}$; peak 16, $[\mathrm{M}+\mathrm{Na}]^{+}$base peak and $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$ $20 \% \mathrm{RA}$; and peak 17, $[\mathrm{M}+\mathrm{Na}]^{+}$base peak and $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+} 90 \%$ RA. The positive high energy function gave a base peak at $m / z 163$ ([caffeic acid $\left.+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$) for the three peaks, but $[\mathrm{M}+\mathrm{Na}]^{+}$presented 50% RA for peak $\mathbf{1 5}, 35 \%$ RA for peak 16, and 70% RA for peak 17. The \% RA differences between these ions are related to the difficulty of removing the acylating residue at the different positions. In accordance with this, the negative low energy function MS spectra disclosed that peak 17 yielded only the deprotonated molecule ($m / z 515$) as the base peak; peak 15, the base peak $[\mathrm{M}-\mathrm{H}]^{-}$and the fragment [CQA-H] ${ }^{-}$ion at $\mathrm{m} / \mathrm{z} 353$ with 65% RA; and peak 16, the base peak [CQA-H] ${ }^{-}$at m / z 353 and $[\mathrm{M}-\mathrm{H}]^{-}$with 40% RA. Hence, these observations suggest that peak 17 contains a caffeoyl moiety at the positions more difficult to be removed ($4>3>5 \approx 1$) (Clifford et al., 2003; Clifford et al., 2005) than the other peaks, followed by peak 15. Indeed, the presence of the dehydrated quinic residue ion [quinic acid- $\mathrm{H}-\mathrm{H}_{2} \mathrm{O}$] ${ }^{-}$at $m / z 173$ as the base peak in the high negative energy spectra of peak 17 revealed that one of the caffeoyl moieties was bonded to quinic acid at position 4. Then it remained to be determined if the other caffeoyl moiety was substituted at position 1, 3 and 5. Finally, taking also into account the elution order of diCQA isomers (retention time on endcapped C18 packings: 1,3 -diCQA $\lll 1,4$-diCQA <3,4-diCQA $<1,5$-diCQA $<3,5-\mathrm{diCQA}<4,5-\mathrm{diCQA}$) reported in bibliography (Alonso-Salces et al., 2009; Clifford et al., 2005), compound 17 was assigned to 4,5diCQA. In the high negative energy function, base peaks of compounds 15 and 16 were [quinic acid-H] ${ }^{-}$at $m / z 191$, whereas the characteristic fragment at $m / z 173$ corresponding to the dehydrated quinic residue ion was not detected. Therefore, caffeoyl moieties were substituted at position 1, 3 and 5 . Compound 15 was identified unambiguously as 1,5 -diCQA by comparison with its standard. Thus, regarding its retention time and the ease of removal of the caffeoyl residue, compound 16 was assigned to 3,5 -diCQA. Isomers 3,5-diCQA (isochlorogenic acid A), cis-3,5-diCQA, and 4,5-diCQA (isochlorogenic
acid B) have previously been reported in L. sativa (Abu-Reidah et al., 2013; Lin et al., 2012; Llorach et al., 2008; Ribas-Agustí et al., 2011). Among these, isochlorogenic acid A was reported to be the most abundant in lettuce, as found in the present study, which supported the assignment of compound 16 (Jeong et al., 2015; Mai \& Glomb, 2013; Romani, et al., 2002). 1-acyl CGA have been found in some Asteraceae (Clifford et al., 2005), however the isomer $1,5-$ diCQA is reported in lettuce here for the first time.

Caffeoylquinic acid-hexosides (13 and 14) base peaks were their sodium adducts in the positive ion mode and the deprotonated molecule in the negative ion mode, which confirmed their identities. The presence of the fragment ion at $m / z 353$ due to the deprotonated CQA, and the base peak at $m / z 191$ due to the deprotonated quinic acid in the negative high energy function of peak 13 also support the assignment. Peak 14 was at trace levels, not being possible to register its fragmentation pattern. To the authors' knowledge, caffeoylquinic acid-hexosides have not been reported in lettuce before.
3.1.1.7. p-Coumaroylcaffeoylquinic acids. Two chromatographic peaks showed protonated and deprotonated molecules that corresponded to p coumaroylcaffeoylquinic acids, at $m / z 501$ in the positive ion mode and at $m / z 499$ in the negative mode: peak 18 (Rt $=23.58 \mathrm{~min}$, $\left.\lambda_{\text {max }}=312 \mathrm{~nm}\right)$ and peak $19\left(\mathrm{Rt}=23.95 \mathrm{~min}, \lambda_{\text {max }}=316 \mathrm{~nm}\right)$. In the positive high energy function, the base peaks yielded by both isomers were the fragment ion at $m / z 147$ due to $[p \text {-coumaroyl }+\mathrm{H}]^{+}$, disclosing that the p-coumaroyl moiety was attached to the quinic acid in a weaker position than the caffeoyl one. This was also supported by the fragmentation pattern observed for both peaks in the negative ion mode, which yielded the deprotonated molecules, and fragments at m / z 353 due to the loss of the p-coumaroyl moiety (85-95\% RA) (Fig. 2S in the supplementary material) and at $m / z 337$ due to the loss of the caffeoyl moiety ($40-50 \%$ RA) (Fig. 3S in the supplementary material) in the low energy function, indicating that the former loss was favored. This fragmentation pattern was reported for 3-p-coumaroyl-4caffeoylquinic acid (3-pCo-4-CQA) and 4-caffeoyl-5-p-coumaroylquinic acid (4-C-5-pCoQA) (Clifford, Marks, Knight, \& Kuhnert, 2006). The deprotonated quinic acid ion at $m / z 191$ was the base peak in the high energy function; this fragment is a characteristic base peak of 5-CQA, 3CQA and 5-pCoQA, and is yielded by 4-CQA (Clifford et al., 2003). Thus, taking also into account that the elution order on endcapped C18 packing is 3,4-isomers, 3,5-isomers and 4,5-isomers (Clifford et al., 2006), compounds 18 and 19 were tentatively assigned to $3-p \mathrm{Co}-4-\mathrm{CQA}$ and $4-\mathrm{C}-5-p \mathrm{CoQA}$ respectively, for the first time in lettuce cultivars. p Coumaroylcaffeoylquinic acids have been previously reported in lettuce (Abu-Reidah et al., 2013; Jaiswal et al., 2011).
3.1.1.8. Dicaffeoyltartaric acids. Two peaks (20, 21), presenting the same UV spectra as caffeic acid standard, were detected in the chromatograms extracted from the TIC MS scan chromatogram in positive and negative modes at $m / z 475$ and 473 , respectively, which were due to two dicaffeoyltartaric acid isomers (diCTA). Compound 20 (Rt $=10.53 \mathrm{~min}, \quad \lambda_{\max }=301, \quad 324 \mathrm{~nm}$) and compound 21 (Rt $\left.=12.54 \mathrm{~min}, \quad \lambda_{\max }=301, \quad 323 \mathrm{~nm}\right) \quad$ presented the same fragmentation pattern, and their identity was confirmed with the sodium adduct at $m / z 497$ in positive ionization mode and the $[2 \mathrm{M}-\mathrm{H}]^{-}$ion at $m / z 947$ in negative mode for peak 20 , and the protonated and deprotonated molecules for peak 21. In the negative ion mode, both peaks $(20,21)$ yielded the same base peak at $m / z 293$ due to the loss of water of the deprotonated caffeoyltartaric acid, and [CTA-H] ${ }^{-}$at $m / z 311$ due to the loss of one of the caffeoyl moieties (Fig. 3S in the supplementary material), as well as ions from the tartaric moiety, [tartaric acid -H$]^{-}$at $m / z 149$ and [tartaric acid $\left.-\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$at $\mathrm{m} / \mathrm{z}^{2} 105$; and ions from the caffeoyl moiety, [caffeic acid-H] ${ }^{-}$at m / z 179 and [caffeic acid- $\left.\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$at m / z 135. Compound 20 was tentatively identified as di- O-caffeoyltartaric (chicoric acid), and compound 21 as meso-di-O-caffeoyltartaric acid, since they were
detected in lettuce elsewhere; the former being reported as the most abundant as we observed (Abu-Reidah et al., 2013; Jeong et al., 2015; Lin et al., 2012; Mai \& Glomb, 2013; Pepe et al., 2015; Ribas-Agustí et al., 2011; Romani et al., 2002; Santos et al., 2014).
3.1.1.9. Other hydroxycinnamic acid derivatives. Several cinnamoyl glycosides were found in the lettuce extracts, such as caffeoylhexosides, p-coumaroyl-hexosides, sinapoyl-hexosides and dihydrocaffeic acid-hexosides, whose fragmentation patterns were characterized by the aglycone product ion resulted from the loss of a hexose residue (Abu-Reidah et al., 2013; Gómez-Romero et al., 2011).

