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bstract

An experimental mixture design coupled with data analysis by means of both response surface methodology (RSM) and artificial neural networks
ANNs) followed by multiple response optimization through a desirability function, was applied to the production of �-endotoxins from Bacillus
huringiensis var. kurstaki. The composition of a culture medium was defined by testing three regional effluents: milky effluent, beer wastewater and

ugar cane molasses. Both RSM and ANNs accomplished the goal pursued in this work, by predicting the optimal mixture of the effluents. ANNs
rovided more reliable results due to the complexity of the models to be fitted. The optimal selected blend was: 74%, 26% and 0%, respectively
or each the above-mentioned effluents.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The use of biological agents is a convenient strategy for
rban, agriculture and forestry plague control. Different strains
f Bacillus thuringiensis (Bt) are commonly employed, which
s the most popular microorganism, with the 90% of the biopes-
icides world market [1,2]. Bt is a Gram-positive, aerobic,
pore-former bacterium, with the ability to produce, during
he sporulation phase, parasporal crystals named �-endotoxins.

hese crystals are formed by proteins which possess the inter-
sting quality of being toxic only against target insects [3].
arasporal crystals and spores of Bt var. kurstaki constitute the
ctive principle of commercially available products for the con-
rol of many lepidopteran larvae in agriculture and forestry [4,5].
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he mechanism of action involves the solubilization of paraspo-
al crystals and the activation of the released proteins in the target
nsect midgut. Then the active toxin links to specific cell recep-
ors and forms channels trough the cell membrane. It causes the
ell death and finally the insect death. In addition, the spores
resent in the product formulation can germinate, forming more
t cells that contribute to kill the insect target and to maintain

he infection in field [3].
The Bt industrial production for commercial purposes is

ainly done by submerged fermentation processes. The cost
f components employed in industrial fermentation media
or Bt biopesticide production is 45% of the overall cost of
he raw materials employed [1]. From an economical point
f view, different alternative production processes have been
escribed as promising: solid substrate fermentation [6,7], cul-
ure supernatant re-cycle [8] and effluents employment [9,10].

he latter alternative also generates a new concept on the eco-

ogical impact: the possibility of producing a useful biopesticide
ogether with the effluent treatment [11,12]. Indeed, several
orks have shown that Bt could be isolated at high frequency
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rom effluents [13,14]. Besides, different kinds of effluents have
uccessfully been employed as culture media for Bt biopesti-
ides production [9,15,16].

There are a large number of techniques available to design
ulture media. They can vary from the traditional one-variable-
t-a-time method [17,18] to more complex statistical and
athematical techniques involving experimental designs such

s full and partial factorials, Plackett-Burman, Hadamard matrix
nd central composite designs [19–21], followed by optimiza-
ion techniques such as response surface methodology (RSM),
rtificial neural networks (ANNs), fuzzy logic, genetic algo-
ithms (GA) [22–26] and particle swarm optimization (PSO)
27,28], among others. An interesting review of the strategies
sed in the optimization of fermentation media can be found
n the literature [29]. Regrettably, no multipurpose technique is
nown to be applicable to all situations. Consequently, some-
imes it becomes necessary to screen several approaches to find
he one which provides the best result in a particular case.

The aim of this work was to define the composition of a
ulture medium by testing three regional effluents which present
igh economical impact: milky effluent, beer wastewater and
ugar cane molasses, through a mixture design. Remarkably, this
lass of designs is seldom used for fermentation optimization,
lthough it has been commonly employed in other areas such as
ndustrial, chemical, engineering, agricultural and food sciences.
owever, mixture designs have proved to be very efficient in
iological sciences [30,31]. On the other hand, the rational Bt
edia optimization was only aimed for classical media culture,

pplied in lab scale [32,33].
The goals herein pursued were to maximize the quantity of

arasporal crystals and spores, while minimizing the remain-
ng vegetative cells in batch culture of Bt var. kurstaki HD-1
y using multiresponse optimization. Three regional effluents
ere tested: milky effluent, beer wastewater and sugar cane
olasses. The latter one is a by-product of sugar refinery, com-
only employed as carbon source in culture media used for
any industrial fermentation. On the other hand, milky efflu-

nt and beer wastewater are industrial wastes with considerable
iochemical oxygen demand. Previous results in our group have
hown these effluents as promising ingredients for Bt culture
edium (data not published).
Both RSM and ANNs approaches were tested to deal with the

roblem of formulating the culture medium. To the best of our
nowledge, ANNs have generally been applied to fermentative
rocesses monitoring, but not for culture media optimization for
he microorganism herein studied [34–37]. In addition, no appli-
ations of ANNs have been published neither for optimization of
xperimental mixture designs nor for multiresponse optimiza-
ion. As will be shown, both RSM and ANNs accomplished the
oal pursued in this work by predicting the optimal mixture of
he effluents. Probably due to the complexity of the models to
e fitted, ANNs provided more reliable results.
. Theory

