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15 opment involves a myriad of factors, including genetic sus-
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17 marize new findings about current genome-wide association
18 studies on NAFLD. In addition, we used a strategy of func-
19 tional enrichment analysis to integrate all the newly discov-
20 ered loci into common biological pathways and to explore
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57Introduction

58Nonalcoholic fatty liver disease (NAFLD) is a liver disease
59that is prevalent worldwide. It develops from a complex
60process that involves a myriad of factors, including individual
61genetic susceptibility and particular environmental insults.
62Until a few years ago, our knowledge about the genetic
63components of NAFLD and nonalcoholic steatohepatitis
64(NASH), the more severe clinical form of NAFLD, was based
65on results from candidate gene association studies that identi-
66fied several loci associated with disease susceptibility and
67progression [1]. Although all of these studies were inspired
68by biological plausibility, only a few of them were replicated.
69A remarkable breakthrough in our understanding of the ge-
70netic susceptibility to NAFLD was however provided by
71findings from the first genome-wide association (GWAS)
72study on NAFLD done by the Dallas Heart Study in 2008 [2].
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73 Environmental factors, such as physical activity [3, 4] and
74 diet intervention [4–6], play an important role in the develop-
75 ment of NAFLD. Interestingly, evidence from human studies
76 have provided clues about how gene–environment interac-
77 tions modulated by epigenetic mechanisms impact not only
78 on the pathogenesis of NAFLD but also the modulation of
79 metabolic syndrome (MetSyn)-related phenotypes, including
80 insulin resistance (IR) [7••, 8].
81 Finally, although by definition NAFLD is characterized by
82 abnormal liver fat accumulation in the absence of significant
83 alcohol consumption and other causes of secondary hepatic
84 steatosis [9], evidence from clinico-epidemiologic [10], histo-
85 logic [11], and even in silico systems biology of the disease
86 [12] suggests that NAFLD and alcoholic liver disease (ALD)
87 share many disease determinants, including the same under-
88 lying genetic risk [13].
89 Hence, this review summarizes new findings about GWAS
90 on NAFLD and significant trends and developments on the
91 epigenetic component of the disease. In addition, controver-
92 sies about disease pathogenesis and management derived
93 from recent discoveries on gene variants are also discussed.

94 GWAS on NAFLD and Our Knowledge About Disease
95 Pathogenesis

96 The first GWAS on NAFLD was a genome-wide survey of
97 non-synonymous sequence variations encompassing 9229
98 single nucleotide polymorphisms (SNPs) in a multiethnic
99 population-based study [2]. The authors uncovered a signifi-
100 cant association of the patatin-like phospholipase domain
101 containing 3 (PNPLA3, also known as adiponutrin)
102 rs738409 C/G variant, encoding an amino acid substitution
103 (I148M) with liver triglyceride accumulation [2]. This associ-
104 ation remained significant even after adjusting for common
105 metabolic confounders such as obesity, diabetes status and
106 related risk factors of disease, such as ethanol use.
107 Soon thereafter, this finding was replicated, and the
108 PNPLA3-148 M allele was significantly associated with dis-
109 ease severity [14]. rs738409 is widely acknowledged as the
110 "NASH gene" because the association is largely replicated
111 around the world not only in adults but also in children [15].
112 Of note, the risk effect of rs738409 on developing fatty liver is
113 perhaps one of the strongest ever worldwide-replicated effect
114 for a common variant modifying the genetic susceptibility to a
115 complex disease (5.3 % of the total variance) [14]. In addition,
116 homozygous GG carriers have a 3.24-fold greater risk of
117 higher necroinflammatory scores and a 3.2-fold greater risk
118 of developing fibrosis when compared with homozygous CC
119 [15]. Interestingly, the genetic models do not seem to be
120 similar for liver fat and disease severity, and, at least for liver
121 fat deposition, the effect of the variant seems to be greater in
122 women than in men [15].