Eight peaks (22, $R t=5.39 \mathrm{~min} ; 23, \quad R t=5.64 \mathrm{~min} ; 24$, $\mathrm{Rt}=6.08 \mathrm{~min}, \quad \lambda_{\max }=301, \quad 325 \mathrm{~nm} ; \quad \mathbf{2 5}, \quad \mathrm{Rt}=7.69 \mathrm{~min} ; \quad \mathbf{2 6}$, $\mathrm{Rt}=8.44 \mathrm{~min} ; \quad 27, \quad \mathrm{Rt}=9.01 \mathrm{~min} ; 28 \mathrm{Rt}=9.52 \mathrm{~min} ; \quad$ and 29 $\mathrm{Rt}=9.64 \mathrm{~min}$) were observed in the chromatogram extracted at m / z 343 and 341 in positive and negative ion modes respectively (Fig. 2S in the supplementary material). All of them (22-29) produced $m / z 179$ and 135 in negative ion mode, and $m / z 163,145,135,117$ and 89 in positive ion mode, consistent with the presence of a caffeic acid residue. Thus, these compounds were tentatively assigned as isomeric caffeic acid-hexosides, in agreement with Clifford et al. (2007). Moreover, the identity of peaks 22-26 and 28 were confirmed by the presence of their sodium adducts in the positive low energy function. As well, peak 30 $\left(R t=8.01 \mathrm{~min}, \lambda_{\max }=301,325 \mathrm{~nm}\right)$ showed the same fragmentation pattern as caffeic acid, yielding also a monoisotopic protonated molecule at $m / z 359.0802\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{8}\right)$ in the positive ion mode, and a monoisotopic deprotonated molecule at $m / z 357.0633\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{8}\right)$ in the negative ion mode. Thus, it was tentatively assigned as a caffeoyl derivative, however the nature of the non-phenolic residue (196.0387 u) was not able to be disclosed. Such caffeoyl derivative has not previously been reported in lettuce so far we are aware.

Similarly, four isomers of synapic acid-hexosides (31, Rt $=6.03 \mathrm{~min}, \quad \lambda_{\text {max }}=301, \quad 326 \mathrm{~nm} ; \quad 32, \quad \mathrm{Rt}=9.70 \mathrm{~min} ; \quad 33$, $\mathrm{Rt}=10.36 \mathrm{~min} ; 34, \mathrm{Rt}=13.13 \mathrm{~min})$ were tentatively identified in the extracted traces at $m / z 387$ and 385 in the positive and the negative ion modes respectively (Fig. 2S in the supplementary material). Ions corresponding to the deprotonated aglycone at $m / z 223$, and the subsequent decarboxylations and losses of methyl residues at $m / z 208,179$, 164 , and 149 from the synapoyl moiety were detected in the negative ion mode. In addition, the positive ion mode yielded the sodium adduct at $m / z 409$ and ions due to the loss of the hexose residue at $m / z 225$, and subsequent losses of $\mathrm{H}_{2} \mathrm{O}$ at $m / z 207, \mathrm{CH}_{3} \mathrm{OH}$ at $m / z 192$, and CO at $m / z 129$. One isomer of synapic acid-hexoside has been previously reported in green lettuce cultivars (Abu-Reidah et al., 2013).

Following this fragmentation patterns, a p-coumaric acid-hexoside (35, $\mathrm{Rt}=8.32 \mathrm{~min}$) and two dihydrocaffeic acid-hexosides (36, $\mathrm{Rt}=3.70 \mathrm{~min} ; 37, \mathrm{Rt}=3.83 \mathrm{~min}$) were also characterized. All of them yielded the product ion due to the loss of the hexose residue ($\mathrm{m} / \mathrm{z} 163$ for $35, m / z 181$ for 36 and 37), with the subsequent losses of $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}$ and CO_{2} in the negative ion mode; and the sodium adduct in the positive ion mode ($m / z 349$ for $35, m / z 367$ for 36 and 37).

Seven caffeic acid-hexosides, a synapic acid-hexosides, a dihydrocaffeic acid-hexoside and a p-coumaric acid-hexoside have been previously reported in green lettuce cultivars (Abu-Reidah et al., 2013). In the present work, one more caffeic acid-hexoside, a dihydrocaffeic acid-hexoside and three synapic acid-hexosides were identified in the butterhead lettuce cultivar.

Peaks 38 ($\mathrm{Rt}=11.81 \mathrm{~min}, \lambda_{\text {max }}=307 \mathrm{~nm}$), $39(\mathrm{Rt}=14.47 \mathrm{~min})$ and $40(\mathrm{Rt}=16.48 \mathrm{~min})$ were tentatively proposed as isomers of ferulic acid methyl esters. According to previous data (Abu-Reidah et al., 2013; Gómez-Romero et al., 2011), these compounds showed demethylated fragment ions at $m / z 192\left(\left[\mathrm{M}-\mathrm{H}-\mathrm{CH}_{3}\right]^{-}\right)$and $\mathrm{m} / \mathrm{z} 177$ ($\left[\mathrm{M}-\mathrm{H}-2 \mathrm{CH}_{3}\right]^{-}$), which is characteristic of the methoxylated cinnamic acids. Two of these isomers of ferulic acid methyl esters have been previously reported in green lettuce cultivars.

3.1.2. Hydroxybenzoic derivatives

Hydroxybenzoic derivatives were not detected in the positive ion mode. Thus, no peaks were detected in the chromatograms extracted from the TIC MS scan chromatogram at the protonated molecule or the sodium adduct masses of the hydroxybenzoic derivatives observed in the negative ion mode. Only one of the two previously reported in green lettuce cultivars (Abu-Reidah et al., 2013) isomers of hydroxybenzoic acid (41: $\mathrm{Rt}=4.67 \mathrm{~min})$ and dihydroxybenzoic acid (42: Rt $=5.42 \mathrm{~min}$) were detected at $m / z 137$ and $m / z 153$ respectively (Fig. $2 S$ in the supplementary material). Their corresponding decarboxylated ions were also observed at $m / z 93$ and $m / z 109$ respectively.

Several hydroxybenzoic glycoside esters were characterized according to their MS data and fragmentation pattern by the neutral loss of the glycosidic moiety. Hydroxybenzoic acid-hexosides (43, $\mathrm{Rt}=4.22 \mathrm{~min} ; 44, \mathrm{Rt}=5.15 \mathrm{~min})$ yielded the deprotonated ion at m / z 299 and the product ions due to losses of the hexose residue (m / z 137) and $\mathrm{CO}_{2} \quad(m / z \quad 93)$. Dihydroxybenzoic acid-hexosides (45, Rt $=2.49 \mathrm{~min} ; \quad 46, \quad \mathrm{Rt}=2.69 \mathrm{~min} ; \quad 47, \quad \mathrm{Rt}=3.74 \mathrm{~min} ; \quad 48$, $\mathrm{Rt}=3.91 \mathrm{~min} ; 49, \mathrm{Rt}=4.48 \mathrm{~min} ; 50, \mathrm{Rt}=4.68 \mathrm{~min})$ produced the deprotonated molecule at $m / z 315$ (base peak), an odd electron product ion at $m / z 152$ corresponding to the loss of hexose plus $\mathrm{H}(163 u)$, an even electron ion at $m / z 153$ due to the loss of hexose (Fig. 2S in the supplementary material), the dehydrated ion at $m / z 135$, and the decarboxylated ion at m / z 109, in agreement with bibliography (AbuReidah et al., 2013). Hence, one more hydroxybenzoic acid-hexoside and four more dihydroxybenzoic acid-hexosides are here detected in butterhead lettuce than in previous studies on different lettuce cultivars. The release of such unusual losses was also observed for gallic acid-hexoside isomers. Thus, peaks 51 ($\mathrm{Rt}=2.80 \mathrm{~min}$), 52 ($\mathrm{Rt}=2.88 \mathrm{~min}$) and $53(\mathrm{Rt}=6.61 \mathrm{~min})$ were tentatively proposed as gallic acid-hexosides, since they yielded the deprotonated molecule at $m / z 331$ (base peak) (Fig. 3S in the supplementary material), and an odd electron product ion at $m / z 168$, corresponding to the loss of hexose plus $\mathrm{H}(163 u)$, an even electron ion at $m / z 169$ due to the loss of hexose, and [gallic acid- $\left.\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$at $m / z 125$. Two isomers of gallic acid-hexoside have been detected previously only in the lettuce cv. baby (Abu-Reidah et al., 2013).

