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Summary

This note presents a robust economic model predictive control controller suit-
able for changing economic criterion. The proposal ensures feasibility under any
change of the economic criterion, thanks to the use of artificial variables and
a relaxed terminal constraint, and robustness in presence of additive bounded
disturbances. The resulting robust formulation considers a nominal prediction
model and restricted constraints (in order to account for the effect of additive dis-
turbances). The controlled system under the proposed controller is shown to be
input-to-state stable in the sense that it is asymptotically steered to an invariant
region around the best admissible steady state. An illustrative example shows
the benefits and the properties of the proposed controller.
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1 INTRODUCTION

Model predictive control (MPC) has its roots in optimal control and is one of the most used advanced control strategies
in the process industries, chemical plants, and oil refineries since the 1980s. The success of this control technique is due
to its control problem formulation, the usage of a model to predict the future behavior of the system to be controlled, the
ability of handling large multivariable systems subject to explicit constraints on states and inputs, and the capability of
ensuring stability.1,2

The goal of many advanced control systems is to guide a process to a target setpoint rapidly and reliably, but in the
last years, a particular MPC formulation called economic MPC has gained popularity. There are a lot of different formu-
lations in literature, each of them devoted to study/analyze some aspects of this interesting control technique.3-6 Some
methods include the economic objective as a terminal cost,7,8 but other ones optimize the dynamic economic performance
directly.3,6,9 In both cases, the control objective is not only to stabilize the controlled system in a particular steady state
but also to optimize some economic performance criterion. The main idea in these formulations is to consider an eco-
nomic objective, possibly the real-time optimizer (RTO) cost function, as part of the cost of the MPC controller. For the
second case of strategies, one of the main challenges has been showing the existence of a Lyapunov function in order to
prove stability. This goal has been firstly achieved under the assumption of strong duality,10 and, later, under the (relaxed)
dissipativity assumption,3,11 with the latter being not just sufficient but also a necessary condition for the closed-loop
stability.12,13 Asymptotic stability has also been proved in the case of using terminal cost (with14 and without15 terminal
constraints) and in the case of Lyapunov-based MPC controllers.16

When making an economic formulation of MPC, it is important to take into account that possible changes in economic
criteria may occur.17,18 This means that a change can occur in the state to which the controller must drive the system, ie,
in the economically optimal stationary state, producing, because of stability requirements, a possible loss of feasibility.
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It should be noted that the changes, which may occur during the operation of a plant, may be due to, for instance:
(i) market fluctuations, which causes changes in the cost function and in the prices that parameterized this function, and
(ii) changes in disturbances estimation or constraints due to data reconciliation algorithms.

A formulation of the economic MPC, which contemplates changes in the economic parameter, is presented in the work
of Liu et al.19 In that work, a controller is designed with a slightly modified cost function, to which it is added, follow-
ing the fundamentals presented in the work of Zhao et al,14 a terminal cost function, and a relaxed terminal constraint,
which requires the terminal state at the end of the horizon to be any admissible equilibrium point. As a consequence,
this controller ensures the following properties: (i) it guarantees feasibility under any change of the economic criterion;
(ii) it ensures economic optimality; (iii) it provides a larger domain of attraction than standard economic MPC. Moreover,
asymptotic stability is proved resorting to a Lyapunov function.

The aim of this paper is to propose a robust formulation of the economic MPC presented in the work of Liu et al19 for the
case of additive disturbance. The proposed robust strategy uses the nominal prediction model, restricting the constraints
to properly account for the disturbance effects.20 As a result, a robust economic MPC is obtained, which ensures recursive
feasibility under any change of the economic criterion or parameter, with robust constraints satisfaction. On the other
hand, since the controlled system is subject to nonvanishing disturbances, it is demonstrated that the proposed controller
is input-to-state stable (ISS). This implies that it is asymptotically directed to a region around the best permissible steady
state, characterized as the minimum robust positive invariant (RPI) set.