123The use of a GWAS strategy in the search for the genetic
124basis of NAFLD was followed by other reports that included
125different populations, study designs, sample sizes, and ap-
126proaches for the characterization of the main liver phenotype.
127For example, studies have been undertaken of female adults
128with NAFLD diagnosed by liver biopsy [16], of the heritabil-
129ity of hepatic steatosis at the population level with computed
130tomography (CT) [17], a combined approach of CT and
131alanine-aminotransferase (ALT) levels as a surrogate of dis-
132ease severity [18], and exploration of the genetic risk in Asian-
133descent patients [19, 20].
134It is important to highlight that the coverage of SNPs by the
135above-mentioned GWA studies was not uniform in terms of
136the explored variants. In addition, it varied from a GWAS
137analysis of 12,138 non-synonymous sequence variations from
138dbSNP and the Perlegen SNP database [2] to commercial
139platforms, such as HumanCNV370-Quadv3 BeadChip (cov-
140erage: 373,397 SNPs) [16] or Illumina Human 610-Quad
141BeadChip (coverage: 484,751 SNPs), meta-analysis and
142GWAS association data of large consortiums that used the
143Affymetrix 6.0 or Illumina platform [17], and imputed SNPs
144[18].
145Finally, the GWAS strategy has also been used to explore
146the genetic locus that influences liver enzyme levels in the
147population, including ALT [21, 22]. A summary of the latest
148GWAS on NAFLD and ALT levels is depicted in Fig. 1.
149Surprisingly, the most significant findings are on chromosome
15022 at PNPLA3 loci, and rs738409 is still the most consistently
151replicated variant associated with fatty liver, disease severity,
152and associated traits, such as ALT levels. Likewise, rs738409
153is consistently associated with NAFLD across different pop-
154ulations [15, 23, 24].
155Hence, a number of questions emerge from these results.
156For instance, we may wonder whether these findings are an
157indication that the genetic risk of NAFLD is so far explained
158by a single common variant with a minor allele risk frequency
159of ~30 %. If so, do the findings fit the concept that NAFLD,
160like many other common complex diseases, including type 2
161diabetes or obesity, is a complex trait influenced by the effect
162of multiple gene variants. The answer is a definitive yes and
163that, although the effect size of the variant is one of the biggest
164ever observed for a common SNP, a significant proportion of
165the heredity of the trait is missing. The question remains
166whether carriers should be closely monitored for serious com-
167plications of NASH, such as hepatocellular carcinoma [25].
168Alternatively, we might wonder whether or not rare vari-
169ants have a place in the genetic predisposition to NAFLD. In
170this sense, NAFLD, at least up to now, differs from other
171complex diseases in that no truly monogenic forms (patients
172with rare genetic variants with penetrance high enough to
173explain the phenotype) have been described. Unfortunately,
174there are no data about variants with a minor allele frequency
175of less than 1 % influencing the susceptibility to NAFLD.
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176 However, a recent study that did whole-exome sequencing of
177 five loci associated with NAFLD on a small sample of patients
178 with extreme obesity (BMI >50) andNAFLD-related cirrhosis
179 showed that one of four patients was compound heterozygous
180 for putatively rare damaging mutations in PNPLA3 [26].
181 Conversely, Cefalu et al. used exome sequencing to discover
182 a novel nonsense mutation in exon 26 of APOB (p.K2240X)
183 responsible for a low cholesterol and fatty liver in a large
184 kindred with familial hypobetalipoproteinemia in which fatty
185 liver is a common feature. This mutation may also be respon-
186 sible for cirrhosis and liver cancer in this family [27].
187 Another important question that remains under investiga-
188 tion is the unknown role of non-PNPLA3-NAFLD-GWAS-
189 associated variants in the modulation of disease. One may
190 wonder whether or not they have a biological connection
191 either with each other or with the disease. To answer this
192 question, we used a strategy for functional enrichment analy-
193 sis based on an algorithm that weighs among other options,
194 gene ontology and the underlying biological process to predict
195 in silico a network among the input genes/proteins
196 (GeneMANIA [28]. This strategy not only predicts informa-
197 tion about co-expression, physical protein and genetic

