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Abstract Human peripheral vision appears vivid compared
to foveal vision; the subjectively perceived level of detail does
not seem to drop abruptly with eccentricity. This compelling
impression contrasts with the fact that spatial resolution is
substantially lower at the periphery. A similar phenomenon
occurs in visual attention, in which subjects usually overesti-
mate their perceptual capacity in the unattended periphery. We
have previously shown that at identical eccentricity, low spa-
tial attention is associated with liberal detection biases, which
we argue may reflect inflated subjective perceptual qualities.
Our computational model suggests that this subjective infla-
tion occurs because under the lack of attention, the trial-by-
trial variability of the internal neural response is increased,
resulting in more frequent surpassing of a detection criterion.
In the current work, we hypothesized that the same mecha-
nismmay be at work in peripheral vision. We investigated this
possibility in psychophysical experiments in which partici-
pants performed a simultaneous detection task at the center
and at the periphery. Confirming our hypothesis, we found

that participants adopted a conservative criterion at the center
and liberal criterion at the periphery. Furthermore, an exten-
sion of our model predicts that detection bias will be similar at
the center and at the periphery if the periphery stimuli are
magnified. A second experiment successfully confirmed this
prediction. These results suggest that, although other factors
contribute to subjective inflation of visual perception in the
periphery, such as top-down filling-in of information, the
decision mechanism may be relevant too.

Keywords Peripheral vision . Subjective perception .

Perceptual decisionmaking . Psychophysics . Signal detection
theory

Peripheral vision is limited in resolution and color sensitivity
(Mullen, 1991; Noorlander, Koenderink, Den Olden, & Edens
1983; Strasburger, Rentschler, & Jüttner 2011). However, intro-
spectively, peripheral vision does not seem so impaired; it does
not seem to be achromatic, blurred, or dark. We experience a
sense of vividness and detail outside of the center of gaze, despite
a low processing capacity. This somewhat resembles the situation
in endogenous spatial attention. For example, in inattentional and
change blindness experiments, participants are often surprised at
how poorly they detected (changes in) unattended targets, as if
they feel they should have seen the targets despite the lack of
attention (Simons & Chabris, 1999). It seems like humans over-
estimate their capacity to see both in the periphery of the visual
field and when they are not paying attention. How can we
reconcile the apparent contradiction between the high quality of
visual experience and the relatively lowbrain processing capacity
for peripheral vision?

We have recently investigated some of these phenomena
within the framework of signal detection theory (Green &
Swets, 1989; Macmillan & Creelman, 2004). We have previous-
ly shown that for stimuli at identical eccentricity, the lack of
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attention can inflate subjective perception, specifically making
detection criterion liberal (i.e., participants’ propensity to report
detecting a target is higher for unattended stimuli) (Rahnev et al.,
2011). These findings have been explained by a signal detection
theoretic model, according to which attention both increases the
strength of the internal neural response and reduces its trial-by-
trial variability (Bressler & Silver, 2010; Pestilli, Carrasco,
Heeger, & Gardner 2011; Rahnev et al., 2011; Wyart, Nobre,
& Summerfield 2012). This model has since gathered further
empirical support from studies using transcranial magnetic stim-
ulation and neuroimaging (Rahnev, Bahdo, De Lange, & Lau
2012; Rahnev, Maniscalco, Luber, Lau, & Lisanby 2012;
Rounis, Maniscalco, Rothwell, Passingham, & Lau 2010).

Here we investigate to what extent the mechanism of subjec-
tive inflation of visual perception underlying lack of visual
attention also applies to peripheral visual perception. In particu-
lar, we predicted that participants may use a relatively liberal
detection criterion for the detection of periphery targets as com-
pared to detection of targets in the center of the visual field, just as
they did in Rahnev et al. (2011) under the lack of spatial
attention. Although the emergent phenomena seem similar, the
underlying physiology of eccentricity and lack of spatial attention
may differ. In the case of peripheral vision, the reasons that led us
to formulate the predictions are as follows. First, the architecture
of the human retina already imposes limitations. On one hand,
since the large majority of cones are concentrated in the foveal
region, light at the central region of the retina is processed
preferentially (Banks, Sekuler, & Anderson 1991; Curcio,
Sloan, Kalina, & Hendrickson 1990). Also, each ganglion cell
at the periphery receives information from up to hundreds of
photoreceptors while at the fovea the correspondence is one-to-
one (DeValois &DeValois, 1988). Second, the size of a ganglion
cells’ receptive field increases with eccentricity and the amount
of cortex dedicated to process a stimulus (measured as the cortical
magnification factor) decreases with eccentricity (Azzopardi &
Cowey, 1993; Daniel &Whitteridge, 1961). These results imply
that a visual stimulus presented in the peripherywill be processed
by fewer neurons and with larger spatial uncertainty than a
centrally presented stimulus. Assuming that the overall sensory
response is reflected by pooling of information over many neu-
rons, peripheral visionmay be similar to a lack of covert attention
in that it may produce sensory responses with high variability. To
test this prediction, we conducted a series of three psychophysical
experiments in which participants were asked to detect the pres-
ence of a grating pattern embedded in noise.

Method

Participants

All participants were naive regarding the purposes of the
experiments, had normal or corrected-to-normal vision,

signed an informed-consent statement approved by the local
institutional review board, and received a monetary compen-
sation of $10 per hour for their participation. Four participants
participated in Experiment 1, 11 participants in Experiment 2,
and 7 participants in Experiment 3. The mean age of the
participants was 22 years.

Stimuli

Stimuli were generated using Psychophysics Toolbox
(Brainard, 1997; D G Pell i , 1997) in MATLAB
(MathWorks, Natick, MA, USA) and were shown on an
iMac monitor (24-in monitor size, 1920 by 1200 pixels,
60 Hz refresh rate). Seated in a dimmed room (22 in from
the monitor), participants were instructed to fixate at the center
of the screen. “Target present” stimuli consist of gratings (2
cycles/degree) tilted in a random direction embedded in a
white noise background. “Target absent” stimuli are just the
noisy background. The total contrast of the stimuli was fixed
at 30 % but the grating-to-noise ratio (grating contrast) varied,
thus making the gratings more or less visible. The size of the
stimuli was 5°.