This work is organized as follows. After the introduction, the problem is stated in Section 2. Section 3 presents the pro-
posed robust controller as well as a stability analysis. Section 3.2 analyzes the main properties of the proposed controller,
whereas in Section 4, an illustrative example based on a simulation of a four tanks systems is presented. Finally, Section 5
gives some conclusions of this work.

1.1 Notation
Consider a ∈ ℝna and b ∈ ℝnb , the vector made from stacking both vectors is defined as (a, b)

Δ
= [a′, b′]′ ∈ ℝna+nb , where ′

denotes the transpose operator; for a set Γ ⊂ ℝna+nb , the projection of Γ onto a is defined as Proja(Γ) = {a ∈ ℝna ∶ ∃b ∈
ℝnb , (a, b) ∈ Γ}. A matrix 0n,m ∈ ℝn×m denotes a matrix of zeros, and In ∈ ℝn×n denotes the identity matrix. Given two
sets  and  , such that  ⊂ ℝn and  ⊂ ℝn, the Minkowski sum is defined by  ⊕ 

Δ
={u + v ∶ u ∈  , v ∈ }, and

the Pontryagin set difference is  ⊖ 
Δ
={u ∶ u ⊕  ⊆  }; given a matrix M ∈ ℝ𝑝×n, the set M ⊂ ℝ𝑝 is defined as

M
Δ
={Mu ∶ u ∈  }; for a given 𝜆, 𝜆

Δ
=(𝜆In) .

2 PROBLEM STATEMENT

This section states the problem, the robustness approach that is used, and the economic performance to be optimized.
Consider a system described by a linear time-invariant discrete time model

x+ = Ax + Bu + w, (1)

where x ∈ ℝn is the system state, u ∈ ℝm is the current control vector, x+ is the successor state, and w ∈ ℝn is an unknown
but bounded state disturbance. In what follows, x(k), u(k), and w(k) denote the state, the manipulable variable, and the
disturbance, respectively, at sampling time k.

System (1) is subject to constraints on state and input

(x(k),u(k)) ∈ , (2)

for all k ≥ 0, where  =  × is a compact convex polyhedron containing the origin in its interior.
Define also the plant nominal model, given by (1), neglecting the disturbance input w

x̄+ = Ax̄ + Bū. (3)

The solution of this system for a given sequence of control inputs ū = {ū(0), … , ū( 𝑗−1)}, and an initial state x̄ is denoted
as x̄( 𝑗) = 𝜙( 𝑗; x, ū), 𝑗 ∈ 𝕀≥1, where x̄(0) = 𝜙(0; x̄, ū).

The following assumption holds.
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Assumption 1. (i) The pair (A,B) is controllable, and the state is measured at each sampling time. (ii) The uncertainty
vector w is bounded and lies in a compact convex polyhedron,  , containing the origin in its interior.

2.1 Robust approach
The main goal of this work is to design a robust economic MPC controller. To this aim, following the ideas presented in
the works of Jiang et al20 and Wen et al,21 it is proposed here to use a nominal model for predictions and to restrict the
constraints at any step of the prediction horizon to take into account the effect of the disturbance.

First, the idea is to prestabilize the nominal system using a state feedback control gain K such that AK = A + B K has
all its eigenvalues in the interior of the unit circle. The controlled nominal system is then given by

x̄(k + 1) = AKx̄(k) + Bc(k)
ū(k) = Kx̄(k) + c(k), (4)

where c(k) can be seen as the difference between the applied control input ū(k) and the nominal feedback, ie, c(k)
Δ
= ū(k)−

Kx̄(k).
The second step is to reduce the constraint sets. To accomplish this goal, we need to define the so-called reachable sets,

which contain the response of the prestabilized autonomous system (ie, (4) whith c(k) = 0) because of the uncertainty.