198interaction, co-localization, and common pathways among
199input genes/proteins, but also extends the list to functionally
200similar genes. The analysis shows that seven new predicted
201genes/protein, including GYS1 (glycogen synthase 1, mus-
202cle), GYS2 (glycogen synthase 2, liver), PHKG1 (phosphor-
203ylase kinase gamma 1, muscle), PHKG2 (phosphorylase ki-
204nase gamma 2, testis), PHKB (phosphorylase kinase beta),
205PHKA1 (phosphorylase kinase alpha 1, muscle), and PHKA2
206(phosphorylase kinase alpha 2, liver) were significantly asso-
207ciated with biological pathways that included the glycogen
208and glucan metabolic process (a series of chemical reactions
209involving glucans, polysaccharides consisting only of glucose
210residues) and polysaccharide and carbohydrate metabolism
211(Table 1).
212Table 1 provides detailed information about the interrelated
213biological functions of the NAFLD-GWAS-associated genes.
214Surprisingly, PNPLA3 does not show either genetic interac-
215tion, biological pathways, or a shared protein domain with any
216of the input or newly predicted genes. Indeed, the family of
217patatin-like phospholipases consists of glycoproteins that ac-
218count for up to 40 % of the total soluble protein in potato
219tubers [29]. Remarkably, besides the phospholipase activity,

Fig. 1 GWAS on NAFLD: Summary representation of variants signifi-
cantly associated with NAFLD, NASH, and plasma levels of alanine-
aminotransferase (ALT). The illustration resembles a Manhattan plot,
with the x-axis denoting the genomic coordinates and chromosome
localization of significantly associated SNPs and the y-axis representing
the p-value for the association. LYPLAL1 (lysophospholipase-like 1),
GCKR (glucokinase (hexokinase 4) regulator), COL13A1 (collagen, type
XIII, alpha 1), PPP1R3B (protein phosphatase 1, regulatory subunit 3B),

ERLIN1 (ER lipid raft-associated 1), EFCAB4B (EF-hand calcium-bind-
ing domain 4B), NCAN (neurocan), PARVB (parvin, beta), PNPLA3
(patatin-like phospholipase domain containing 3), SAMM50 (sorting and
assembly machinery component 50 homologue (S. cerevisiae), LTBP3
(latent transforming growth factor beta binding protein 3), FDFT1
(farnesyl-diphosphate farnesyltransferase 1), CPN1 (carboxypeptidase
N, polypeptide 1)
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220 patatin is an inducible storage protein. The protein encoded by
221 the PNPLA3 gene is an intracellular multifunctional enzyme
222 that has both triacylglycerol lipase and acylglycerol O-
223 acyltransferase activities [30] and shares domain and protein
224 function with other members of the PNPLA family [31]. The
225 protein has the serine lipase consensus motif GXSXG/A [32],
226 which might have a role in the modulation of PNPLA3 by
227 posttranslational modifications, including protein phosphory-
228 lation. In fact, PNPLA3 has many sites, including 21 Ser, 5
229 Thr, and 2 Tyr, with a high potential to be phosphorylated
230 [33], being 134S close to the polymorphic I148M site. How-
231 ever, in spite of previous efforts, the functional meaning of the
232 I148M variation remains to be established [31, 34–38].

233 GWAS on NAFLD and Translation of the Genomic
234 Information into Clinical Practice

235 Whether or not the significant association between rs738409
236 and NAFLD and disease progression might be translated into
237 clinical practice in terms of personalized medicine remains an
238 open question. In such a scenario, it should be possible to
239 make an individual risk assessment, and then the physician
240 might be able to tailor a medical intervention (liver biopsy or
241 disease therapy) based on the PNPLA3 profile of the patient.
242 Unfortunately, despite the enormous enthusiasm for
243 rs738409, current evidence shows that the role of the variant