Eye-tracking

Eye movements were monitored for all subjects in all exper-
iments with a video-based eye tracker Eyelink 1000 (SR
Research Ltd., Ontario, Canada). The observers’ right eye
was recorded at a sample rate of 500 Hz. Participants were
instructed to keep their gaze at the center of the screen during
trials. Trials in which gaze position was outside the center
stimulus region (by any amount) at any time during stimuli
presentation were discarded from the analysis. This strict
control of fixation left out 20 % of the trials on average.
However, we had similar results using all trials.

Data analysis

The experiments are variants of a “yes-no” detection task at
the center and at 12° in the periphery of the visual field. The
results can be summarized in terms of hits (stimulus was
present and response was correct) and false alarms (stimulus
was absent but the subject response was “yes”). Standard
signal detection theory transforms hits and false alarms in a
measure of sensitivity (d’) and response bias (c) (Green &
Swets, 1989; Macmillan & Creelman, 2004). The primary
advantage of using d’ instead of the hit rate or the percentage
of correct responses is that d’ is independent of a subject’s
criteria and thus measures objective performance capacity,
whereas c is a subjective variable (Lau, 2008): some people
may be very conservative (if he/she needs a lot of evidence to
say “yes, I see it” and c is positive) or liberal (saying “yes, I see
it” very often and c is negative). The distinction between
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objective capacity and response bias is quite relevant to our
study because we are comparing response bias at the center
and at the periphery controlling for signal detection capacity.

Given each subject’s hit and false alarm rates at a given
location, we calculate d’ and c according to standard signal
detection theory (Macmillan & Creelman, 2004) formulas:

d0 ¼ z HRð Þ−z FARð Þ ð1Þ

c ¼ −
1

2
z HRð Þ þ z FARð Þ½ � ð2Þ

where HR is the hit rate, FAR is the false alarm rate and z is
the inverse of the normal cumulative distribution function.

Signal detection theoretic computational models

We modeled the behavioral results of Experiments 1 and 2
using models based on signal detection theory according
to the following rules. First, every time a stimulus is
shown, it produces in the mind of the observer an internal
response drawn from a Gaussian probability density func-
tion. Given that the task involves displaying one central
and one peripheral stimulus, on each trial two internal
responses are produced, one for each location. If the target
was absent, the mean of the distributions is set equal to
0 at both locations. If the target was present, the mean of
the distributions is μ(cen) and μ(per) for the center and
peripheral locations, respectively. Second, perceptual deci-
sions are made by comparing the internal response to a
criterion. When the internal response exceeds the decision
criterion in the center (periphery), the observer’s answer
will be “yes” if asked to report the presence of a target in
the center (periphery). Lastly, based on previous empirical
evidence (Gorea & Sagi, 2000; Rahnev et al., 2011; Zak,
Katkov, Gorea, & Sagi 2012), the decision criterion is
common for central and peripheral decisions.

For all models, without loss of generality, the standard
deviation for the peripheral distributions was set equal to 1.
In summary, the possible free parameters are:

μ(cen) Mean of the central signal distribution
μ(per) Mean of the peripheral signal distribution
σ(cen) Standard deviation of the internal response

distributions for the central stimulus
criterion Location of the common criterion level.

We considered four different models that differ in how
eccentricity affects the internal response distributions:

1. Mean + variance modulation model (MEAN+VAR):
Eccentricity changes the mean value and the standard
deviation of the internal response distributions. Four pa-
rameters: μ(cen), μ(per), σ(cen), and criterion.

2. Variance modulation model (VAR): Eccentricity changes
only the standard deviation of the internal response dis-
tributions. Three parameters: μ=μ(cen)=μ(per), σ(cen),
and criterion.

3. Mean modulation model (MEAN): Eccentricity changes
only the mean value of the internal response distributions.
Three parameters: μ(cen), μ(per), and criterion
(σ(cen)=σ(per)=1).

4. Null model (NULL): Eccentricity does not change the
mean value or the standard deviation of the internal re-
sponse distribution. Two parameters: μ=μ(cen)=μ(per)
and common criterion.

Model fitting

We fit the models to the data using a maximum likelihood
estimation approach that has previously been used within a
signal detection framework (Dorfman & Alf, 1969). Briefly,
the likelihood of a set of signal detection model parameters
given the observed data can be calculated using the multino-
mial model. Formally,

L θjdatað Þ∝∏i; jPθ RijS j

� �ndata RijS jð Þ ð3Þ

where each Ri is a behavioral response a subject may
produce on a given trial, and each Sj is a type of stimulus that
may be shown on that trial. The expression “ndata(Ri|Sj)” is a
count of how many times a subject actually produced Ri after
being shown Sj. The expression “Pθ(Ri|Sj)” denotes the prob-
ability with which the subject produces the response Ri after
being presented with Sj, according to the signal detection
model specified with parameters θ.

Given a set of parameters θ, the expression “Pθ(Ri|Sj)” is
calculated as follows. There are two possible stimuli
(S1=“target absent” and S2=“target present”) and accordingly
two possible responses (R1=“absent” and R2=“present”) for
the center and periphery set of trials. For instance, if we are
evaluating center trials and we assume that Sj gives rise to a
Gaussian distribution with a mean μj and standard deviation
σj, the expression “Pθ(R1|Sj)” equates to:

Pθ R1jS j

� � ¼ ∫criterion−∞
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

j

q exp
− x−μ j

� �2

2σ2
j

dx and Pθ R2

�����S j

 !