Definition 1. The reachable set in j steps, 𝑗 , is given by

𝑗 =
𝑗−1⨁
i=0

Ai
K . (5)

This is the set of states of the nominal closed-loop prestabilized autonomous system that are reachable in j steps from
the origin under the disturbance w. This set satisfies the following properties:

i. It is given by the recursion 𝑗 ⊕ A𝑗

K = 𝑗+1, with 1 =  .
ii. A𝑗

K𝑗 ⊕ = 𝑗+1 = 𝑗 ⊕ A𝑗

K .
iii. 𝑗 ⊆ 𝑗+1.
iv. The sequence of sets 𝑗 has a limit ∞ as j → ∞, and ∞ is an RPI set for the prestabilized autonomous system.

Note that 𝑗 is not robust invariant for a finite j.
v. ∞ is the minimal RPI set.

Definition 2. [Robust positively invariant (RPI) set22] A set Ω is called an RPI set for the uncertain system x(k + 1) =
AK x(k) + w(k), with w(k) ∈  , if AKΩ⊕ ⊆ Ω.

We can now define the sets of restricted constraints as

̄𝑗 ≜  ⊖𝑗 (6)
̄𝑗 ≜  ⊖ K𝑗 . (7)

To ensure that these sets are nonempty, it must hold that ∞ ⊂  and K∞ ⊂  . Moreover, it is important to note
that the computation of such sets is made off-line, so it has no practical effects on the MPC problem.

Remark 1. The control gain K plays an important role in the proposed robust approach since it determines the dynamic
of the closed-loop system in presence of disturbances, and hence, it must ensure that K∞ ⊂  holds. Moreover, this
parameter can be chosen in order to obtain a less conservative (ie, tighter) set ∞.

2.2 Economic objective
First, we make an equilibrium characterization. Thus, if we consider the joint variable (x̄, ū), the state and input equilib-
rium subspace, associated to the nominal model (3), is given by ([A−In B]), where is the null space of a matrix, that is,

[A − In B]
[

x̄
ū

]
= 0n,1.



4 D' JORGE ET AL.

Defining ̄ ≜ ̄N × ̄N , the set of admissible equilibrium points of the nominal system is given by

̄s ≜
{
(x̄, ū) ∈ 𝜌̄ | x̄ = Ax̄ + Bū

}
,

where 𝜌 ∈ (0, 1) is a parameter (usually very close to 1) added to avoid those steady states and inputs that provide active
constraints.

Now, let us define a measure of the economic performance,* that is, the economic objective of the plant as

𝓁eco(x,u, 𝑝), (8)

where x and u are the state and the input of the system and p is a vector of bounded parameters, which takes into account
prices, costs, production goals, etc. This parameter has to be considered as an input to the RTO layer, resulting from the
economic scheduling and planning upper layer. We assume that the parameter p may change throughout the evolution
of the plant because of market fluctuations or data reconciliation.19

The best admissible steady state is the optimal steady state provided by the RTO, and it can then be defined as follows.

Definition 3. The optimal steady state and input, (xeco
s ,ueco

s ), satisfies(
xeco

s ,ueco
s

)
= arg min

(x,u)∈̄s

𝓁eco(x,u, 𝑝), (9)

for a given p, and it is assumed to be unique.

Remark 2. Note that the optimal steady state and input depend on the value of p, that is, (xeco
s (𝑝),ueco

s (𝑝)). However,
for the sake of clarity, in what follows, we will use the notation (xeco

s ,ueco
s ).

Assumption 2. The economic cost function 𝓁eco(x,u, p) is locally Lipschitz continuous in (xeco
s ,ueco

s ), that is, there
exists a constant Γ > 0 such that|||𝓁eco(x,u, 𝑝) − 𝓁eco

(
xeco

s ,ueco
s , 𝑝

)||| ≤ Γ |||(x,u) − (
xeco

s ,ueco
s

)||| ,
for all p and all (x,u) ∈ , such that |x − xeco

s | ≤ 𝜀 and |u − ueco
s | ≤ 𝜀,with 𝜀 > 0.