Two approaches were tested in order to find the optimal pro-
ortion of all components (effluents) in the culture medium: (a)

n
o

e
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tting a polynomial model trough the response surface method-
logy, and (b) application of ANNs. In both circumstances,
ultiple response optimization through the desirability function
as performed.

.1. Fitting a polynomial model

The polynomial used in the present work has some terms
odified from the complete polynomial expression generally

sed in RSM. It allows to eliminate the constraint originated in
he correlated variables, and was introduced by Scheffé in 1963
38]. Eq. (1) shows the canonical form of the special cubic model
hich corresponds to a linear or a quadratic model if only a part
f it is used for the fitting:

=
q∑

i=1

βixi +
∑ ∑

βijxixj +
∑ q∑

i<j<k

∑
βijkxixjxk (1)

here the parameter βi represents the expected response to the
ure mixture xi = 1, xj = 0, j �= i. The term given by y = ∑q

i=1βixi

epresents the response when blending is strictly additive, and
here are no interactions among the components of the mix-
ure, i.e., the linear model. The term βijxixj represents the excess
esponse over the linear model due to the interaction between
wo components, and this effect is often called synergism (or
ntagonism). The cubic term βijkxixjxk, accounts for the effect
f ternary blending among the components in the interior of the
implex [39].

.2. Application of ANNs

The ANN modelling is a powerful chemometric tool for pro-
essing information, which simulates some properties of the
uman brain, especially developed to model non-linear data. The
o-called multilayer feed-forward networks [40,41] are often
sed for prediction as well as for classification. In the present
ork we used ANNs that consist of three layers of neurons or
odes, which are the basic computing units: the input layer with
number of active neurons corresponding to the predictor vari-
bles in regression, and one hidden layer with a number of active
eurons. The input layer corresponds to the number of studied
actors and the hidden layer number is optimised during training.
he output layer has just one unit. The neurons are connected in
hierarchical manner, i.e., the outputs of one layer of nodes are
sed as inputs for the next layer and so on. In the hidden layer
he sigmoid function f(x) = 1/(1 + e−x) is used, and the output of
he hidden neuron j, Oj, is calculated as

j = f

[
m∑

i=1

(siwij + wbj)

]
(2)

In Eq. (2) si is the input from neuron i in the layer above, to
euron j in the hidden layer, wij the connection weights between

eurons i and j, wbj the bias to neuron j and m is the total number
f neurons in the layer above.

Linear functions are used both in the input and output lay-
rs. In the present work, learning is carried out through the
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ack-propagation rule [40]. The number of hidden layers and
f neurons in each hidden layer must be selected to achieve a
atisfactory fitting ability of the network, associated to a satisfac-
ory predictive ability. If the number of hidden layers or neurons
n the hidden layer(s) is too high, the network – although it will
each a great modelling ability – will lose the ability to generalise
nd to predict. This is known as overfitting.

It is important to stress that ANNs trained with this rule have
remarkable advantage: there is no need to know the exact

orm of the analytical function on which the model should be
uilt. Furthermore, neither the functional type nor the number
f parameters in the model need to be given [40]. This is the
ain difference from the RSM, which requires fitting one of the
odels presented in Eq. (1).

.3. Multiresponse optimization

The responses predicted by RSM or ANNs are used for gen-
rating a function that assigns a value ranging from 0 to 1 to
ach mixture of compounds. This function, referred to as par-
ial desirability function for the response i (di) [42,43], would be
qual to 0 when the predicted response does not fulfil the prede-
ned requirements, and 1 when the predicted value completely
atisfies them. The methodology consists in building one- or
wo-sided functions, which depend on whether each of the m
esponses has to be maximized or minimized, or has an allot-
ed target value. The procedure involves creating a function for
ach individual response di and finally obtaining a global func-
ion D that should be maximized choosing the best conditions
f the designed variables. When the goal is a maximum, the
esirability curve will be defined by the Eq. (3):

i =
[

Yi − Lowi

Highi − Lowi

]wti

, Lowi < Yi < Highi (3)

here Yi is the predicted response using the fitted model (Eq.
1)), Highi and Lowi are the highest and the lowest values
btained for the response i respectively and wti is the weight.
eights give emphasis to upper or lower bounds, or to a target

alue. With a weight of 1, the di will vary from 0 to 1 in a lin-
ar way while approaching to the desired value. Weights greater
han 1 give more emphasis to the goal, whereas weights lower
han 1 give less emphasis to the goal (in both cases, di varies in
non-linear way).