Aside from the loss of the hexose moiety, syringic acid-hexoside (54, $\mathrm{Rt}=5.90 \mathrm{~min}, m / z 359$) showed subsequent losses of CH_{3} from the methoxy groups of the aglycone and $\mathrm{CO}_{2}(\mathrm{~m} / \mathrm{z} 182,153,138$ and 123), as previously observed in literature (Abu-Reidah et al., 2013; GómezRomero et al., 2011).

In agreement with previous studies (Abu-Reidah et al., 2013), compounds $55(\mathrm{Rt}=17.09 \mathrm{~min})$ and $56(\mathrm{Rt}=24.83 \mathrm{~min})$ showing a deprotonated molecule at $m / z 451$ were tentatively assigned as hy-droxybenzoyl-gallic acid-hexosides (Fig. 3S in the supplementary material). The high energy function yielded the fragment ion corresponding to the deprotonated gallic acid-hexoside at $m / z 331$, after the loss of the hydroxybenzoyl moiety (120 u). As well, product ions due to successive losses of $\mathrm{H}_{2} \mathrm{O}$ at $\mathrm{m} / \mathrm{z} 313$, hexose plus H at $\mathrm{m} / \mathrm{z} 168$ and CO_{2} at $m / z 124$ were observed. A similar pattern was found for the hydro-xybenzoyl-dihydroxybenzoic acid-hexosides (57, Rt $=17.68 \mathrm{~min}$; 58, $\mathrm{Rt}=19.41 \mathrm{~min} ; 59, \mathrm{Rt}=23.64 \mathrm{~min} ; 60, \mathrm{Rt}=26.88 \mathrm{~min}, \lambda_{\text {max }}=256$, $335 \mathrm{~nm} ; 61, \mathrm{Rt}=27.09 \mathrm{~min}$) detected in the extracted trace at $m / z 435$ (Fig. 3 S in the supplementary material). For peak 59, only the deprotonated molecule was detected due to its low concentration in the extract. All other isomers yielded the fragment ions corresponding to [dihydroxybenzoic acid-hexoside- H] ${ }^{-}$at $m / z 315$, and the subsequent losses of $\mathrm{H}_{2} \mathrm{O}$ at $m / z 297$ and hexose plus H at $m / z 152$ and CO_{2} at m / z 108. Peaks 58 and 61 showed the product ion [dihydroxybenzoic acid -H$]^{-}$due to an even electron ion at $m / z 153$ (loss of hexose), instead of the odd electron product ion at $m / z 152$. Besides, peaks 57, 60 and 61, yielded the fragment ion [hydroxybenzoic acid-H] ${ }^{-}$at $m / z 137$ and its corresponding decarboxylation ion at $m / z 93$. This behaviour agrees with that observed for hydroxycinnamic acid glycosides above
and in literature (Clifford et al., 2007), which suggest that both, the hydroxybenzoic acid moiety and the dihydroxybenzoic acid moiety, are attached through their phenolic hydroxyl to different positions of the same hexose molecule. Just one isomer of hydroxybenzoyl-gallic acidhexoside and two isomers of hydroxybenzoyl-dihydroxybenzoic acidhexosides have been previously characterized only in cv. baby lettuce (Abu-Reidah et al., 2013).

3.1.3. Hydroxyphenylacetic derivatives

Taking into account the MS data, the fragmentation patterns observed for hydroxybenzoic acid in the negative ion mode and bibliography (Abu-Reidah et al., 2013; Gómez-Romero et al., 2011), 4-hydroxyphenylacetic acid was tentatively assigned to peak 62 ($\mathrm{Rt}=5.60 \mathrm{~min}$) (Fig. 4S in the supplementary material), which yielded the deprotonated molecule at $m / z 151$ and fragment ions due to the loss of CO at $m / z 123$ and CO_{2} at $m / z 107$, showing the typical decarboxylation of phenolic acids. Likewise, peak 63 ($\mathrm{Rt}=5.20 \mathrm{~min}$, $\lambda_{\text {max }}=270,276 \mathrm{~nm}$) observed in the extracted trace at $m / z 313$, produced the same decarboxylation ions, and a fragment ion at $m / z 151$ due to deprotonated 4-hydroxyphenylacetic acid obtained after the loss of a hexose moiety (Fig. 4S in the supplementary material). Thus, it was proposed as 4-hydroxyphenylacetic acid-hexoside. Both compounds have been previously detected in green lettuce cultivars (Abu-Reidah et al., 2013).

3.2. Flavonoids

3.2.1. Flavonols

Thirteen quercetin glycosides (64-76) and four kaempferol glycosides (77-80) were detected and identified on the basis of their mass spectral data, comparison with available standards, and literature. Flavonol monoglycoside mass spectra in the positive mode showed the protonated molecule $[M+H]^{+}$, the sodium adduct ion $[M+N a]^{+}$and the protonated aglycone ion $\left[\mathrm{Y}_{0}\right]^{+}$as a result of the loss of the sugar or organic acid residue (losses: $146 u$, rhamnosyl residue; $162 u$, hexosyl residue; $176 u$, glucuronic residue; $178 u$, gluconic residue; $248 u$, malonyl-hexosyl residue; $324 u$, di-hexosyl residue; $338 u$, glucuronic + hexosyl residue; $410 u$, hexosyl + malonyl-hexosyl residue; $424 u$, glucuronic + malonyl-hexosyl residue). In the mass spectrum of flavonol diglycosides, a fragment $\left[\mathrm{Y}_{1}\right]^{+}$due to the loss of the first sugar or organic acid unit was also observed. In the negative mode, the high energy function product ions corresponding to quercetin at $m / z 300$ (odd electron ion) and/or 301 (even electron ion) were detected (Fig. 4S in the supplementary material), as observed in MS/MS elsewhere (Abu-Reidah et al., 2013). Regarding this, compounds 64 (Rt $\left.=17.16 \mathrm{~min}, \quad \lambda_{\max }=279, \quad 344 \mathrm{~nm}\right), \quad 65 \quad(\mathrm{Rt}=18.03 \mathrm{~min}$, $\left.\lambda_{\text {max }}=252,367 \mathrm{~nm}\right)$ and $66\left(\mathrm{Rt}=20.25 \mathrm{~min}, \lambda_{\text {max }}=252,330 \mathrm{~nm}\right)$ were identified as quercetin-3-O-hexosides on the basis of their protonated molecule at $m / z 465$ and a high energy function product ion at $m / z 303$, which indicates cleavage of a hexosyl group. This fragmentation pattern and chromatographic retention time of the reference standard confirmed that compound 66 was quercetin-3-O-galactoside. Two isomers of quercetin hexose have been previously described in lettuce (Abu-Reidah et al., 2013; Becker, Klaering, Schreiner, Kroh, \& Krumbein, 2014; Jeong et al., 2015; Lin et al., 2012; Llorach et al., 2008; Mai \& Glomb, 2013; Marin et al., 2015; Pepe et al., 2015; Romani et al., 2002; Santos et al., 2014; Sofo et al., 2016).