¼ 1−Pθ R1

�����S j

 !
:

ð4Þ

Note that the models were not fit to summary statistics of
performance such as percentage correct. Rather, models were
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fit to the full distribution of probabilities of each response type
contingent on each stimulus type. Various kinds of summary
statistics (e.g., d’, c, percentage correct, and so on) can be
derived from this full behavioral profile of stimulus-
contingent response probabilities.

We fitted all models under consideration to the observed
data by finding the maximum likelihood parameter values θ.
Maximum likelihood fits were found using a simulated an-
nealing procedure (Kirkpatrick, Gelatt, & Vecchi 1983).
Model fitting was conducted separately for each subject’s
data. The estimation procedure was reliable; subsequent rep-
etitions of the model fitting procedure produced negligible
variations in the parameter estimates for each model of each
subject’s data.

Formal model comparison

The maximum likelihood associated with each model charac-
terizes how well that model captures patterns in the empirical
data. However, comparing models directly in terms of likeli-
hood can be misleading; greater model complexity can allow
for tighter fits to the data but can also lead to undesirable levels
of over-fitting, i.e., the erroneous modeling of random varia-
tion in the data. Therefore, we compared the models using the
Bayesian Information Criterion (BIC). This measure provides
a means for comparing models on the basis of their maximum
likelihood fits to the data while correcting for model complex-
ity. To better interpret the BIC values of a model, we calcu-
lated the normalized BIC weights (Burnham & Anderson,
2002), which are obtained by a simple transformation of
BIC values. By definition, the BIC weight for model i quan-
tifying the theoretical evidence in favor of model i can be
expressed as:

BICw model ið Þ ¼ e−
1
2 BICi−BICminð Þ

X4

n¼1
e−

1
2 BICn−BICminð Þ

ð5Þ

where BICk is the BIC for model k and BICmin is the lowest
BIC exhibited by all models under consideration (“best
model”).

Similar results were obtained when we used the Akaike
Information Criterion (AIC).

Experiment 1: Liberal detection bias for periphery targets

Experiment and task design

We adopted an intense single subject approach. The large
amount of trials per subject at the expense of fewer

participants (N=4) is especially suitable for model fitting.
Each subject completed three sessions, with each session
occurring on a different day. Each session consisted of 720
experimental trials separated into three blocks of 240 trials.
Participants were allowed to have 60-s breaks after every 40
trials. Participants took approximately 75 min to complete a
session. Task design is illlustrated in Fig. 1. Each trial begins
with 500-ms presentation of a fixation cue at the center of the
screen and two simultaneously-presented circles indicating
the location of the upcoming stimuli. A blank screen is then
presented for a random time varying from 100 to 150 ms, after
which the target stimuli appear for 368 ms. The peripheral
stimuli are always presented at an eccentricity of 12 ° towards
the upper right corner of the screen. Finally, the stimuli disap-
pear and an arrow indicates that the subject should report
whether the target was present or absent at either the central
or peripheral location. Participants had a maximum time of 5 s
to respond. Target presence probability was 0.5 and the pres-
ence of a target at the center was independent of the presence
of the target at the periphery. To stimulate subjects to distribute
attention evenly at both locations, the orientation of the arrow
was random, with 50 % of the trials assigned to each location.
Participants were fully informed of these facts and completed
64 training trials at higher grating contrast than the actual
experiment.

It may be argued that subjects may be inherently
inclined to attend more to the central location, but this
claim becomes difficult to be tested unless attention is
operationally defined. Following previous definitions,
here we define attention in terms of task relevance of
the stimuli (Summerfield & Egner, 2009). It is in this
sense that endogenous attention is stipulated to be equal
between the central and peripheral stimuli.

Total contrast of stimuli was fixed to 30 % but the grating-
to-noise ratio varied, thus making the gratings more or less
visible. For each subject, we used a QUEST threshold deter-
mination procedure (Watson & Pelli, 1983) to find the grating-
to-noise ratio that would produce about 75 % correct re-
sponses for the center and periphery stimuli. This procedure
was performed using a two-interval forced-choice (2IFC) task
to minimize decision biases (Macmillan & Creelman,
2004). The 2IFC task was similar to the detection task
described above but the stimuli were presented in two
intervals separated by a 0.1 s blank screen. The second
presentation was opposite to the first one (if the target
was present in the first presentation, it was absent in the
second one and vice versa). Participants had to report in
which presentation (first or second) the target was pres-
ent at the location indicated by the arrow. Every 240
trials we controlled for task performance at both loca-
tions to make sure d’ was in the range (1.5, 2.5). If d’
was outside this range, grating contrast was slightly
increased or decreased accordingly.
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Results

Detection criterion is more liberal at the periphery than
at the fovea

Because sensitivity is usually better at the center of gaze, in an
attempt to avoid the capacity to detect the target as a con-
founding factor, we titrated target contrast at both locations
(see Experiment 1: Liberal detection bias for periphery targets
– Experiment and task design). As a result, the between-
subject average d’ was equated at both locations (paired t test:
T(6)=−0.42, p=0.69; Fig. 2a). However, subjective experience
differed. Participants reported seeing the grating much more
often at the periphery than at the center. The number of hits
was significantly larger at the periphery than at the center
(paired t test: T(6)=− −.37, p=0.01; Fig. 2b). Moreover, even
when the stimulus was absent, participants still producedmore
false alarms in the periphery (paired t test: T(6)= −2.7,
p=0.03), as if they imagined the target was there more often
(Fig. 2c). This is reflected by a significant difference in the
response bias c (paired t test: T(6)=6.15, p=8.5×10−4; Fig. 2d):
participants adopted a conservative subjective criterion for
center trials (T(3)=5.19, CI=(0.25,1.04), p=0.01) and a liberal
criterion for periphery trials (T(3)= −3.75, CI=(−0.3, −0.02),
p=0.03). Similar results were obtained for each individual
subject (Fig. 3).