On the other hand, if the goal is a minimum, the desirability
s defined as Eq. (4):

i =
[

Highi − Yi

Highi − Lowi

]wti

(4)

Alternatively, for goal as a target, the desirability ramps are
reated like a maximum on the way up, and a minimum on the
ay down. Finally, for a goal within a range, the desirability will
e defined by the following equations:
i = 0 for Yi ≤ Lowi (5)

i = 1 for Lowi < Yi < Highi (6)

B
t
a
(
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In the present report we chose weights equal to 1 for all the
ve responses.

The di functions are then combined to obtain a global desir-
bility function D, which should be maximized choosing the
est conditions of the designed variables. This function can be
epresented by Eq. (7):

= (dr1
1 × dr2

2 × dr3
3 )1/

∑i=3
i=1

ri (7)

here D is the value of the global desirability function, d1,
2 and d3 are the partial desirability functions computed for
ach response and ri is the relative importance assigned to each
esponse. Relative importance ri is a comparative scale for allot-
ing emphasis to each di in the expression of the function D.

Finally, the mixture of the three effluents that predicts the
ighest value of D is selected as the best blend of components
o be present in the culture medium being developed.

. Materials and methods

.1. Bacterial strain

Bt var. kurstaki HD-1 was used in this study. It was kindly pro-
ided by Dra. Graciela Benintende, IMYZA, Instituto Nacional
e Tecnologı́a Agropecuaria, Argentina. The bacterial strain was
rown on Tryptic Soy Agar slants (Britania, Argentina) and
tored at 4 ◦C.

.2. Substrates and culture media design

Sugar cane molasses, reduced-fat milk and beer wastew-
ter were employed as substrates. A volume of sugar cane
olasses (Melrico, Argentina) was suspended in demineralised
ater in order to obtain a 30◦ Brix suspension. A suspension of
.624 g L−1 of powder reduced-fat milk (Nestle, Argentina) in
emineralised water was employed as milky effluent substitute.
t is equivalent to 1915.5 mg L−1 of biochemical oxygen demand
44]. Beer wastewater was collected at the inlet of a beer wastew-
ter treatment plant at Compañı́a Industrial Cervecera, Santa
e, Argentina. This effluent had a chemical oxygen demand of
473 mg L−1; pH 10.2 and suspended solids of 1.0 mg L−1.

Effluents proportion was analysed by using a simplex lattice
3, 2} augmented with the overall centroid and axial points. This
esign has 10 points, with four of these points in the interior
f the simplex [45]. Additional replicates and a random point
ere added in order to increment the number of experiments for
odelling purposes (see Table 1). A control culture was done

mploying TSB as culture medium.

.3. Inoculum preparation and culture conditions

A loopful of stored slants was used to inoculate 250 mL Erlen-
eyer flasks containing 20 mL of sterilized TSB (Tryptic Soy

roth, 30 g L−1; Britania, Argentina). After 4 days of incuba-

ion on a rotary shaker at 200 rpm (shaking diameter 20 mm)
nd 30 ± 1 ◦C, the biomass was harvested by centrifugation
3000 × g for 15 min). The supernatant was discarded and the
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Table 1
Experimental design (simplex lattice mixture) used to optimize the parasporal crystal production and responses obtained

Run Volume (mL) Concentration (×106 mL−1)

Artificial milky effluent Beer wastewater Sugar cane molasses Parasporal crystals Spores Remaining cells