3 ROBUST FORMULATION OF THE ECONOMIC MPC

The main goal of this work is to design an economic MPC control law capable of maintaining feasibility for any change
of the parameter p and ensuring robustness for any w ∈  .

As usual in economic MPC literature,9 the idea is to use the economic cost function (8) as stage cost of the MPC con-
troller. However, if the economic criterion changes, for instance, because of changes in the prices, expected demand, etc,
the economically optimal admissible steady state (xeco

s ,ueco
s ), where the controller should steer the system,† may change,

and the feasibility of the controller may be lost. In this work and following the idea presented in the work of Liu et al,19 we
use a slightly modified cost function, which considers artificial steady state variables and a relaxed terminal constraint, to
ensure feasibility for any value of p. Moreover, with the purpose of guaranteeing robustness, the optimal control problem
is formulated considering the nominal prediction model and the restricted constraints described in Section 2.1.

The proposed cost function reads

VN(x, 𝑝;u, xa,ua) =
N−1∑
𝑗=0

𝓁eco
(

x̄( 𝑗) − xa + xeco
s , ū( 𝑗) − ua + ueco

s , 𝑝
)
+ V𝑓 (x̄(N), xa) + VO(xa,ua), (10)

where (xa,ua), the artificial reference, are optimization variables that represent the best steady state that the controller
can reach from x, in N steps, and are included to ensure feasibility under any change of the economic cost.23,24 Vf is a
penalty on the terminal state, and VO(xa,ua) is the so-called offset cost function devoted to penalize the lack of economic
optimality of the artificial variables.

*Notice that no assumption is made on the positive definiteness of function (8).3,9
†In this work, we only consider the case of processes operated at steady state.
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Assuming the prestabilizing gain K, of Section 2.1, we can write VN(x, p;u, xa,ua) = VN(x, p; c, xa,ua), where each
element of c, c( j; x), fulfills now ū( 𝑗; x) = K(x̄( 𝑗) − xa) + ua + c( 𝑗; x). This way, for any current state x, the optimization
problem PN(x, p) to be solved at each time step is given by

Problem PN(x, p)
min

c,xa,ua
VN(x, 𝑝; c, xa,ua)

s.t. x̄(0) = x,
x̄( 𝑗 + 1) = Ax̄( 𝑗) + Bū( 𝑗), 𝑗 ∈ 𝕀[0∶N−1]
ū( 𝑗) = K(x̄( 𝑗) − xa) + ua + c( 𝑗), 𝑗 ∈ 𝕀[0∶N−1]
x̄( 𝑗) ∈ ̄𝑗 , 𝑗 ∈ 𝕀[0∶N−1]

ū( 𝑗) ∈ ̄𝑗 , 𝑗 ∈ 𝕀[0∶N−1]
(x̄(N), xa,ua) ∈ Ωt,

where the last constraint is a terminal inequality constraint, necessary for stability reasons, and set Ωt ⊂ ℝ2n+m will
be defined later on. In the latter optimization problem, x and p are the parameters, whereas the input sequence
c = {c(0), … , c(N − 1)} and the artificial variables xa and ua are the optimization variables. The optimal solution
to Problem PN(x, p) and the optimal value of the cost function VN(x, p; c, xa,ua) are denoted respectively as v0(x, 𝑝) =
{c0(x, 𝑝), x0

a(x, 𝑝),u0
a(x, 𝑝)} and V 0

N(x, 𝑝). The optimal control law, in the receding horizon fashion, is given by 𝜅N(x, 𝑝) =
u0(0; x, 𝑝) = K(x − x0

a(x, 𝑝)) + u0
a(x, 𝑝) + c0(0; x, 𝑝), where c0(0; x, p) is the first element of the solution sequence c0(x, p).

The domain of attraction of the controller derived from Problem PN(x, p) is a compact set given by

N =
{

x ∈  ∶ ∃(c, xa,ua) s.t. x̄(𝑗) ∈ ̄𝑗 , ū(𝑗) ∈ ̄𝑗 , 𝑗 ∈ 𝕀[0∶N−1], (x̄(N), xa,ua) ∈ Ωt
}
.