Perceptual internal response is more variable at the periphery

We tried to account for the liberal detection bias phenomenon
with a model based on signal detection theory (MEAN+VAR
model), as illustrated in Fig. 4a. The model assumes that the
trial-by-trial variability and the mean value of the internal
response differ with eccentricity. The rationale of the model
is that information from the periphery may be processed with

larger internal noise that may lead tomore frequent crossing of
a subjective detection threshold. Based on previous empirical
evidence (Gorea & Sagi, 2000; Zak et al., 2012), the model
presupposes that participants use a single common criterion
for detecting stimuli at both locations. This is a suboptimal
strategy because to maximize the percentage of correct re-
sponses the ideal observer would make use of the fact that the
target present probability is 0.5 and would set two different
criteria, one for the center and one for the periphery location.
These criteria would be located at a point where the “target
absent” and “target present” distributions intersect (leading to
a response bias c=0 for both locations).

The MEAN+VAR model was able to explain the
behavioral results from Experiment 1 and provides a
possible mechanistic account for the data (Fig. 4a and
b). The parameter σ(cen) quantifies the increase or
decrease of internal signal variance at the center relative
to σ(per)=1. The between-subject average of σ(cen) – as
estimated from model fitting – was 0.7, suggesting that
eccentricity increases the variability of the internal
responses.

One concern is that other models that differ in how eccen-
tricity modulates the internal response distributions may also
account for the data. Therefore, we performed a formal model
comparison between the MEAN+VAR model and three other
models in which eccentricity changes only the standard devi-
ation (VARmodel), only the mean value (MEANmodel), or it
doesn’t change anything (NULL model). To determine for-
mally which model offers the best description of the behav-
ioral data, it is necessary to balance the model fit with model
complexity. We calculated this tradeoff using the BIC. Similar
results were obtained when we used the AIC. These measures
provide a means for comparing models on the basis of their
maximum likelihood fits to the data while correcting for
potential overfitting due tomodel complexity (i.e., the number

target or noise ?

fixation + pre-cue
500 ms

stimuli
368 ms

blank screen
100-150 ms

response
max 5 s

Fig. 1 Task design for Experiment 1. Each trial began with a fixation
circle at the center of the screen and two larger circles at the location
where the stimuli appeared: one at the center and one at the periphery of
the visual field (12 degrees towards the upper right corner). Following a
variable-duration blank screen, the stimulus was shown for 368 ms,
followed immediately by a response cue (white arrow) indicating the
location at which participants were to provide a perceptual judgment

regarding the presence or absence of a grating. Central and peripheral
stimuli were independent. The response cue was randomly assigned to the
center or to the periphery, with 50 % of the trials at each location (see
Experiment 1: Liberal detection bias for periphery targets – Experiment
and task design for further details). Therefore, since both locations are
equally relevant for the task, an optimal observer should distribute atten-
tion evenly to both locations (Summerfield & Egner, 2009)
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Fig. 2 Behavioral results for Experiment 1. (a) Detection sensitivity (d’)
was matched between central and peripheral stimuli (b-c) Participants
tend to respond “yes, I see the grating”more often in the periphery than at
the center for both stimulus present (hits) and stimulus absent trials (false

alarms). (d) Response bias was suboptimal (c≠0) and different for central
and peripheral detection being liberal (c<0) in the periphery and conser-
vative (c>0) at the center. Solid bars indicate means and error bars S.E.M.
*: p<0.05, ***: p<0.001

Fig. 3 Individual subject results for Experiment 1. Sensitivity (d’) and
response bias (c) for participants 1–4 (panels a–d respectively). All
participants adopted a relatively conservative detection criterion in the
center compared to the periphery, regardless of differences in sensitivity

(subject 2 performed better in the center and subject 3 performed better in
the periphery). Solid bars indicate means and error bars 95 % confidence
intervals, estimated using bootstrap resampling methods (Efron &
Tibshirani, 1994). *: p<0.05, **: p<0.01, ***: p<0.001
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of free parameters). We report the subject average BIC
weights (Burnham & Anderson, 2002) which are obtained
by a simple transformation of BIC values that quantify the
theoretical evidence in favor of each model (see Method –
Formal model comparison). The proposed “MEAN+VAR”
model outperformed the three alternative models (Fig. 4c).

Experiment 2: Peripheral detection mimics center
detection when periphery stimulus is scaled

What could be the neurobiological origin for the increased
trial-by-trial variability in the periphery? It is well
established that peripheral vision involves fewer cells than
foveal vision: cortical magnification decreases and recep-
tive field sizes increase with eccentricity (Azzopardi &
Cowey, 1993; Daniel & Whitteridge, 1961). Given stan-
dard pooling mechanisms, the collective response of the
activity of many neurons may have higher noise at the
periphery, simply because it involves fewer neurons. This
observation led us to a counterintuitive prediction regard-
ing the model’s possible neural implementation. If the
trial-by-trial variability is determined in part by the

number of neurons recruited, we could reduce the differ-
ences in response bias between central and peripheral
locations if we match their detection capacities not by
titrating contrast, but by magnifying the peripheral stimu-
lus. Moreover, our model predicts that if the variances of
the central and peripheral distributions are similar, the
criterion will be close to optimal. Experiment 2 was
devised to test these predictions.