1 20.0 0.0 0.0 3.5 (0.6) 16.1 (2.9) 2.6 (0.8)
2 0.0 0.0 20.0 58.9 (8.2) 58.4 (4.4) 25.8 (7.2)
3 6.7 6.7 6.7 10.1 (2.3) 25.2 (2.3) 2.9 (0.9)
4 3.3 3.3 13.3 40.9 (7.3) 20.7 (5.4) 59.9 (8.9)
5 0.0 20.0 0.0 25.6 (3.0) 21.3 (4.0) 11.2 (2.4)
6 13.3 3.3 3.3 247.0 (20.0) 77.6 (9.0) 4.6 (12.0)
7 0.0 10.0 10.0 3.8 (0.9) 2.8 (1.8) 3.1 (0.8)
8 10.0 10.0 0.0 5.8 (0.9) 13.1 (4.4) 9.4 (2.0)
9 3.3 13.3 3.3 4.3 (0.7) 8.8 (1.1) 2.8 (1.4)
10 6.7 6.7 6.7 22.6 (5.1) 43.8 (6.3) 4.1 (1.7)
11 0.0 0.0 20.0 73.3 (12.7) 116.0 (12.0) 104.0 (17.0)
12 10 0.0 10.0 4.8 (1.0) 6.2 (0.5) 6.2 (0.7)
1
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alues in parenthesis are standard deviations of measurements.

ellet was suspended in 2.6 mL of PBS (phosphate buffer saline:
H2PO4 0.6 g L−1, Na2HPO4 0.78 g L−1, NaCl 8.8 g L−1; pH
.3). This suspension contained 1.6 × 109 spores mL−1. A
.2 mL of this suspension was employed to inoculate 250 mL
rlenmeyers flasks, each containing 20 mL sterilized (121 ◦C,
5 min) designed medium as described above. The pH of each
ixture was previously adjusted to 7.00. The flasks were incu-

ated as the inoculum flask, for 4 days. After this incubation
eriod, samples of each culture were drawn for parasporal crys-
als, spores and remaining cells count. These culture setting
alues (i.e., shaking speed and volume culture to volume flask
atio) were previously optimised in our laboratory. In this way,
e are confident that sufficient oxygen transfer rate and mixing

onditions for each mixture are obtained. Also, the harvest of
he culture at fourth day, allow a complete growth and differenti-
tion of Bt. Indeed, in controls, the batch culture is completed in
4–48 h. On the other hand, long period of time is not convenient
or the profitability of this kind of bioprocess.

.4. Analytical

Counts were done by Breed method. Briefly, a 2 �L of PBS-
ashed sample dilution were distributed on a 0.28 cm2 on a slide.
amples were fixed by flame and then stained with a solution of
iolet crystal (5.0 g L−1) during 1 min. After cleaning with tap
ater and drying at room temperature, samples were counted

mploying a calibrated microscopy. Each sample was processed
n duplicate.

Design ExpertTM version 7.0.3 trial (Stat-Ease Inc., Min-
eapolis, USA) was used for performing experimental design
nd data analysis. A MATLAB [46] routine that was kindly
rovided by Dr. Alejandro Olivieri (Universidad Nacional de
osario, Argentina), was used for ANNs applications.
. Results and discussion

Table 1 shows the yield of each culture. The highest spore
ield obtained in culture #13 is comparable with values reported

l
t
i
A

447.0 (44.0) 329.0 (35.0) 10.7 (3.0)
117.0 (20.0) 211.0 (53.0) 49.4 (10.0)

or Bt var. kurstaki grown in wastewater sludge as batch culture
n shake flask [13,47]. However, spores yields in shake flask
re slightly lower than those reported for bioreactor cultures
47,48] probably due to better control of pH and dissolved oxy-
en [47,49]. Results obtained in culture #13, also shows the
etter conversion of total cells formed in the culture (spores plus
emaining vegetative cells) to spores (97%). These obtained val-
es are higher than the ones obtained in a control culture in TSB.
n the other hand, culture #6 showed the best ratio of paraspo-

al crystal to total cell formed in the culture, followed by culture
13.

When experimental data were analyzed through the model
resented in Eq. (1), it was possible to fit different models (lin-
ar, quadratic, or cubic) for each response that was dependent
n medium composition. The model selected for each response
as the highest order polynomial where the terms are signif-

cant and the model is not aliased. The response surface plots
orresponding to the fitting performed for all the three responses
parasporal crystal and spores production and remaining cells)
n the experimental design is shown in Figs. 1–3, in which the
urfaces depend on the polynomial model fitted for every one of
hem (see below). As can be seen, similar plots were obtained
or the two first responses, indicating a high correlation among
hese dependent variables. Another interesting finding can be

ade observing Fig. 3, it is that the minimum of remaining
ells is not flattered by sugar cane molasses. The fitted mod-
ls and their corresponding statistical parameters can be seen
n Table 2. As can be noted, a cubic model was selected for all
he three responses. The rather high complexity of the response
urface model was probability necessary due to strong inter-
ctions between the components. Table 2 summarizes the F-
nd the P-values obtained for the fitted models: F-Model, P-
odel, and the F- and P-values corresponding to the lack of

t (LOF) test, F-LOF and P-LOF. P-Model values should be

ess than 0.05 for the model to be significant (that is, not due
o noise). On the other hand, P-LOF > 0.05 is desirable, mean-
ng the lack of fit is not significant relative to the pure error.
s can be observed from Table 2, only for spores a good fit is
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Fig. 1. Response surfaces obtained for parasporal crystals production as a func-
tion of the three effluents being optimized (A: milky effluent; B: beer wastewater;
C: sugar cane molasses).