244in predicting disease risk is not significantly improved com-
245pared with existing biomarkers of disease severity. For exam-
246ple, Kotronen and coworkers evaluated the performance of
247this SNP in predicting NAFLD by combining routine clinical
248and laboratory data and the rs738409 genotypes and observed
249a sensitivity of 86% and a specificity of 71% in the estimation
250of increased liver fat content [39]. Surprisingly, the addition of
251genetic information to the score improved the accuracy of the
252prediction by <1%. Likewise, Francque et al. explored a set of
253routine and non-routine parameters, including ultrasound and
254genetic testing to predict the development of NASH in over-
255weight or obese patients [40]. The authors observed that
256increased levels of ALT, fasting levels of C-peptide, and
257ultrasound steatosis scores had area under the receiver oper-
258ating curve (AUROC) values of 0.854 and 0.823 for NASH
259development in the design and validation cohort, respectively
260[40]. In addition, the authors observed that although the levels
261of cytokeratine18 and rs738409 correlated with the develop-
262ment of NASH, these did not add value to disease risk pre-
263diction [40]. Similarly, a recent study in a cohort of patients
264with medically complicated obesity showed that the probabil-
265ity of developing NASH was best predicted by a combination
266of four risk factors (the rs738409 G allele, CK-18 >145 IU/l,
267glucose >100 mg/dl, and C-reactive protein (CRP) >0.8 mg/
268dl): 82 % probability in the presence of all four risk factors
269versus 9 % in their absence) [41].
270In conclusion, the incorporation of genetic tests in clinical
271practice is not that much more promising than the consider-
272ation of traditional and non canonical risk factors, which,
273when combined properly, have good predictive power [42,
27443]. By contrast, following their observation that carriers of
275the GG genotype showed a twice higher independent risk for
276mortality, Hassan et al. reported that rs738409 may help
277predict poor survival and outcome of hepatocellular carcino-
278ma [44]. Nevertheless, the importance of rs738409 in risk
279prediction remains unclear because, in the same cohort [44],
280other significant risk factors, including viral infection (HCV
281and HBV) and diabetes mellitus, also had significant predic-
282tive value. Indeed, because of the small effect associated with
283common variants, similarly to other complex diseases, genetic
284markers are still poor predictors [38].
285Hence, the role of rs738409 in clinical decision making
286remains uncertain because there are no data to support that
287interventions should be restricted to carriers of the risk allele.
288In addition, clinicians who consider having their patients
289genotyped for the PNPLA3 variant should carefully consider
290what type of information or recommendation could be
291returned to their patients, or the parents in the case of a
292pediatric population, because we do not yet have evidence
293as to whether patients carrying the risk variant will have a poor
294prognosis or even poor treatment response to any therapy. The
295bottom line is that to have an impact on predictive power, any
296variant should confer an odds ratio or risk of having the

t1:1 Table 1 Functional association analysis of protein and genetic interac-
tions focused on genes associated with NAFLD in current GWAS studies

t1:2 Function FDR Coverage

t1:3 Glycogen metabolic process 3.01E-9 7 / 43

t1:4 Glucan metabolic process 3.01E-9 7 / 44

t1:5 Cellular glucan metabolic process 3.01E-9 7 / 44

t1:6 Cellular polysaccharide metabolic process 8.99E-9 7 / 53

t1:7 Polysaccharide metabolic process 1.79E-8 7 / 60

t1:8 Cellular carbohydrate metabolic process 3.76E-8 8 / 120

t1:9 Cellular polysaccharide catabolic process 1.09E-7 5 / 18

t1:10 Glycogen catabolic process 1.09E-7 5 / 17

t1:11 Glucose metabolic process 1.09E-7 8 / 144

t1:12 P catabolic process 1.09E-7 5 / 18

t1:13 Glucan catabolic process 1.09E-7 5 / 18

t1:14 Hexose metabolic process 2.12E-7 8 / 162

t1:15 Monosaccharide metabolic process 5.63E-7 8 / 185

t1:16 Energy reserve metabolic process 2.86E-6 7 / 141

t1:17 Cellular carbohydrate catabolic process 6.84E-6 5 / 41

t1:18 Energy derivation by oxidation
of organic compounds

2.76E-4 7 / 279

t1:19 Single-organism carbohydrate
catabolic process

4.17E-4 5 / 94

t1:20 Carbohydrate catabolic process 4.61E-4 5 / 97

Prediction of gene-associated functions was done by using the bioinfor-
matic resource GenMANIA [28]. The input genes are illustrated in Fig. 1
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297 disease of >10-200. Even in the best scenario and after com-
298 bining many variants, such odds ratio may be reached. How-
299 ever, this would benefit a very small proportion of patients, at
300 least in the absence of epistasis (a genetic interaction among
301 the variants), a phenomenon that remains largely unexplored.