Experiment and task design

We recruited more participants (N=11) than in Experiment 1
but each subject performed fewer trials per condition. We
therefore adopted a strict criterion to control for detection
capacity. We only considered those participants whose d’ at
the center and at the periphery differ by less than 1 for all
conditions (N=7). Each subject completed two experimental
sessions. Each session consisted of 480 experimental trials
separated into two blocks of 240 trials. The task was similar to
Experiment 1 with several differences. First, there were two
blocks of trials: in one block (half of the trials), the size of the
central and peripheral stimuli was equal but the grating
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internal response

center

periphery

Target absent
Target presentµ(cen)

µ(per)

criterion

=1

(cen)

c

a b

Fig 4 Model fitting results. (a) Representation of the MEAN+VAR
model, based on Signal Detection Theory. Internal responses generated
in the subject after stimulus presentation follow a Gaussian distribution.
The degree of overlap between both distributions determines the ob-
server’s capacity to detect the target. According to the model, the standard
deviation (SD, σ) and the distance between the means of the distributions
(μ) are affected by eccentricity. If the internal response exceeds a com-
mon decision criterion in the center (periphery), the observer’s answer
will be “yes” if asked to report the presence of a target in the center
(periphery). The distributions are plotted using the between-subject aver-
age of the parameters that maximize the likelihood of the model given the
participants responses: μ(cen) =1.6;μ(per)=2.9;σ =0.7; criterion=1.2. (b)
Model fits. The model was able to capture the pattern of the data (see
Fig. 2a and c for comparison). (c) Formal model comparison. Bayesian

Information Criterion (BIC) weights were used to compare four models
(Burnham & Anderson, 2002). We report the BIC between-subject mean
weights that quantify the theoretical evidence in favor of each model such
that the weights sum one. The MEAN+VAR model (eccentricity modu-
lates the variance and the mean of the internal response distributions) fits
the behavioral data better than the rest (in the MEAN model, eccentricity
modulates only the mean of the internal response distribution; in the SD
model eccentricity modulates only the variance, and in the NULL model
eccentricity does not modulate the mean or the variance). Similar results
were obtained when we used the Akaike Information Criterion (AIC).
Between-subject mean AIC weights are 0.52, 0.12, 0.26, and 0.10 for the
MEAN+VAR,VAR,MEAN, andNULLmodels respectively. For details,
see Signal detection theoretic computational models and Model fitting in
Method
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contrast was titrated to equate sensitivity at the center and in
the periphery, as in Experiment 1. In the other half, the
contrast was the same at both locations, but the peripheral
stimulus was eight times larger (inside an arc at equal eccen-
tricity) than the central stimulus. We call these conditions
“contrast” and “size” respectively (see Fig. 5). The order of
the conditions was alternated from the first to the second
experimental session and the order of conditions for the first
session for each subject was chosen randomly. Second, stim-
ulus presentation duration was reduced to 50 ms to avoid eye
movements. Third, the peripheral stimulus was located to-
wards the right, along the same horizontal line as the central
stimulus. The “contrast” condition allowed us to replicate the
results from Experiment 1 on a new set of participants.

Participants took approximately 80 min to complete a
session. Different sessions always took place on different
days. Participants completed 48 training trials at a higher
grating-to-noise ratio than the actual experiment. In this case,
we used the QUEST threshold determination procedure with a
2IFC task only, just as in Experiment 1, but we only used it to
find the appropriate grating-to-noise ratio for the central stim-
uli. In the “contrast” condition, based on the experience of
Experiment 1, the contrast in the periphery was defined as 1.4
times larger than at the center. In the “size” condition, the size
of the peripheral stimulus was always fixed to eight times the
size of the central stimulus. Overall, participants achieved
equal performance at both locations using these settings
(Fig. 6).

Results

In one-half of each experimental session, participants performed
a detection task similar to that of Experiment 1 (Fig. 5, “contrast”
condition), except that the stimulus duration was shorter (50 ms)
and the peripheral stimulus was located at the same horizontal
level. This half of the experiment was necessary to replicate the
results of Experiment 1with a new set of participants and slightly
different experimental conditions. Indeed, as shown in Fig. 6 in
the “contrast” condition, we replicated the results of Experiment
1: sensitivity was matched between the center and the periphery
(paired t test: T(12)=0.01, p=0.99) and the criterion at the pe-
riphery was liberal relative to the criterion at the center (paired
t test: T(12)=2.94, p=0.01). In the same experimental session,
participants also performed the task in the “size” condition. As
predicted, in this case, the detection bias effect disappeared
completely. Participants’ sensitivity was again matched for cen-
tral and peripheral detection (paired t test: T(12)=0.006, p=0.99),
but in this case detection criteria were statistically the same for
central and peripheral trials (paired t test: T(12)=0.28, p=0.78).
Moreover, as predicted, both the center and the periphery crite-
rion approach the optimal value (c=0; t test, center: T(6)=0.09,
CI=(−0.23,0.25), p=0.93; t test, periphery: T(6)= −0.29,
CI=(−0.3,0.25), p=0.78). We also measured the difference in
response bias at the center and at the periphery for each subject.
As expected, this difference is positive in the “contrast” condition
but not significantly different from zero in the “size” condition
(Fig. 6d; paired t test: T(12)= −2.23, CI=(−0.84, −0.01), p=0.04).

fixation + pre-cue
500 ms

stimuli
50 ms100-150 ms

response
max 5 s500 ms

contrast

size

target or noise ?

target or noise ?

Fig. 5 Task design for Experiment 2. Each experimental session
consisted of two blocks of trials in two conditions, “contrast” and “size”.
The conditions differ in how we calibrated central and peripheral stimuli
to match detection performance at both locations. The “contrast” condi-
tion is similar to that of Experiment 1: we increased the grating-to-noise
contrast of the peripheral stimuli by a constant factor of 1.4. In the “size”

condition, grating-to-noise contrast was the same for both locations, but
the size of the peripheral stimuli was eight times larger than the central
stimuli. Both conditions led to matched sensitivity (Fig. 6). Also, com-
pared to Experiment 1, the location of the peripheral stimuli was different
(although at the same eccentricity, 12°), and the stimulus duration was
shorter to facilitate fixation
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However, 2×2 repeated measures ANOVA revealed no signifi-
cant interaction between (center vs. periphery) and (“size”, “con-
trast”) (F(1,6)=3.97, p=0.09).