Compound 67 ($\mathrm{Rt}=18.44 \mathrm{~min}, \lambda_{\max }=254,349 \mathrm{~nm}$) was identified as quercetin-3-O-glucuronide because of $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 479$, [M $+\mathrm{Na}]^{+}$at $m / z 501$ and $\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 303$, which indicated the loss of a glucuronic residue in the positive mode (Fig. 2). Similarly, in the negative mode, the molecule $[\mathrm{M}-\mathrm{H}]^{-}$at $m / z 477$ yielded $\left[\mathrm{Y}_{0}\right]^{-}$at m / z 301; the loss of $176 u$ pointed out the presence of a glucuronic residue (Fig. 2). The presence of quercetin-3-O-glucuronide in lettuce had been previously confirmed by nuclear magnetic resonance analysis (DuPont, Mondin, Williamson, \& Price, 2000; Mai \& Glomb, 2013). The
glucuronic group was also observed in compound $68(\mathrm{Rt}=9.50 \mathrm{~min}$, $\left.\lambda_{\text {max }}=256,352 \mathrm{~nm}\right)$ and compound $69(\mathrm{Rt}=10.58 \mathrm{~min})$, which gave $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 641,[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 663$, and $\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 303$ in positive mode, and peak 69, also $\left[\mathrm{Y}_{1}\right]^{+}$at $m / z 465$. In the negative mode, both compounds presented similar ionization and fragmentation pattern: $[\mathrm{M}-\mathrm{H}]^{-}$at $m / z 639,\left[\mathrm{Y}_{1}\right]^{-}$at $m / z 463$ and $\left[\mathrm{Y}_{0}\right]^{-}$at $m / z 300$ (odd electron ion) and/or 301 (even electron ion). Moreover, the loss of $162 u$ revealed the cleavage of a hexoxyl group, therefore these flavonols were assigned to quercetin hexose-glucuronide isomers, which had been already described in baby, romaine and iceberg cultivars (AbuReidah et al., 2013).

Compounds 70 (Rt $\left.=21.52 \mathrm{~min}, \quad \lambda_{\text {max }}=255, \quad 352 \mathrm{~nm}\right), \quad 71$ (Rt $\left.=22.03 \mathrm{~min}, \lambda_{\max }=252,364 \mathrm{~nm}\right)$ and $72(\mathrm{Rt}=23.69 \mathrm{~min})$ were identified as quercetin malonylhexoside isomers since they presented $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 551,[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 573$, and $\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 303$ due to the loss of the malonylhexosyl moiety in the positive ion mode; and $[\mathrm{M}-\mathrm{H}]^{-}$at $m / z 549,\left[\mathrm{Y}_{0}\right]^{-}$at $m / z 301$ (Fig. 4S in the supplementary material), $\left[\mathrm{M}-\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$at $\mathrm{m} / \mathrm{z} 505$ (base peak) in the negative ion mode. The neutral loss of CO_{2} is characteristic of compounds presenting the malonyl group, as previously reported (Abu-Reidah et al., 2013). This fact is due to in-source fragmentation, which can affect the correct identification of the deprotonated molecule of interest, because the relative abundance of $[\mathrm{M}-\mathrm{H}]^{-}$ion could be lower than the product ion $\left[\mathrm{M}-\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$as occurred with these peaks. This particularly labile group could be partially lost during ion transfer from a higher-pressure region of the source to a lower-pressure region (Katta, Chowdhury, \& Chait, 1991), as observed for peak 70 ($0.4 \% \mathrm{RA}$), peak 71 ($11 \% \mathrm{RA}$) and peak 72 ($0.4 \% \mathrm{RA}$). The identification of compound 70 was also confirmed by the presence of $[2 \mathrm{M}-\mathrm{H}]^{-}$ion. Quercetin-3-O-(6"-O-malonyl)-glucoside has been reported in lettuce in several publications (Becker et al., 2014; DuPont et al., 2000; Ferreres, Gil, Castañer, \& Tomás-Barberán, 1997; Heimler, Isolani, Vignolini, Tombelli, \& Romani, 2007; Llorach et al., 2008; Mai \& Glomb, 2013; Marin et al., 2015; Ribas-Agustí et al., 2011; Romani et al., 2002; Santos et al., 2014), and confirmed by NMR analysis (DuPont et al., 2000; Ferreres et al., 1997). Two isomers of quercetin malonylglucoside were already described in different lettuce varieties (Abu-Reidah et al., 2013; Lin et al., 2012). The presence of three quercetin malonylhexoside isomers in lettuce is described for the first time in the present study.

Compound 73 ($\mathrm{Rt}=11.51 \mathrm{~min}, \lambda_{\max }=253,355 \mathrm{~nm}$) was identified as quercetin-3-O-(6"-O-malonyl)-glucoside-7-O-glucuronide, which has been previously described in lettuce (Abu-Reidah et al., 2013; Llorach et al., 2008; Santos et al., 2014). In the positive ion mode, $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 727,[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 749$, and the fragment ions $\left[\mathrm{Y}_{1}\right]^{+}$at $m /$ $z 479$ and $\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 303$ indicated the loss of a malonyl-glucosyl group followed by a glucuronic group. In the negative ion mode, the neutral loss of CO_{2} yielding $\left[\mathrm{M}-\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$at $\mathrm{m} / \mathrm{z} 681$ confirmed the presence of a malonyl residue in the molecular structure; as well as the high energy function product ions at $m / z 300$ (odd electron ion) and/or 301 (even electron ion) (Fig. 4S in the supplementary material), the presence of quercetin. Similarly, compound 74 (Rt $=13.82 \mathrm{~min}$, $\lambda_{\text {max }}=253,350 \mathrm{~nm}$) also contained a malonyl residue since its base peak in the negative mode was $\left[\mathrm{M}-\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$at $m / z 667$. The deprotonated molecule at $m / z 711$ was also present and $\left[\mathrm{Y}_{0}\right]^{-}$at $m / z 300$ (odd electron ion) and/or 301 (even electron ion) (Fig. 4S in the supplementary material) indicated that the aglycone was quercetin. The positive ion mode yielding $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 713,[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 735$, and the fragment ions $\left[\mathrm{Y}_{1}\right]^{+}$at $m / z 465$ and $\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 303$ confirmed the cleavage of malonylhexosyl group followed by a hexosyl group. Thus, compound 74 was tentatively assigned to quercetin-3-O($6^{\prime \prime}$-O-malonyl)-glucoside-7-O-glucoside, which has been previously reported in lettuce (Abu-Reidah et al., 2013; Llorach et al., 2008; Santos et al., 2014), and confirmed by NMR analysis (Ferreres et al., 1997).

Compounds 75 ($\mathrm{Rt}=12.18 \mathrm{~min}$) and 76 ($\mathrm{Rt}=16.07 \mathrm{~min}$) presented the same monoisotopic molecular mass for $[\mathrm{M}+\mathrm{H}]^{+}$at m / z $627.1580\left(\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{17}\right)$ and $[\mathrm{M}-\mathrm{H}]^{-}$at $m / z 625.1405\left(\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{17}\right)$, and
$[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 649.1381\left(\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{17} \mathrm{Na}\right)$. The presence of $\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 303$ and $\left[\mathrm{Y}_{0}\right]^{-}$at $m / z 301$ (Fig. 4S in the supplementary material) in the positive and negative ion modes, respectively, disclosed that the aglycone was quercetin. However, these compounds followed different fragmentation patterns. Peak 75 yielded $\left[\mathrm{Y}_{1}\right]^{-}$at $m / z 463$ due to the loss of a hexosyl moiety (162 u), and revealing that $\left[\mathrm{Y}_{0}\right]^{-}$was obtained from the loss of a second hexosyl residue. Thus, compound 75 was assigned as a quercetin- O-di-hexoside. Instead, peak 76 yielded $\left[\mathrm{Y}_{1}\right]^{-}$ at $m / z 447$ due to the loss of a gluconic moiety ($178 u$), and disclosing a subsequent loss of a rhamnosyl moiety $(146 u)$ to achieve $\left[\mathrm{Y}_{0}\right]^{-}$. Peak 75 was tentatively identified as quercetin-di-glucoside, which has been previously reported in green lettuce (Santos et al., 2014). Peak 76 was tentatively proposed as quercetin-O-rhamnosyl-gluconate, which is here reported for the first time to the author's knowledge.