302 Epigenetic Changes, the Pathogenesis of NAFLD
303 and MetSyn, and Potential Reversion of the Phenotype
304 by Therapeutic Intervention

305 Epigenetic modifications have emerged as important mecha-
306 nisms that modulate the pathogenesis of common diseases,
307 including NAFLD, and present a potential explanation for the
308 missing heredity. The main reason for this observation is that
309 epigenetic changes are able to operate across the entire ge-
310 nome by regulating gene transcription and chromosome orga-
311 nization without affecting, by definition, the DNA sequence
312 itself. More interestingly, epigenetic mechanisms are both
313 highly regulated by environmental stimuli, including nutri-
314 tional status, and highly dynamic.
315 One of the most common epigenetic modifications is DNA
316 methylation, which occurs preferentially but not exclusively
317 in the cytosine of the dinucleotide CpG. In normal conditions,
318 the notable exceptions are the CpG-rich islands (regions typ-
319 ically 300–3000 bp in length with a high percentage content of
320 CpG and C/G) present in the 5'- untranslated regions (5' UTR
321 or promoters) of some genes. Nevertheless, epigenetic chang-
322 es are not restricted to DNA methylation but also involve
323 histone posttranslational modifications [45]. Therefore, al-
324 though a comprehensive discussion of this issue is outside
325 the scope of this review, it should be mentioned that many
326 actors play a role in the epigenetic landscape; for example,
327 DNA methyl transferases (DNMTs) and demethylases (TET
328 and jumonji-domain protein families), and histone acetylases
329 (HAT), deacetylases (HDAC), methylases, and demethylases
330 [46].
331 Although epigenetics has attracted the genomic world in
332 the last couple of years, the research agenda around NAFLD
333 and epigenetics is very short, and our knowledge about epi-
334 genetic changes in human NAFLD is restricted to four studies.
335 Our group showed the effect of epigenetic changes occurring
336 in the fatty liver on the modulation of IR [8]. Further, we
337 observed that the methylation status of the peroxisome
338 proliferator-activated receptor gamma coactivator 1α
339 (PPARGC1A) promoter is significantly associated with plas-
340 ma fasting insulin levels and the homeostasis model assess-
341 ment of IR (HOMA-IR) [8]. In addition, the methylation
342 status of the PPARGC1A promoter was inversely correlated
343 with the liver expression of the mRNA, suggesting that meth-
344 ylation of the explored CpG sites in the gene promoter effi-
345 ciently repressed its transcriptional activity [8]. We also ob-
346 served a complex interaction between the transcriptional ac-
347 tivity of PPARGC1A and liver mitochondrial DNA copy