Experiment 3: The effect of trial-by-trial feedback

One remaining worry is that participants may have performed
better had they had trial-by-trial feedback of their performance.
That is, the differences in bias between center and periphery
might just have been subjective tendency or cognitive strategy,
but not an inherent constraint in the visual system. To further
encourage participants tomaximize accuracy, we ran Experiment
3 in which participants received trial-by-trial feedback of their
performance at the periphery in one block of trials.

Experiment and task design

In Experiment 3 each subject completed two sessions, except for
two participants who completed only the first session. Each
session consisted of 480 experimental trials separated into two
blocks of 240 trials. The task was similar to Experiment 2 in the
“contrast” condition with a few differences. There were two

blocks of trials: one block with feedback and one without feed-
back.We call these conditions “feedback” and “no feedback”. In
both blocks, the size of the central and peripheral stimuli was
equal but the grating contrast was titrated to equate sensitivity at
the center and in the periphery, as in Experiment 1. In the
“feedback” condition, participants received trial-by-trial feedback
of their performance at the periphery: a low-pitched tone follow-
ed every incorrect response. The order of the conditions was
alternated from the first to the second experimental session and
the order of conditions for the first session for each subject was
chosen randomly. The peripheral stimulus was located towards
the right, along the same horizontal line as the central stimulus.
The “no feedback” condition allowed us to replicate the results
from Experiment 1 on a new set of participants. In the same
experimental session, participants performed the task in the “no
feedback” condition, in the remaining half of trials. The “no
feedback” condition was necessary to replicate the results of
Experiment 1 with a new set of participants.

Results

As shown in Fig. 7, we replicated the results of Experiment 1
in the “no feedback” condition. Sensitivity was matched

Fig. 6 Results for Experiment 2. (a-b) Sensitivity (d’) was matched for
central and peripheral detection in the “contrast” and in the “size” condi-
tions. (c) The “contrast” condition replicated the results for Experiment 1.
In fact, participants adopted a conservative criterion (c>0) for detection of
central gratings (t test against value zero: T(6)=2.42, CI=(−0.002,0.52),
p=0.051) and a liberal criterion (c<0) in the periphery (t test against value
zero: T(6)= −1.7, CI=(−0.5,0.08), p=0.12). In the “size” condition, re-
sponse bias (c) was the same for central and peripheral detection (t test

against zero value: center, T(6)=0.09, CI=(−0.23,0.25), p=0.93; periph-
ery, T(10)= −0.29, CI=(−0.32,0.25), p=0.78). (d) In the “size” condition,
the difference in response bias for central and peripheral decisions is
reduced. This result is consistent with the hypothesis that making the
peripheral stimuli larger recruits more neuronal resources, which, in turn,
may lead to a less noisy trial-by-trial internal response. Solid bars indicate
means and error bars SEM. *: p<0.05, **: p<0.01
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between center and periphery (Fig. 7a and b; paired t test
T(12)=0.16, p=0.88) while there is a significant difference in
response bias (Fig. 7c and d: T(12)=4.97, p=3.10−4). The
addition of trial-by-trial feedback did not affect significantly
sensitivity and bias. In the “feedback” condition, sensitivity
was matched between center and periphery (Fig. 7a and b;
paired t test T(12)=0.39, p=0.7) and response bias c differ
significantly (Fig. 7c and d; paired t test T(12)=4.23,
p=0.0012)

Discussion

Subjective inflation of visual perception at the periphery

Peripheral vision covers most of our visual field and provides
coarse but invaluable information (Alvarez, 2011; Oliva,
2005). Despite its importance, visual information coming
from the periphery is relatively coarsely analyzed in both the
retina (Curcio et al., 1990) and the cortex (Azzopardi &
Cowey, 1993; Daniel & Whitteridge, 1961). And yet, a
long-standing and intriguing puzzle in vision science is the
fact that we seem to be unaware of how poor our peripheral
vision actually is. Subjectively, it feels like we can see colorful

and vivid details in the periphery, beyond the actual capacity.
This is probably why we are often surprised at how difficult it
is detect large changes in a visual scene (Simons & Levin,
1997), as if we overestimate our visual capacity outside the
center of gaze.

We have investigated this phenomena within the frame-
work of signal detection theory, as it allows us to formally
distinguish between processing capacity (measured by d’) and
subjective strategy or response bias (measured by c). To
summarize our results: subjects produced more hits and more
false alarms in the periphery than at the center. They con-
sciously saw the target much more often at the periphery than
at the center. In fact, in Experiment 1, even though the target
was present on 50% of the trials, observers reported seeing the
peripheral target in ~60 % of trials, but the central target was
seen only ~40 % of trials.

A potential confounding factor is processing capacity.
Maybe observers behave differently just because the quality
of the information available to decode the stimulus differs.
Therefore, when comparing the two conditions, we need to
make sure we are comparing levels of subjective perception
and not levels of processing capacity. To overcome this issue,
we carefully controlled for task performance. Overall, ob-
servers performed equally well (in terms of measured d’) in

Fig 7 Behavioral results for Experiment 3: effect of trial-by-trial feed-
back. Task design for Experiment 3 was similar to Experiment 2 (Fig. 5)
except that in both blocks of trials the stimuli had the same size. In the first
block participants did not receive performance feedback (as in Experi-
ment 1). In the second block, participants received trial-by-trial feedback
of the periphery performance. (a-b) Sensitivity was matched in the center

and periphery in both the “feedback” and the “no feedback” conditions
(paired t test: T(8)= −0.1, CI=(−1.1,1.01), p=0.92) (c-d) Response bias
for both conditions.. Essentially, trial-by-trial feedback of performance in
the periphery did not have a significant effect on sensitivity or in decreas-
ing response bias. Solid bars indicate means and error bars SEM. *:
p<0.05, **: p<0.01, ***: p<0.001
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the detection task at both locations. However, there was a
significant difference in the subjective criterion c, which was
liberal in the periphery and conservative at the center.
Moreover, even if we consider only target absent trials where
the physical stimuli were identical, observers produced sig-
nificantly more false alarms in the periphery than at the center.
These results were successfully replicated in Experiments 2
and 3 and thus confirmed our prediction that subjective per-
ception is inflated at the periphery.