Regarding kaempferol conjugates, compound 77 ($\mathrm{Rt}=25.27 \mathrm{~min}$, $\lambda_{\text {max }}=265$, 347 nm) was identified as kaempferol-3-O-(6"-O-malonyl)glucoside, which has been already found in different lettuce cultivars (Heimler et al., 2007). In the positive mode, $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 535$, $[\mathrm{M}$ $+\mathrm{Na}]^{+}$at $m / z 557$, and the fragment ions and $\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 287$ revealed the cleavage of a malonyl-glucosyl group. In the negative mode, $[\mathrm{M}-\mathrm{H}]^{-}$at $m / z 533,\left[\mathrm{Y}_{0}\right]^{-}$at $m / z 285,\left[\mathrm{M}-\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$at $m / z 489$ confirmed the presence of the malonyl glucosyl moiety in the molecule (Fig. 4 S in the supplementary material). Regarding the aglycone, kaempferol and the flavone luteolin are isobaric, but their conjugates can be distinguished on the basis of their MS and MS/MS data. In the positive low energy function, kaempferol derivatives yield $\left[\mathrm{Y}_{0}\right]^{+}$as the base peak or $[\mathrm{M}+\mathrm{H}]^{+}$as the base peak plus an intense $\left[\mathrm{Y}_{0}\right]^{+}$, whereas luteolin derivatives give as the base peak $[\mathrm{M}+\mathrm{H}]^{+}$or $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, and $\left[\mathrm{Y}_{0}\right]^{+}$does not appear or present low relative abundance. In the negative low energy function, both compounds yield $[\mathrm{M}-\mathrm{H}]^{-}$or $\left[\mathrm{M}-\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$(in the case of malonylglycosides) as the base peak, but in the negative high energy function, kaempferol conjugates give the base peak $\left[\mathrm{Y}_{0}\right]^{-}$, whereas luteolin compounds yield the base peak $[\mathrm{M}-\mathrm{H}]^{-}$or $\left[\mathrm{M}-\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$and an intense $\left[\mathrm{Y}_{0}\right]^{-}$, or $\left[\mathrm{Y}_{0}\right]^{-}$as the base peak and an intense $[\mathrm{M}-\mathrm{H}]^{-}$with relative abundance higher than 50% RA. Moreover, several minor monoisotopic product ions at m / z $217.0501\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{4}\right), 199.0395\left(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{O}_{3}\right), 175.0395\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{3}\right)$ and $133.0290\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{2}\right)$ are characteristic of luteolin, and helps to distinguish it from its kaempferol isomers (Abu-Reidah et al., 2013; GómezRomero et al., 2011). In this sense, these fragment ions did not appear in the negative high energy MS spectra of peak 77, suggesting that it is a kaempferol derivative. Moreover, this identification was also supported by the base peaks yielded in the positive low energy and the negative high energy functions, $\left[\mathrm{Y}_{0}\right]^{+}$and $\left[\mathrm{Y}_{0}\right]^{-}$respectively, as well as its UV-visible spectra, and elution order since kaempferol isomers elute later than luteolin isomers on endcapped C_{18} packings.

Two isomers (78: $\mathrm{Rt}=23.90 \mathrm{~min}$; 79: $\mathrm{Rt}=26.43 \mathrm{~min}$) were detected in the extracted MS chromatogram at $m / z 449$ and 447 in the positive and negative ion modes respectively, which yielded the protonated ion, $[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 471$ and $\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 287$ in the positive ion mode, and the deprotonated molecule and $\left[\mathrm{Y}_{0}\right]^{-}$at $\mathrm{m} / \mathrm{z} 285$ in the negative ion mode (Fig. 4S in the supplementary material); revealing the loss of a hexosyl residue and the presence of kaempferol or luteolin aglycone. The base peaks yielded in the positive low energy and the negative high energy functions were $\left[\mathrm{Y}_{0}\right]^{+}$and $\left[\mathrm{Y}_{0}\right]^{-}$respectively, and no characteristic minor product ions of luteolin were detected in the negative high energy function, therefore the aglycone was tentatively identified as kaempferol. Compound 78 was identified unambiguously as kaempferol-3-O-glucoside by comparison with its standard, whereas compound 79 as kaempferol-hexoside. Kaempferol-3-O-glucoside is the only kaempferol-hexoside that has been previously detected in several lettuce cultivars (Alarcón-Flores et al., 2016).

Compound $80\left(\mathrm{Rt}=22.34 \mathrm{~min}, \lambda_{\max }=265,332 \mathrm{~nm}\right)$ was identified as kaempferol-3-O-glucuronide, which has been previously found in lettuce in literature (Jeong et al., 2015). This compound yielded [M $+\mathrm{H}]^{+}$at $m / z 463,[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 485$ and $\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 287$ in the

Fig. 2. Low (F1) and high (F2) energy function MS spectra in the negative and positive ion mode of quercetin-3-O-glucuronide. ESI, electrospray ionization.
positive mode; and $[\mathrm{M}-\mathrm{H}]^{-}$at $m / z 461$ and $\left[\mathrm{Y}_{0}\right]^{-}$at $m / z 285$ in the negative mode (Fig. 4S in the supplementary material). The observed loss of $176 u$ pointed out the presence of a glucuronic residue. Besides, the presence of the base peaks $\left[\mathrm{Y}_{0}\right]^{+}$and $\left[\mathrm{Y}_{0}\right]^{-}$in the positive low energy and the negative high energy functions respectively, and the absence of luteolin characteristic minor product ions in the negative high energy function, supports the proposed identification for this compound.

Peak 81 ($\mathrm{Rt}=27.08 \mathrm{~min}$) presented the protonated and deprotonated molecules at $m / z 287$ and 285 in the positive and the negative ion
modes respectively (Fig. 4S in the supplementary material), which yielded fragment ions characteristics of kaempferol or luteolin aglycones (Abad-García et al., 2009), suggesting that both compounds were eluting overlapped in this peak. To the author's knowledge, kaempferol aglycone has not been previously found in lettuce, but in escarole (Asteraceae) (Llorach et al., 2008).

3.2.2. Flavones

Four luteolin glycosides (82-85) and four apigenin conjugates (86-89) were detected and identified on the basis of mass spectral data,
comparing with available standards and bibliographic sources. Compound 82 ($\mathrm{Rt}=19.82 \mathrm{~min}, \lambda_{\max }=255,347 \mathrm{~nm}$) was identified unambiguously as luteolin-7-O-glucoside by comparison with its standard, which showed the deprotonated molecule at $m / z 447,[2 M-H]^{-}$ at $m / z 895,\left[\mathrm{Y}_{0}\right]^{-}$at $m / z 285$ (Fig. 4 S in the supplementary material), and luteolin characteristic minor product ions at $m / z 217,199$ and 175 in the negative ion mode; and the protonated molecule at $m / z 449$, [M $+\mathrm{Na}]^{+}$at $m / z 471,\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 287$, and intense fragment ions at 153 and 135 in the positive mode. Luteolin-7-O-glucoside has been previously described in lettuce cultivars (Abu-Reidah et al., 2013; AlarcónFlores et al., 2016; Lin et al., 2012).

Compound 83 ($\mathrm{Rt}=17.45 \mathrm{~min}, \lambda_{\text {max }}=253,348 \mathrm{~nm}$) was assigned to luteolin-7-O-glucuronide regarding the protonated molecule yielded at $m / z 463,[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 485$ and $\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 287$, which revealed the cleavage of a glucuronic residue. In the negative high energy function, compound 83 yielded the corresponding deprotonated molecule at $m / z 461,\left[\mathrm{Y}_{0}\right]^{-}$at $m / z 285$, as well as some minor fragment ions at $m / z 217,199,175,151$ and 133 (Figs. $4 S$ and $7 S$ in the supplementary material), which distinguished luteolin conjugates from its kaempferol isomers (Abu-Reidah et al., 2013; Gómez-Romero et al., 2011). This identification was supported by its UV-visible spectrum, which followed the luteolin pattern; and its elution order on encapped C18 packings, glucuronide conjugates elute earlier than their corresponding glucoside ones. Luteolin-7-O-glucuronide has been previously reported in lettuce (Abu-Reidah et al., 2013; DuPont et al., 2000; Lin et al., 2012; Mai \& Glomb, 2013; Santos et al., 2014), and confirmed by NMR analysis (DuPont et al., 2000; Ferreres et al., 1997).