348number, which also had a direct impact on IR [8]. In our
349population, we showed that mitochondrial biogenesis was
350reduced in the liver of NAFLD patients and was associated
351with the peripheral IR and PPARGC1A promoter methylation
352status. A similar finding was observed in an experimental
353model of NAFLD [47]. It is worth noting that PPARGC1A is
354a master regulator of mitochondrial biogenesis and cell me-
355tabolism [48, 49]. Interestingly, many of these results were
356also observed in leukocyte DNA from adolescents [50] and
357umbilical cord DNA from small and large for gestational age
358in comparison with normal for gestational age newborns [51,
35952]. Both extremes of fetal growth have been associated with
360MetSyn later in life, probably through epigenetic
361reprogramming of developmental and metabolism pathways
362[53].
363An interesting study explored the pre- and post-bariatric
364changes in the methylation profile of nine genes coding for
365enzymes that regulate intermediate metabolism and insulin
366signaling in the liver of morbidly obese patients with NAFLD
367[54•]. The most remarkable finding of this study is that
368NAFLD-associated methylation changes were partially re-
369versible by therapeutic intervention; for instance, the gene
370encoding protein-tyrosine phosphatase epsilon (PTPRE)
371showed both differential expression and differential methyla-
372tion before and after bariatric surgery [54•]. Moreover, the
373authors observed that the insulin-like growth factor binding
374protein 2 (IGFBP2) locus was hypermethylated and its
375mRNA downregulated in NASH [54•].
376Murphy and colleagues, who recently did global methyla-
377tion profiling of liver samples of NAFLD patients at different
378stages of disease severity by using the Illumina
379HumanMethylation450 BeadChip platform, observed that pa-
380tients with advanced NAFLD had a signature of differentially
381methylated CpG sites that allow discrimination between ad-
382vanced versus mild disease [55•]. Indeed, the authors showed
383that advanced NAFLD has a relative hypomethylation state
384(11 % of 52,830 CpG sites) compared with mild NAFLD,
385specifically in genes associated with tissue repair; for instance,
386FGFR2 (a fibroblast growth factor receptor family member),
387genes of the collagen (COL1A1, COL1A2, COL4A1, and
388COL4A2) and laminin families, and many chemokines [55•].
389Of note, genes involved in pathways that generate methyl
390groups, including methylenetetrahydrofolate dehydrogenase
3912 (MTHFD2) were significantly hypomethylated in advanced
392NAFLD [55•].
393Finally, we recently described a novel disease mechanism
394associated with NAFLD progression that involves epigenetic
395changes of mitochondrial DNA (mtDNA) [7••]. In our study,
396we explored for the first time the status of cytosine methyla-
397tion of liver mtDNA in target regions of the mtDNA genome.
398We observed that the methylation levels of NADH dehydro-
399genase 6 (MT-ND6), the gene that encodes for a key enzyme
400of complex 1 of the oxidative phosphorylation chain, were
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401 higher in the liver of NASH patients and that there was a clear
402 decrease in the protein level and changes in mitochondrial
403 morphology, suggesting that the methylation status of this
404 mitochondrial gene plays a role in the phenotypic switching
405 from SS to NASH [7••]. To contrast with the hypothesis that
406 epigenetic modifications might be reversible by intervention,
407 we also explored whether the observed changes were associ-
408 ated with interventional programs. We observed that physical
409 activity modulates the methylation status of MT-ND6 [7••].
410 In summary, epigenetics emerged as an interesting target of
411 therapeutic intervention in chronic human diseases because it
412 offers a unique framework of reversible mechanisms that
413 modulate the cellular transcriptional machinery.

414 MicroRNAs and Modulation of the Transcriptional
415 Machinery: Potential Epigenetic Modifiers in NAFLD
416 by Fine-Tuning Modulation of Gene Transcription

417 MicroRNAs (miRNAs) are short noncoding RNAs that regu-
418 late gene expression at the posttranscriptional level. MiRNAs
419 have emerged as powerful molecules in the transmission of
420 information between cells. Moreover, genetic variation at the
421 3'-UTR gene containing a binding site for miRNAs has been
422 associated with the regulation of gene transcription in human
423 studies. For example, we observed that rs41318021 in the 3′-
424 UTR of the human L-arginine transporter SLC7A1 was sig-
425 nificantly associated with arterial blood pressure in patients
426 with NAFLD, suggesting a promising role for miRNAs in the