We argue that these results may intrinsically reflect the
perceptual experience of peripheral vision, because they were
robustly replicated even under trial-by-trial feedback, ruling
out the alternative interpretation that this may just reflect a
kind of high-level cognitive strategy or deliberate bias adopted
by the participants.

Similarities between peripheral vision and inattention

We have previously found similar results in a study in which
participants were asked to detect attended and unattended
stimuli. Participants adopted a liberal response bias for detect-
ing unattended targets (i.e. their propensity to report detecting
a target is higher in unattended than in attended trials).
Therefore, peripheral vision and inattention seem to suffer
from a similar kind of subjective inflation at the perceptual
level. In the case of attention, the behavioral results were
successfully accounted for with a mechanistic model within
the framework of signal detection theory. Here we show that
the same model can account for our current findings. Most
importantly, we found that the trial-by-trial variability of the
internal responses was larger in the periphery than at the
center. Therefore, assuming that participants used a single
common decision criterion for detecting central and peripheral
stimuli, the subjective threshold was surpassed more frequent-
ly for peripheral trials.

Beyond the psychophysical similarities, recent works also
relate the neurobiology underlying visual inattention to pe-
ripheral vision. For example, it has been shown that the peak
frequency of neuronal gamma-band synchronization increases
when the stimuli that activates the neurons is attended as
compared to unattended (Bosman et al., 2012). Likewise,
other studies have shown that stimuli induced lower gamma
peak frequencies for larger eccentricities (Lima, Singer, Chen,
& Neuenschwander 2010; van Pelt & Fries, 2013).

Given the similarities between attention and central vision,
one may wonder what is truly novel in the present work? That
is, given that Rahnev et al. (2011) have already demonstrated
that detection bias was relatively liberal for a spatial location
outside the focus of endogenous attention, is it not trivial that
peripheral vision is also associated with liberal detection bias?
Is it not natural to assume that central vision just naturally
attracts more endogenous attention? We think the answers are
negative for several reasons. First, there are many kinds of

attention – endogenous, exogenous, spatial, feature, etc. – and
it has been shown that there are important differences between
them (Bisley, 2011; Carrasco, 2011; Scholl, 2001).
Generalization of any experimental effect from one kind of
attention to another is not trivial to begin with, let alone
generalization from inattention to peripheral vision. More
importantly, for endogenous spatial attention, one standard
paradigm used is the Posner task (Posner, 1980), in which
the likely location of stimulus occurrence is pre-cued.
However, in Rahnev et al. (2011), the pre-cue did not inform
subjects of the likely location of the stimulus. In fact, the pre-
cue did not give any information regarding the upcoming
stimuli. Rather, the pre-cue concerns the task that the subject
will have to do,;specifically, to which stimulus they will have
to respond. In this sense, “attention” in Rahnev et al. was
defined entirely in terms of task relevance (Summerfield &
Egner, 2009). In this study, “attention”, defined in the same
sense, was completely equal between the center and the pe-
riphery, thus one cannot say that central vision inherently
draws more “attention”; this may be true in some other sense
of the word but not in terms of the definition of attention used
in Rahnev et al.; for task relevance both the center and the
periphery were equally likely to be probed. Finally, we believe
that the reason why peripheral vision is associated with higher
variability of the internal response may be quite different from
that under inattention. Whereas both peripheral vision and
inattention in Rahnev et al.’s task may be associated with high
variability, and hence liberal detection, the underlying physi-
ological mechanisms for the variability in the peripheral vi-
sion case may be unique, as we discuss below.

Potential source of the increased variability in the peripheral
internal response

Why is the internal response more variable in the periphery?
We argue that part of the reasonmight be the reduced neuronal
resources allocated to processing peripheral information. The
receptive fields of neurons are larger in the periphery and the
cortical magnification factor decreases with eccentricity, i.e.,
the central visual field is overrepresented relative to the pe-
riphery. Overall, these observations imply that fewer neurons,
with larger spatial uncertainty, deal with peripheral vision.
Since perceptual decisions are based on the collective re-
sponse of many neurons, we can see how fewer neurons lead
to more unstable or variable results. Recent work suggests that
peripheral vision consists of summary statistics computed
over local pooling regions (Balas, Nakano, & Rosenholtz
2009; Levi, 2008; Parkes, Lund, Angelucci, Solomon, &
Morgan 2001; Pelli & Tillman, 2008). Also, several studies
have shown that the decrease in performance with eccentricity
for many visual functions can be minimized using properly
scaled stimuli, a procedure called M-scaling (Anstis, 1998;
Carrasco & Frieder, 1997; Strasburger et al., 2011; Virsu,

Atten Percept Psychophys



Näsänen, & Osmoviita 1987). The explicit purpose of M-
scaling is to equalize the number of retinal ganglion cells
and post-retinal cells stimulated at different eccentricities
(Virsu et al., 1987). Based on this evidence, we hypothesized
that if the peripheral stimuli were larger than the central
stimuli, the underlying internal responses for the two may be
matched in variability. In that case, even if participants are
limited to using a common criterion, they would be able to
calibrate its value close to a global optimum, maximizing
accuracy in the detection task. This prediction was success-
fully confirmed in Experiment 2. The peripheral liberal detec-
tion bias disappeared completely under this “size” condition
manipulation, even though in the same experiment we dem-
onstrated the presence of this bias in the “contrast” condition
in the same participants.

Limitations of the model

One limitation of our study is that the underlying neuronal
mechanism we used to account for the larger variability in
peripheral vision is highly simplistic. In reality, neurons may
have a specific correlation structure (Cafaro & Rieke, 2010)
that we have not taken into account here. Also, the pooling
mechanism takes the form of simple averaging, which is
unlikely to be exactly true. However, we believe the model
serves as a proof of the simple concept behind it. That is, while
the model may not be a fully realistic description of how
periphery vision and perceptual readout work in general, it
provides a simplemechanistic explanation of the phenomenon
we are concerned with in this project.