To properly account for robust stability, some assumptions and definition regarding the terminal conditions of Problem
PN(x, p) are made. First, the terminal setΩt ensures that, for all (x, xa,ua) ∈ Ωt, (xa,ua) is an admissible equilibrium point,
the control input u = K(x − xa) + ua is admissible, and the successor state remains in Ωt for the same equilibrium point
(xa,ua). The set Ωt is characterized as follows.

Definition 4. (Robust invariant set for tracking21)
Define the extended state xz = (x, xa,ua) and

Az =

[ A + BK −BK B
0 In 0
0 0 Im

]
.

Define also the set
Xz,i = {(x, xa,ua) ∶ x ∈ ̄i,K(x − xa) + ua ∈ ̄i, (xa,ua) ∈ ̄s}

and
Σt =

{
xz ∶ Ai

zxz ∈ Xz,i, for i ≥ 0
}
,

which denotes the maximal robust admissible set for tracking. Then, the terminal robust invariant set for tracking,
Ωt, is given by

Ωt = Σt ⊖ (N × {0} × {0}) .

Notice that the terminal constraint, (x̄(N), xa,ua) ∈ Ωt, implies the following two conditions: (i) x̄(𝑗) ∈ ̄𝑗 , ū(𝑗) ∈ ̄𝑗 ,
for j > N, with x̄(𝑗 + 1) = Ax̄(𝑗) + Bū(𝑗) and ū( 𝑗) = K(x̄( 𝑗) − xa) + ua; and (ii) (xa,ua) ∈ ̄s.

Assumption 3. (On the terminal cost, Vf)
Let Ωt ⊆  × × be the terminal set presented above, and let 𝜅f (x, xa,ua) = K(x − xa) + ua be a stabilizing local
control law.23 Moreover, let the terminal cost function Vf (x, xa) be continuous, with Vf (xa, xa) = 0 for all xa, and such
that for all (x, xa,ua) ∈ Ωt, it holds

V𝑓 (x+, xa) ≤ V𝑓 (x, xa) − 𝓁eco
(

x − xa + xeco
s , 𝜅𝑓 (x, xa,ua) − ua + ueco

s , 𝑝
)
+ 𝓁eco

(
xeco

s ,ueco
s , 𝑝

)
. (11)

Following the ideas presented in the work of Amrit et al,14 we propose to use a terminal cost function given by

V𝑓 (x, xa) =
1
2
‖x − xa‖2

P + g′(x − xa), (12)

where P ∈ ℝn×n is the solution of the Lyapunov equation A′
KPAK − P = −Q, for a given matrix Q ∈ ℝn×n, and g′ =

t′(I − AK)−1, for a given vector t ∈ ℝn. In Lemma 3 in the Appendix B, it is proved how a proper choice of Q and t allows
Equation (12) to fulfill Assumption 3.
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Assumption 4. (On the offset cost, VO)
VO(x,u) is a positive definite strictly convex function such that the unique minimizer of

min
(x,u)∈s

VO(x,u) (13)

is (xeco
s ,ueco

s ). Furthermore, there exists a positive constant 𝛾 such that19

VO(x,u) − VO
(

xeco
s ,ueco

s
)
≥ 𝛾 ||x − xeco

s || , ∀ (x,u) ∈ ̄s. (14)

3.1 Asymptotic stability and convergence
The usual way to prove asymptotic stability of a closed-loop system under an MPC controller is to use the optimal value of
the cost function to be optimized as a Lyapunov function. This approach cannot be used in an economic MPC framework3,9

since the optimal cost is not necessarily decreasing along the closed-loop trajectory, and in some cases, it may happen that
𝓁eco(x,u, 𝑝) < 𝓁eco(xeco

s ,ueco
s , 𝑝) in the transient regime. In this context, we need an extra assumption, which is dissipativity

for the system with respect to the supply rate s(x,u) = 𝓁eco(x,u, 𝑝) − 𝓁eco(xeco
s ,ueco

s , 𝑝).