Fig. 2. Response surfaces obtained for spores production as a function of the
three effluents being optimized (A: milky effluent; B: beer wastewater; C: sugar
cane molasses).

Fig. 3. Response surfaces obtained for remaining vegetative cells as a function
of the three effluents being optimized (A: milky effluent; B: beer wastewater; C:
sugar cane molasses).

Table 2
Statistical results obtained for the model and the lack of fit test

Statistical parameter Parasporal
crystals

Spores Remaining
cells

Fitted model Cubic Cubic Cubic
F-Model 4.45 16.72 0.57
P-Modela 0.126 (not

significant)
0.022
(significant)

0.773 (not
significant)

F-LOF 17.43 1.38 0.49
P-LOFa 0.0529 (not 0.326 (not 0.556 (not

o
f
i
e
e
n
a

d
i
e
o
i
c
D
fi
m
(
r
f
t
f
t

o

F
u
m

significant) significant) significant)
R2 0.888 0.969 0.632

a Conclusion between parenthesis.

btained (R2 = 0.969, P-Model < 0.05 and P-LOF > 0.05), while
or the other two responses, although the lack of fit is not signif-
cant (P-LOF > 0.05 in both occasions), the models are not good
nough (P-Model > 0.05). Consequently, poor reliability can be
xpected from these models. This complexity could be explained
ot only by the strong interactions between the components, but
lso by the high noise level.

Despite of the poor fitting results, the analysis through the
esirability function was performed in order to get an approx-
mation to the optimum effluents mixture. The goal was to
stablish which effluent mixture produces the highest values
f both parasporal crystal and spore concentration while min-
mizing the remaining vegetative cells. Fig. 4 shows the plot
orresponding to the D function. The optimal value found was
= 0.979, which corresponds to the optimal blend (mL): arti-

cial milky effluent 15.3, beer wastewater 4.4 and sugar cane
olasses 0.3. The corresponding predicted response values

mL−1) are: parasporal crystals 4.5 × 108; spores 3.3 × 108;
emaining vegetative cells 6.4 × 106. The global desirability
unction was calculated assigning a ri = 1 (Eq. (7)). It is impor-
ant to note that also reasonably good D values were obtained

or several mixtures containing more sugar cane molasses, fact
hat agree with the surfaces of Figs. 1–3.

Due to the low reliability on predicting an optimal blend
f effluents by means of RSM, artificial neural networks were

ig. 4. Response surface obtained for the global desirability function computed
sing the Scheffé model (A: milky effluent; B: beer wastewater; C: sugar cane
olasses).
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Table 3
Architecture and statistical parameters of the selected ANNs

Parasporal crystals Spores Remaining cells

Net architecture 3/3/1 3/3/1 3/3/1
Parameters/data 16/39 16/39 16/39
Epochs 5000 5000 5000
Learning rate 0.4 0.5 0.45
Momentum coefficient 0.6 0.5 0.55
REP (%)a 3.7 6.3 5.1
R2 0.983 0.979 0.834[ ∑ ]1/2
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a REP (%) = 100/ȳact (1/I)
I

1(yact − ypred)2 where yact are the exper-
mental values for each response, ȳact the corresponding average value for the
3 experiments, and ypred are the model predicted values.

rained to explore this experimental space. The general architec-
ure of the ANNs used in this work consisted in three layers of
eurons: an input layer of three neurons (the combination of the
hree effluents in the medium), a hidden layer of neurons and
n output layer of one neuron (each response). Several different
rchitectures for each response were optimized by trial and error,
arying the number of the neurons of the hidden layer. Finally
ne ANN was selected for modelling each response. Table 3
hows the architecture for each ANN (the numbers between
rackets indicate how many active neurons are employed in each
ayer), the relative error prediction (REP%) and other figures of

erit obtained when ANNs are trained: parameters-data ratio
the number of parameters being adjusted should no exceed the
umber of data), number of epochs, learning rate and momen-
um coefficient. The REP% values are indicative that ANNs
ere trained up to an experimental error level (see Table 3).
ower values of REP% should conduct to overtraining and con-
equently a bad predictive ability. On the other hand, actual
ersus ANN-predicted values were employed to calculate R2 in
rder to compare the ability of ANN against the RSM method-
logy. The These parameters are also displayed in Table 3. A
onsiderable improvement of the R2 can be observed, especialy
or remaining cells (ca. 30%).