Compounds $84(\mathrm{Rt}=20.27 \mathrm{~min})$ and $85 \quad(\mathrm{Rt}=21.17 \mathrm{~min}$, $\left.\lambda_{\max }=268,351 \mathrm{~nm}\right)$ showed base peaks at $m / z 595\left([\mathrm{M}+\mathrm{H}]^{+}\right)$in the low energy function. Aside, compound 85 also presented the sodium adduct ($m / z 617$), the fragment ions at $m / z 449\left(\left[Y_{1}\right]^{+}\right)$, and at m / z $287\left(\left[\mathrm{Y}_{0}\right]^{+}\right)$in the high energy function in the positive ion mode. This fragmentation pattern revealed the loss of rhamnosyl group followed by a hexosyl group, which is in agreement with the fragment ions observed in the negative ion mode, i.e. $\left[\mathrm{Y}_{1}\right]^{-}$at $m / z 447$ and $\left[\mathrm{Y}_{0}\right]^{-}$at $m / z 285$ (Fig. 4S in the supplementary material). In the negative ion mode, both compounds yielded the deprotonated molecule as the base peak in both low and high energy functions, supporting their tentatively assignment as luteolin-rhamnosylhexoside. Compound 85 was tentatively identified as luteolin-7-O-rutinoside since it was the major compound and has been previously found in different lettuce cultivars (Llorach et al., 2008). The second luteolin-rhamnosylhexoside (84) is here reported for the first time in lettuce to the authors' knowledge.

Regarding apigenin derivatives, the observation of neutral losses of the conjugated groups and the product ions at $m / z 271$ and 269 in the positive and negative ion modes respectively, indicated the presence of apigenin in their structure (Fig. 4S in the supplementary material). Thus, compound 86 ($\mathrm{Rt}=20.57 \mathrm{~min}$) showing a loss of $176 u$ was identified as apigenin-glucuronide; compound 87 (Rt $=23.02 \mathrm{~min}$, $\lambda_{\text {max }}=259,328 \mathrm{~nm}$) with a loss of $162 u$, as apigenin-glucoside; and compound 88 ($\mathrm{Rt}=23.90 \mathrm{~min}$) with subsequent losses of $146 u$ and $162 u$, as apigenin-rhamnosylhexoside, which is here reported for the first time in lettuce cultivars. Likewise, compound 89 (Rt = 26.99 min) yielded the protonated and deprotonated molecules at $m / z 839$ and 837 and the corresponding apigenin aglycone ions in positive and negative ion modes respectively, showing a monoisotopic loss of $568.2731 u$ $\left(\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{14}\right)$, however its identity was not able to be disclosed with the available spectral data. Apigenin-glucuronide (86) and apigenin-glucoside (87) have been already found in lettuce (Abu-Reidah et al., 2013; Alarcón-Flores et al., 2016). Alarcón-Flores et al. (2016) found an apigenin- O-derivative with the same fragmentation pattern as apigeninrhamnosylhexoside (88) in different lettuce cultivars, as well as luteolin aglycone ($90, \mathrm{Rt}=27.08 \mathrm{~min}$). However, the apigenin conjugate (89) has not been previously reported.

3.2.3. Flavanones

A flavanone glycoside was detected and identified on the basis of its UV-visible spectrum and mass spectral data. Chromatographic peak 91 (Rt $=14.87 \mathrm{~min}, \lambda_{\text {max }}=284 \mathrm{~nm}$, shoulder at 329 nm) in the negative mode yielded the base peaks $[\mathrm{M}-\mathrm{H}]^{-}$at $m / z 463$ in the low energy function, and a fragment ion $\left[^{1,3} \mathrm{~A}\right]^{-}$at $m / z 151$ and an intense ion [$\left.\mathrm{Y}_{0}\right]^{-}$at $m / z 287$ ($60 \% \mathrm{RA}$) in the high energy function (Fig. 3 and Fig. 5S in the supplementary material). In the positive ion mode, [M $+\mathrm{H}]^{+}$at $m / z 465(60 \% \mathrm{RA}),[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 487$ and a fragment ion $\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 289$ (base peak) were detected (Fig. 3). Both fragment ions revealed the cleavage of a glucuronic group. Moreover, a minor fragment $\left[{ }^{1,3} \mathrm{~A}\right]^{+}$at $m / z 153$ in the positive ion mode contributed to confirm that the aglycone was eriodictyol (Abad-García et al., 2009). Thus, compound 91 was identified as eriodictyol-O-glucuronide, which is reported for the first time in lettuce to our best knowledge.

3.3. Coumarins

Seven coumarins (92-98) were detected in butterhead lettuce cultivar. Chromatographic peak $92\left(\mathrm{Rt}=6.50 \mathrm{~min}, \lambda_{\text {max }}=290,340 \mathrm{~nm}\right)$ was identified as a 6,7-dihydroxycoumarin-6-O-glucoside (esculin) regarding its UV-visible spectrum and mass spectral data. In the positive ion mode, the protonated molecule at $m / z 341$, the sodium adduct at $m /$ $z 363$ and $\left[\mathrm{Y}_{0}\right]^{+}$at $m / z 179$ were produced, indicating that a hexosyl group was present in the molecular structure. This was confirmed in the negative ion mode, where the deprotonated molecular at $m / z 339$, the acetate adduct $[\mathrm{M}-\mathrm{H}+\mathrm{AcO}]^{-}$at $m / z 399$ and $\left[\mathrm{Y}_{0}\right]^{-}$at $m / z 177$ were yielded (Fig. 5S in the supplementary material). Compound 92 also gave some minor fragment ions at $m / z 133$ and 105 corresponding to the loss of CO_{2} and CO successively (Fig. 8 S in the supplementary material), which have been previously reported in literature (AbuReidah et al., 2013), and suggested that peak 92 was esculetin-6-Oglucoside.

Compounds 93 ($\mathrm{Rt}=7.31 \mathrm{~min}$), $94(\mathrm{Rt}=10.23 \mathrm{~min})$ and 95 ($\mathrm{Rt}=12.02 \mathrm{~min}, \lambda_{\max }=296,330 \mathrm{~nm}$) presented the same protonated molecules at $m / z 179$ and deprotonated molecules at $m / z 177$ (Fig. 5S in the supplementary material), as well as the same fragmentation pattern described above for esculin. Thus, they were tentatively identified as dihydrocoumarin isomers. Esculin and 6,7-dihydrocoumarin (95) have been already reported in lettuce and Asteraceae (Abu-Reidah et al., 2013; Schütz, Carle, \& Schieber, 2006). In the same way, compounds $96(R t=9.05 \mathrm{~min}), \quad 97 \quad(\mathrm{Rt}=10.54 \mathrm{~min}) \quad$ and 98 ($\mathrm{Rt}=12.54 \mathrm{~min}$) presented the same fragmentation patterns as the dihydrocoumarin isomers (Fig. 5S in the supplementary material), but their protonated molecules at $m / z 295$ and deprotonated molecules at $m / z 293$ disclosed that the loss to yield the dihydrocoumarin ion was $116 u$, due to a maloyl residue. Thus, these compounds were tentatively assigned as maloyl-dihydrocoumarin isomers. Regarding the elution order of the dihydrocoumarin and the maloyl-dihydrocoumarin isomers, the latters are probably the maloyl derivatives of the formers, since the maloyl group increase the hydrophobicity of the molecule, and therefore, elute at higher retention times in reverse-phase packings. To the authors' knowledge, maloyl-dihydrocoumarins are reported in lettuce and Asteraceae for the first time.