Assumption 5. (See the work of Angeli et al3,9)
For each (xeco

s ,ueco
s ) ∈ ̄s and a given p, there exists a continuous function 𝜆 ∶  → ℝ (storage function) such that

min
x,u

𝓁eco(x,u, 𝑝) + 𝜆(x, 𝑝) − 𝜆(x+, 𝑝) ≥ 𝓁eco
(

xeco
s ,ueco

s , 𝑝
)

s.t. x ∈  ,u ∈  ,

where x+ = Ax + Bu. Moreover, defining the rotated stage cost function as

L(x,u, 𝑝) = 𝓁eco(x,u, 𝑝) + 𝜆(x, 𝑝) − 𝜆(x+, 𝑝) − 𝓁eco
(

xeco
s ,ueco

s , 𝑝
)
,

there exists a -functions 𝛼 such that L(x,u, 𝑝) ≥ 𝛼(|x − xeco
s |).

Remark 3. Note that the storage function depends on the value of p. However, for the sake of clarity, in what follows,
we will use the notation 𝜆(x).

For the proposed controller, the rotated cost is L(x − xa + xeco
s ,u−ua +ueco

s , 𝑝). If we define z = x − xa and v = u − ua,
then we can rewrite the rotated cost in such a way that Lr(z, v, 𝑝) = L(z+ xeco

s , v+ ueco
s , 𝑝). Such a cost enjoys the following

property, which is a key point of the stability proof.19

Property 1.

1. If (xa,ua) = (xeco
s ,ueco

s ), then Lr(x − xeco
s ,u − ueco

s , 𝑝) = L(x,u, 𝑝), where L(x,u, p) is the rotated cost function in the
work of Angeli et al.3,9

2. If (x,u) = (xa,ua), then Lr(0, 0, 𝑝) = L(xeco
s ,ueco

s , 𝑝) = 0.
3. Lr(z, v, p) ≥ 𝛼1(|z|) + 𝛼2(|v|) for certain -functions 𝛼1 and 𝛼2.

Next, we define the rotated terminal cost as

Ṽ𝑓 (x, xa) = V𝑓 (x, xa) + 𝜆(x) − 𝜆(xa) − V𝑓 (xa, xa).

The rotated terminal cost enjoys the following property.

Property 2. (Rotated terminal cost)
Let Assumption 3 hold, then the pair (Ṽ𝑓 (·),L(·)) satisfies

Ṽ𝑓 (x+, xa) ≤ Ṽ𝑓 (x, xa) − L
(

x − xa + xeco
s , 𝜅𝑓 (x, xa,ua) − ua + ueco

s , 𝑝
)

for states x ∈  , x+ = A x + Bu, (xa,ua) ∈ ̄s and a given p.

Proof. This property is proved by adding 𝜆(x+) − 𝜆(x) in both sides of (11), that is,

V𝑓 (x+, xa) − V𝑓 (x, xa) + 𝜆(x+) − 𝜆(x) ≤ − 𝓁eco
(

x − xa + xeco
s , 𝜅𝑓 (x, xa,ua) − ua + ueco

s , 𝑝
)

+ 𝓁eco
(

xeco
s ,ueco

s , 𝑝
)
+ 𝜆(x+) − 𝜆(x)

Ṽ𝑓 (x+, xa) − Ṽ𝑓 (x, xa) ≤ L
(

x − xa + xeco
s , 𝜅𝑓 (x, xa,ua) − ua + ueco

s , 𝑝
)
.
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On the basis of all the previous considerations, we can define an auxiliary cost function as follows:

ṼN(x, 𝑝;u, xa,ua) =
N−1∑
𝑗=0

L
(

x̄(𝑗) − xa + xeco
s , ū(𝑗) − ua + ueco

s , 𝑝
)
+ Ṽ𝑓 (x̄(N), xa) + ṼO(xa,ua),

where ṼO(xa,ua) is the rotated offset cost function, given by

ṼO(xa,ua) = VO(xa,ua) + 𝜆(xa) − 𝜆
(

xeco
s

)
− VO

(
xeco

s ,ueco
s

)
.