Likewise, another assumption of the model is also probably
overly simple: that participants use the exact same criterion for
detection in both the center and the periphery. This assump-
tion is supported by previous empirical work using similar
experimental designs (Gorea & Sagi, 2000; Rahnev et al.,
2011; Zak et al., 2012). We also note that, in another recent
project, we directly tested this common criterion assumption
between attended and unattended targets (Lau & Rahnev,
2011; Morales et al., 2014). In that study, we set up a situation
in which if participants were to be constrained by this com-
mon criterion assumption, they would produce apparently
highly suboptimal behavior, such as ignoring prior informa-
tion about stimulus identity, under lack of spatial attention.
The confirmation of such predictions gave some support to the
assumption of a common criterion.

However, perhaps a more realistic view is that the two
criteria attract each other to settle at a similar level (Zak
et al., 2012), rather than being completely constrained to be
identical; the identity assumption should be considered a
computational convenience for implementation of the model.
We have investigated this possibility elsewhere (Morales
et al., 2014). Second, perhaps perceptual decisions are made
not in an arbitrary internal evidence space (as assumed here),

but in likelihood space (Eckstein, Peterson, Pham, & Droll
2009; Ma, 2010), where criteria are independently and appro-
priately placed. Future work that specifies these mechanisms
will likely lead to more biologically realistic models.

Finally, a remaining important issue about the common
criterion assumption is that it means the relative difference
in detection bias may be specific to tasks in which the subjects
have to simultaneously prepare for detection in two separate
locations. Had the central and peripheral trials been blocked
separately in different experimental sessions, subjects may
well adopt different criteria for each block; whereas this is
an empirical issue that we have not addressed, based on our
model we would indeed expect results very different from the
present ones as the common criterion assumption only stipu-
lates that one cannot maintain multiple criteria simultaneously.
However, we believe that this should not mean our results are
contrived and entirely ad hoc with respect to the model. In
everyday life, humans have to monitor for potential detection
targets more often in multiple locations than in a single fixed
and known location. In this sense, the requirement to simul-
taneously prepare for detection in separate locations may well
be more ecologically relevant, despite its being relatively
uncommon in most psychophysical tasks.

Final remarks

We acknowledge that there are other factors that contribute to
subjective inflation of visual perception in the periphery. Here
we focus on gratings detection but perhaps in everyday life the
subjective inflation is more striking in the domain of color
perception – a different topic that we have to save for future
research. Also, as naturalistic stimuli are not completely un-
predictable in structure, top-down filling-in of information
would certainly play a role. However, in our psychophysics
experiments this factor is unlikely to be at play, because the
stimuli cannot be statistically predicted. Yet, we identify a
decisional mechanism for bias in the periphery. Therefore,
we argue that even in everyday peripheral vision, the decision
mechanism may be relevant too, which is a fact that has been
relatively neglected in previous research (for an example of an
exception see Zhang,Morvan, &Maloney 2010). Overall, it is
striking that despite the simplicity of our model, the observed
result is mechanistically accounted for.

It has also been argued that the reason why we are usually
unaware of the limitations of peripheral vision is that our brain
appreciates the fact that we move our eyes (for example, see
Boucart, Moroni, Thibaut, Szaffarczyk, & Greene 2013). In
this sense, the subjective impression of a uniform visual field
is an illusion, but of a useful kind. O’Regan (1992) argues that
“the outside world is considered a form of ever present exter-
nal memory that can be sampled at leisure via eye move-
ments” However, at least introspectively, even when taking a
single quick glance at a new scene, the perception of a detailed
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periphery is still present. Our results are consistent with this
idea because subjective inflation was present even when we
carefully controlled for gaze fixation and the stimuli were
presented as briefly as for 50 ms.

The reported mechanism of subjective inflation here may
also speak to recent debates regarding the richness of our
conscious perception. Whereas some authors speculate that
the content of our conscious percept may be richer than what
we can access, i.e., to report or to remember (Block, 2011;
Lamme, 2010), others argue that this may not be so (Cohen &
Dennett, 2011; Dehaene & Changeux, 2011; Kouider, de
Gardelle, Sackur, & Dupoux 2010). This debate has some-
what led to an impasse: how can we assess the richness of
information that we cannot report or remember? Whereas this
may seem experimentally impossible to demonstrate, some
authors feel that given that we can only access a few visual
items at a time, it seems introspectively implausible that our
conscious percept is so impoverished. Our results here may
offer a partial resolution to this problem (Lau & Rosenthal,
2011).We need to distinguish between two senses of “seeing”,
one in terms of capacity, and one in terms of decision. Perhaps
outside of central vision, we overestimate the richness of
information at a late-stage, decisional level. This may explain
the intuition behind the arguments that we can consciously
perceive more than we can access. Perhaps we do not perceive
more than we can access, we merely think we do because of
this decisional inflation. As to whether this “thinking” con-
tributes to our conscious phenomenology, this is discussed
elsewhere in the context of philosophical theories of
consciousness (Lau & Rosenthal, 2011).

In summary, peripheral vision contributes coarse but
invaluable information. How the brain represents periph-
eral information and why we are not consciously aware
of its larger limitations remain matters for further inves-
tigation. Here we speculate that subjective inflation of
perception in the periphery may be a natural and un-
avoidable consequence, due to the structure of periph-
eral vision processing and limitations in our perceptual
decision mechanism. At least in the case of our study, it
seems that peripheral vision, being processed by fewer
neurons, produces more variable responses. In turn,
variable responses trigger subjective detection more of-
ten, in a potentially natural implementation of stochastic
resonance (McDonnell & Abbott, 2009; Simonotto
et al., 1997).
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