3.4. Hydrolysable tannins

A tri-4-hydroxyphenylacetyl ester of a hexose (99, Rt $=27.09 \mathrm{~min}$) was detected in the extracted trace at $m / z 581$ in the negative ion mode. This peak showed the characteristic fragmentation pattern previously described in literature (Abu-Reidah et al., 2013), yielding fragment ions at $m / z 295$ ([(4-hydroxyphenylacetic acid-hexose) $\left.-\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{-}$), $m / z 175$ ([(4-hydroxyphenylacetic acid-hexose) $\left.-2 \mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CO}\right]^{-}$), $\mathrm{m} / \mathrm{z} 151$ ([4-hydroxyphenylacetic acid - H] ${ }^{-}$(Fig. 4S in the supplementary material) and $m / z 143$ ([(4-hydroxyphenylacetic acid-hexose) $\left.-2 \mathrm{H}-\mathrm{H}_{2} \mathrm{O}-\mathrm{OHC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{COOH}\right]^{-}$or [hexose $\left.-\mathrm{H}-2 \mathrm{H}_{2} \mathrm{O}\right]^{-}$). Four

Fig. 3. Low (F1) and high (F2) energy function MS spectra in the negative and positive ion mode of eriodictyol-O-glucuronide. ESI, electrospray ionization.
isomers of tri-4-hydroxyphenylacetyl-glucoside were found in several Lactuca species (Abu-Reidah et al., 2013).

3.5. Lignan derivatives

Peak $100(\mathrm{Rt}=21.00 \mathrm{~min})$, detected in the extracted MS chromatogram set at $m / z 417$ in the negative ion mode (Fig. 5S in the supplementary material), yielded the fragment ion $m / z 359$ due to the losses of two methyl moieties plus CO. In the positive ion mode, the
corresponding protonated molecule was detected at $m / z 419$. This compound was tentatively identified as syringaresinol, having not been found in lettuce cultivars before to the best of our knowledge. In relation to this compound, four syringaresinol-hexoses (101, $\mathrm{Rt}=13.90 \mathrm{~min} ; 102, \mathrm{Rt}=18.97 \mathrm{~min} ; 103, \mathrm{Rt}=19.63 \mathrm{~min} ; 104$, $R t=23.30 \mathrm{~min}$) were detected in the extracted trace at $m / z 579$ and 581 in the negative and positive ion modes. For peak 102, only the corresponding deprotonated and protonated molecules were detected due to its low concentration in the extract. All other isomers yielded in
the negative ion mode the fragment ions corresponding to the loss of the hexose residue (m / z 417) (Fig. 5S in the supplementary material), and the subsequent losses of $\mathrm{H}_{2} \mathrm{O}(\mathrm{m} / \mathrm{z} 399)$ or two methyl residues ($\mathrm{m} /$ $z 387$) from the syringaresinol. In the positive ion mode, the sodium adducts ($m / z 603$) and the fragment ion due to the loss of the hexose residue plus two $\mathrm{H}_{2} \mathrm{O}(\mathrm{m} / z 383)$ were detected. In addition, three isomers of syringaresinol-acetylhexoses (105, $\mathrm{Rt}=15.06 \mathrm{~min}$, $\left.\lambda_{\text {max }}=205,280 \mathrm{~nm} ; 106, \mathrm{Rt}=24.50 \mathrm{~min} ; 107, \mathrm{Rt}=24.63 \mathrm{~min}\right)$ were detected in the extracted trace at $m / z 621$ in the negative ion mode, presenting the same aforementioned fragmentation pattern. In this sense, the fragment ions due to the loss of the acetylhexose residue (m / z 417) (Fig. 5S in the supplementary material), and the successive losses of $\mathrm{H}_{2} \mathrm{O}(\mathrm{m} / \mathrm{z} 399)$, and methyl residues $\left(\mathrm{m} / \mathrm{z} 402\left(-\mathrm{CH}_{3}\right), \mathrm{m} / \mathrm{z} 387\right.$ $\left.\left(-2 \mathrm{CH}_{3}\right)\right)$ and $\left.m / z 359\left(-2 \mathrm{CH}_{3} \mathrm{CO}\right)\right)$ were observed, as well as other further fragments from the syringaresinol structure at $m / z 181,166$, 151 and 123 (Fig. 9S in the supplementary material).

Peaks $108(R t=19.22 \mathrm{~min}), 109(\mathrm{Rt}=19.39 \mathrm{~min})$ and 110 ($\mathrm{Rt}=19.82 \mathrm{~min}$) were observed in the chromatogram set at $m / z 581 \mathrm{in}$ the negative ion mode (Fig. 5S in the supplementary material). The MS spectra of these compounds disclosed that they presented the same fragmentation pattern as the above lignans, yielding the product ions due to the loss of the dimethoxyhexose moiety ($m / z 359$), and the subsequent losses of $\mathrm{H}_{2} \mathrm{O}(\mathrm{m} / z 341)$, and two methyl residues ($\mathrm{m} / \mathrm{z} 329$) from the lariciresinol structure. Thus, these compounds were proposed to be isomers of dimethoxy-hexosyl-lariciresinol. Furthermore, a di-methoxy-dihexosyl-lariciresinol isomer (111 : $\mathrm{Rt}=16.37 \mathrm{~min}$) was also tentatively identified according to the presence of the deprotonated ion at $m / z 743$ and the fragment ion due to the loss of a hexose residue at $m / z 581$ in its negative ion MS spectra, which yielded further product ions following the same fragmentation pattern of dimethoxy-hexosyllariciresinol. In lettuce cultivars, only one isomer of syringaresinolhexose (syringaresinol- β-d-glucoside) and dimethoxy-hexosyl-lariciresinol have been previously reported (Abu-Reidah et al., 2013).

In conclusion, the UHPLC-DAD-ESI-QToF/ MS^{E} approach demonstrates to be a useful tool for the characterization of phenolic compounds in complex plant matrices.

Acknowledgements

The authors gratefully acknowledge the Agencia Nacional de Promoción Científica y Tecnológica (project number PICT-2008-1724) and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (project number PIP 0007) from Argentina for the financial support. Gabriela Elena Viacava thanks CONICET and Asociación Universitaria Iberoamericana de Postgrado (AUIP) for her Ph.D. grants.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.foodchem.2018.03.151.