After training the ANNs, the best models were used for
redicting the responses of 5151 different simulated mixtures
f the three variables, which exhaustively covered the entire
xperimental space. The predicted responses were then used
o calculate their associated di and D values (see Section 2).
he global desirability function was calculated assigning a ri = 1

Eq. (7)), as for RSM. The optimal value found was D = 0.896,
hich corresponds to the mixture (mL): artificial milky efflu-

nt 14.8 (74%), beer wastewater 5.2 (26%) and sugar cane
olasses 0.0 (0%). The corresponding predicted response values

re (mL−1): parasporal crystals 4.1 × 108, spores 2.9 × 108 and
emaining vegetative cells 9.0 × 107. Once more, as when the
esirability was previously analysed for the RSM methodology,
easonably good D values were obtained for several mixtures
ontaining more sugar cane molasses. As can be seen, these
atter values agree well with those obtained by RSM, although

ne could say that they are more reliable due to the better sta-
istical parameters obtained for ANNs model. Interestingly, the

value for the RSM method was better than the correspond-
ng one to ANNs, although both of them can be considered

r
r
p
s
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xcellent considering three responses are being simultaneously
ptimised.

An interesting observation can be made when analysing the
btained result, and comparing it with the one proportioned for
ulture #13. This latter culture gave the highest yield of paraspo-
al crystals and spores, with an acceptable number of remaining
egetative cells. The culture #13 composition is almost equal to
he optimum blend suggested by the application of ANNs. How-
ver, a new experiment was performed to check the optimization.
he effluent mixture was set following the conditions recom-
ended by the ANN optimization. The result of this experiment
as: parasporal crystals 4.5 × 108, spores 3.4 × 108 and remain-

ng vegetative cells 8.5 × 107. As can be seen, high concordance
ith the theoretical value was obtained.
These results show the relevance of the milky effluent as a

lend component. This fact agrees well with results published
y Desai et al., in which defatted milk powder was used as
econdary nitrogen source in culture media for bioinsecticidas
pecies of Bacillus [50]. This component resulted promising
or toxicity production in Bacillus sphaericus culture. Finally,
t is important to remark that milky effluent is a bulk waste in
ur region, place where soy cultures are also developed. From
self-sufficient point of view, our results could encourage the

nstallation of anti lepidopteran Bt var. kurstaki strain produc-
ion process, employing milky effluent in the formulation of a
ulture medium to control a relevant soy plague. However, the
mprovement obtained when optimal beer effluent was added,
hows the importance of same components in the brewer waste.
etween these, ethanol and residual sugar could be good carbon
nd energy sources that improve the carbon to nitrogen ratio
hen milk effluent is employed. On the other hand, same yeast-
erived components, could act as growth factors for Bt. In fact,
east extract is mainly employed in industrial fermentation of
t, specially because it supplies growth factors [50,51].

. Conclusion

An optimal mixture of effluents was defined by RSM,
lthough the fitted model presented low reliability. Conversely,
NN trained with the same experimental results allowed us to

elect a mixture of the three effluents that is consistent with the
stimation made by RSM, while the results were more reliable,
n view of the statistical parameters computed for both models.

In the case exposed here, ANNs proved to be a more suitable
pproach than RSM for defining the formulation of an improved
ulture medium used in a productive bioprocess. Apparently,
NNs are able to better model the rather high complexity of the
ata probability due to strong interactions between the compo-
ents. Nevertheless, ANNs call for more sophisticated software
han fitting a polynomial.

In this work, employing rational combinations of different
ffluents was possible to obtain the optimal mixture that allow
ot only Bt var. kurstaki growth, but differentiation and paraspo-

al crystals production. The spores yielding was similar to that
eported by other authors who developed the Bt biopesticides
roduction technology in effluents. However, complementary
tudies should be made to evaluate the formulation predicted by
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he optimization such as the efficiency and potency of the prod-
cts in target larvae. Also, the redefinition of parameters of the
aw materials employment in media formulation could be impor-
ant with the aim of increase the �-endotoxins production. The
tudy could be enhanced with a new screening of combinations
f other effluents by using this methodology.
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