427epigenetic regulation of disease-associated traits in NAFLD
428patients [56].
429Table 2 summarizes the results of human studies that have
430explored the expression of miRNAs either in circulation or in
431liver tissue. As expected, miRNA-122, the most abundant
432miRNA in the liver, is the most largely replicated miRNA
433deregulated in NAFLD; however, the mechanisms by which
434this miRNA operates in the modulation of the disease severity
435remain unclear. Evidence from in vitro silencing of miRNA-
436122 shows a time-regulated increase/decrease in the mRNA
437levels of lipogeneic genes, suggesting that miR-122 may
438operate by posttranslational regulation of mRNA maturation
439[61].
440The exploration of enriched disease-associated pathways
441among miRNAs significantly deregulated in NAFLD by the
442bioinformatic resource TAM (a tool for annotation of human
443miRNAs; http://202.38.126.151/hmdd/tools/tam.html/)
444shows that miRNAs 122, 19a.b, 34a, and 21 are involved in
445the regulation of angiogenesis (p value<0.00004, Bonferoni p
446<0.014).
447Finally, we used the resource DIANA-miRPath v2.1
448(http://diana.imis.athena-innovation.gr/DianaTools/) to
449identify common disease pathways associated with the
450miRNAs mentioned in Table 2. Interestingly, we found a
451significantly predicted pathway associated with cancer
452(empirical p value=3.0 E-7, false discovery correction)
453involving four miRNAs (hsa-miR-122-5p, hsa-miR-192-5p,
454hsa-miR-375, and hsa-miR-146b-5p) and targeting 46 genes,
455which might explain the role of the discovered miRNAs

t2:1 Table 2 Role of miRNAs in human NAFLD: results from clinical studies about circulating and tissue expression

t2:2 Reference Study design and sample size miRNA: main findings

t2:3 Circulating miRNA

t2:4 Cermelli et al. 2011 [57] Observational study on patients with NAFLD
proven by liver biopsy, no controls

N=34

miR-34a and miR-122 represent noninvasive
biomarkers for diagnosis and histologic
disease severity

t2:5 Yamada et al. 2013 [58] Population based, fatty liver explored by
ultrasound scan

N=430

miR-21, miR-34a, miR-122, and miR-451
were higher in participants with NAFLD

miR-122 was correlated with severity of
liver steatosis

t2:6 Min et al. 2012 [59] Case-control study
N=66

miR-34a increased in NAFLD

t2:7 Pirola et al. 2013 [60] Case-control, 3 study phases (validation, replication,
and tissue correlation), patients with NAFLD
proven by liver biopsy

N=209

miR-122, miR-192, miR-19a/b, and miR-375
increased in NAFLD and predict histologic
disease severity

t2:8 Liver expression of miRNA

t2:9 Cheung et al. 2008 [61] Case-control study
N=50

miR-122 level was significantly decreased in
subjects with NASH.

miR-34a and miR-146b levels were significantly
increased in subjects with NASH

t2:10 Pirola et al. 2013 [60] Case-control, patients with NAFLD proven by
liver biopsy

N=65

miR-122 level was 10-fold decreased in subjects
with NASH.
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456 associated with NAFLD in the progression of the disease and
457 hepatocarcinogenesis. Interestingly, many of the predicted
458 targets of these miRNAs have been shown to be dysregulated
459 in NASH versus simple steatosis [62].

460 Conclusions

461 & rs738409 is the most consistently replicated SNP world-
462 wide that influences the genetic risk of NAFLD and
463 disease progression.
464 & GWAS on NAFLD around the world have replicated the
465 PNPLA3 signal and uncovered new gene variants, for
466 which replication and functional analysis are needed to
467 better understand their role in the pathogenesis of
468 NAFLD.
469 & The incorporation of genetic testing into clinical practice
470 for predicting NAFLD progression or determining disease
471 intervention remains incipient; large and well-conducted
472 clinical trials are needed to determine its real advantage
473 and performance in comparison with classical (ALT, CK-
474 18, etc.) noninvasive biomarkers, algorithms including
475 simple clinical characteristics, or the gold standard (liver
476 biopsy).
477 & Epigenetic changes are promising molecular mecha-
478 nisms for explaining disease pathogenesis. The dy-
479 namic nature of epigenetic modifications is an at-
480 tractive target for therapeutic intervention because of
481 the potential reversibility of the liver changes ob-
482 served in NAFLD after physical activity or bariatric
483 surgery and even after the administration of existing
484 drugs or natural compounds. Mitochondrial epige-
485 netics has emerged as an interesting mechanism for
486 explaining disease transition from simple steatosis to
487 NASH.
488 & Noncoding miRNAs are deregulated in the circulation and
489 in the liver of NAFLD patients and might explain the
490 predisposition to liver cancer.
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