References

Abad-García, B., Berrueta, L. A., Garmón-Lobato, S., Gallo, B., \& Vicente, F. (2009). A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. Journal of Chromatography A, 1216, 5398-5415.
Abu-Reidah, I. M., Contreras, M. M., Arráez-Román, D., Segura-Carretero, A., \& Fernández-Gutiérrez, A. (2013). Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. Journal of Chromatography A, 1313, 212-227.
Agüero, M. V., Viacava, G. E., Ponce, A. G., \& Roura, S. I. (2013). Early postharvest time period affects quality of butterhead lettuce packed in crates. International Journal of Vegetable Science, 19, 384-402.
Alarcón-Flores, M. I., Romero-González, R., Martínez Vidal, J. L., \& Garrido Frenich, A. (2016). Multiclass determination of phenolic compounds in different varieties of tomato and lettuce by ultra high performance liquid chromatography coupled to
tandem mass spectrometry. International Journal of Food Properties, 19, 494-507. Alonso-Salces, R. M., Guillou, C., \& Berrueta, L. A. (2009). Liquid chromatography coupled with ultraviolet absorbance detection, electrospray ionization, collision-induced dissociation and tandem mass spectrometry on a triple quadrupole for the on-line characterization of polyphenols and methylxanthines in green coffee beans. Rapid Communications in Mass Spectrometry, 23, 363-383.
Altunkaya, A., \& Gökmen, V. (2009). Effect of various anti-browning agents on phenolic compounds profile of fresh lettuce (L. sativa). Food Chemistry, 117, 122-126.
Becker, C., Klaering, H. P., Schreiner, M., Kroh, L. W., \& Krumbein, A. (2014). Unlike quercetin glycosides, cyanidin glycoside in red leaf lettuce responds more sensitively to increasing low radiation intensity before than after head formation has started. Journal of Agricultural and Food Chemistry, 62, 6911-6917.
Clifford, M. N., Johnston, K. L., Knight, S., \& Kuhnert, N. (2003). Hierarchical scheme for LC-MS ${ }^{\mathrm{n}}$ identification of chlorogenic acids. Journal of Agricultural and Food Chemistry, 51, 2900-2911.
Clifford, M. N., Kirkpatrick, J., Kuhnert, N., Roozendaal, H., \& Salgado, P. R. (2008). LCMS^{n} analysis of the cis isomers of chlorogenic acids. Food Chemistry, 106, 379-385.
Clifford, M. N., Knight, S., \& Kuhnert, N. (2005). Discriminating between the six isomers of dicaffeoylquinic acid by LC-MS ${ }^{\mathrm{n}}$. Journal of Agricultural and Food Chemistry, 53, 3821-3832.
Clifford, M. N., Knight, S., Surucu, B., \& Kuhnert, N. (2006). Characterization by LC-MS ${ }^{\text {n }}$ of four new classes of chlorogenic acids in green coffee beans:
Dimethoxycinnamoylquinic acids, diferuloylquinic acids, caffeoyl-dimethoxycinnamoylquinic acids, and feruloyl-dimethoxycinnamoylquinic acids. Journal of Agricultural and Food Chemistry, 54, 1957-1969.
Clifford, M. N., Marks, S., Knight, S., \& Kuhnert, N. (2006). Characterization by LC-MS ${ }^{\text {n }}$ of four new classes of p-coumaric acid-containing diacyl chlorogenic acids in green coffee beans. Journal of Agricultural and Food Chemistry, 54, 4095-4101.
Clifford, M. N., Wu, W., Kirkpatrick, J., \& Kuhnert, N. (2007). Profiling the chlorogenic acids and other caffeic acid derivatives of herbal chrysanthemum by LC-MS ${ }^{\text {n }}$. Journal of Agricultural and Food Chemistry, 55, 929-936.
Dai, J., \& Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313-7352.
Dawidowicz, A. L., \& Typek, R. (2011). The influence of pH on the thermal stability of 5-O-caffeoylquinic acids in aqueous solutions. European Food Research and Technology, 233, 223-232.
DuPont, M. S., Mondin, Z., Williamson, G., \& Price, K. R. (2000). Effect of variety, processing, and storage on the flavonoid glycoside content and composition of lettuce endive. Journal of Agricultural and Food Chemistry, 48, 3957-3964.
Ferreres, F., Gil, M. I., Castañer, M., \& Tomás-Barberán, F. A. (1997). Phenolic metabolites in red pigmented lettuce (Lactuca sativa). Changes with minimal processing and cold storage. Journal of Agricultural and Food Chemistry, 45, 4249-4254.
Gómez-Romero, M., Segura-Carretero, A., \& Fernandez-Gutierrez, A. (2010). Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry, 71, 1848-1864.
Gómez-Romero, M., Zurek, G., Schneider, B., Baessmann, C., Segura-Carretero, A., \& Fernández-Gutiérrez, A. (2011). Automated identification of phenolics in plant-derived foods by using library search approach. Food Chemistry, 124, 379-386.
Heimler, D., Isolani, L., Vignolini, P., Tombelli, S., \& Romani, A. (2007). Polyphenol content and antioxidative activity in some species of freshly consumed salads. Journal of Agricultural and Food Chemistry, 55, 1724-1729.
Jaiswal, R., Kiprotich, J., \& Kuhnert, N. (2011). Determination of the hydroxycinnamate profile of 12 members of the Asteraceae family. Phytochemistry, 72, 781-790.
Jeong, S. W., Kim, G.-S., Lee, W. S., Kim, Y.-H., Kang, N. J., Jin, J. S., ... Shin, S. C. (2015). The effects of different night-time temperatures and cultivation durations on the polyphenolic contents of lettuce: Application of principal component analysis. Journal of Advanced Research, 6, 493-499.
Katta, V., Chowdhury, S. K., \& Chait, B. T. (1991). Use of a single-quadrupole mass spectrometer for collision-induced dissociation studies of multiply charged peptide ions produced by electrospray ionization. Analytical Chemistry, 63, 174-178.
Lin, L. Z., Harnly, J., Zhang, R. W., Fan, X. E., \& Chen, H. J. (2012). Quantitation of the hydroxycinnamic acid derivatives and the glycosides of flavonols and flavones by UV absorbance after identification by LC-MS. Journal of Agricultural and Food Chemistry, 60, 544-553.
Lozac'h, N. (1975). Nomenclature of Cyclitols. European Journal of Biochemistry, 57, 1-7.
Llorach, R., Martínez-Sánchez, A., Tomás-Barberán, F. A., Gil, M. I., \& Ferreres, F. (2008). Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chemistry, 108, 1028-1038.
Ma, Y. L., Li, Q. M., Van den Heuvel, H., \& Claeys, M. (1997). Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 11, 1357-1364.
Mai, F., \& Glomb, M. A. (2013). Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning. Journal of Agricultural and Food Chemistry, 61, 2868-2874.
Marin, A., Ferreres, F., Barberá, G. G., \& Gil, M. I. (2015). Weather variability influences color and phenolic content of pigmented baby leaf lettuces throughout the season. Journal of Agricultural and Food Chemistry, 63, 1673-1681.
Markham, K. R. (1982). Techniques of flavonoid identification. London: Academic Press Inc.
Pepe, G., Sommella, E., Manfra, M., De Nisco, M., Tenore, G. C., Scopa, A., ... Campiglia, P. (2015). Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; Var. Maravilla de Verano). Food Chemistry, 167, 153-161.
Ramirez-Ambrosi, M., Abad-Garcia, B., Viloria-Bernal, M., Garmon-Lobato, S., Berrueta, L. A., \& Gallo, B. (2013). A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-offlight mass spectrometry analytical strategy for fast analysis and improved
characterization of phenolic compounds in apple products. Journal of Chromatography A, 1316, 78-91.
Ribas-Agustí, A., Gratacós-Cubarsí, M., Sárraga, C., García-Regueiro, J. A., \& Castellari, M. (2011). Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection. Phytochemical Analysis, 22, 555-563.
Romani, A., Pinelli, P., Galardi, C., Sani, G., Cimato, A., \& Heimler, D. (2002). Polyphenols in greenhouse and open-air-grown lettuce. Food Chemistry, 79, 337-342.
Santos, J., Oliveira, M. B. P. P., Ibáñez, E., \& Herrero, M. (2014). Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage. Journal of

Chromatography A, 1327, 118-131.
Schütz, K., Carle, R., \& Schieber, A. (2006). Taraxacum-A review on its phytochemical and pharmacological profile. Journal of Ethnopharmacology, 107, 313-323.
Sobolev, A. P., Brosio, E., Gianferri, R., \& Segre, A. L. (2005). Metabolic profile of lettuce leaves by high-field NMR spectra. Magnetic Resonance in Chemistry, 43, 625-638.
Sofo, A., Lundegårdh, B., Mårtensson, A., Manfra, M., Pepe, G., Sommella, E., ... Scopa, A. (2016). Different agronomic and fertilization systems affect polyphenolic profile, antioxidant capacity and mineral composition of lettuce. Scientia Horticulturae, 204, 106-115.
Watson, R. R., Preedy, V. R., \& Zibadi, S. (2014). Polyphenols in human health and disease (1st ed.). San Diego: Academic Press.

[^0]: * Corresponding author.

 E-mail addresses: gviacava@fi.mdp.edu.ar (G.E. Viacava), sroura@fi.mdp.edu.ar (S.I. Roura), lomadianam@gmail.com (D.M. López-Márquez), luisangel.berrueta@ehu.eus (L.A. Berrueta), blanca.gallo@ehu.eus (B. Gallo), rosamaria.alonsosalces@gmail.com (R.M. Alonso-Salces).

[^1]: ${ }^{\text {a }}$ Fragment ions produced in MS were named according to Ma et al. (1997)
 quinic acid; Tartaric, tartaric acid; sh, shoulder.
 ${ }^{c}$ Abundances of the fragment ions of caffeoylquinic acids in the negative mode are given in parenthesis.