As for Equation (10), given the prestabilizing gain K, of Section 2.1, we can write ṼN(x, 𝑝;u, xa,ua = ṼN(x, 𝑝; c, xa,ua),
where each element of c, c( j; x), is such that ū( 𝑗; x) = K(x̄( 𝑗) − xa) + ua + c( 𝑗; x). Then, for any current state x, we can
define the auxiliary optimization problem P̃N(x, 𝑝) given by

Problem P̃N(x, 𝑝)

min
c,xa,ua

ṼN(x, 𝑝; c, xa,ua)
s.t. x̄(0) = x,

x̄(𝑗 + 1) = Ax̄(𝑗) + Bū(𝑗), 𝑗 ∈ 𝕀[0∶N−1]
ū( 𝑗) = K(x̄( 𝑗) − xa) + ua + c( 𝑗), 𝑗 ∈ 𝕀[0∶N−1]
x̄( 𝑗) ∈ ̄𝑗 , 𝑗 ∈ 𝕀[0∶N−1]
ū( 𝑗) ∈ ̄𝑗 , 𝑗 ∈ 𝕀[0∶N−1]
(x̄(N), xa,ua) ∈ Ωt.

In Lemma 1 in the Appendix A, it is proved that the auxiliary optimization problem P̃N(x, 𝑝) delivers the same optimal
solution as PN(x, p). Then, the optimal value of the cost function ṼN(x, 𝑝;u, xa,ua), denoted in what follows as Ṽ 0

N(x, 𝑝),
can be used to define a candidate Lyapunov function.

Theorem 1. Consider that Assumptions 1 to 5 hold, and consider a given parameter p for the economic cost 𝓁eco(x,u, p).
Then, for any initial state x ∈ N and for all 𝛾 > |g| with g given in (12), the optimization problem P̃N(x, 𝑝) is recursively
feasible, and the MPC control law drives the disturbed system (1) to xeco

s ⊕∞, for any w ∈  .

Proof.

i. Recursive Feasibility
Recursive feasibility of the proposed Robust Economic MPC can be proved resorting to the work of
Ferramosca et al,21 lemmas 1 to 3.

ii. Stability
Let us define the function J(x, 𝑝) = Ṽ 0

N(x, 𝑝) − ṼO(xeco
s ,ueco

s ) as a candidate Lyapunov function. Then, there exist
-functions 𝛼J, 𝛽J, and 𝜎 such that

i. J(x, 𝑝) ≥ 𝛼J(|x − xeco
s |), for all x ∈ N (it follows from Property 1.3 and Lemma 4 in Appendix B19).

ii. J(x, 𝑝) ≤ 𝛽J(|x − xeco
s |), for all x ∈ N (it follows from the fact that N is compact, J(xeco

s , 𝑝) = 0, and J(x, p) is
continuous in x = xeco

s
2).

iii. J(x+, 𝑝) − J(x, 𝑝) ≤ −𝛼J(|x − xeco
s |) + 𝜎(|w|), for all x ∈ N and w ∈  , where 𝜎 is a -function (see Lemma 2 in

Appendix A).

Then, resorting to ISS arguments,25 it can be proved that there exist a  function 𝛽 and a  function 𝜗 such that||x(k) − xeco
s || ≤ 𝛽(||x(0) − xeco

s || , k) + 𝜗(|w|)
for all initial state x(0) ∈ N and all disturbances w ∈  , which means that the closed-loop is ISS, and so, the
disturbed system (1) is steered to xeco

s ⊕∞.

3.2 Properties of the proposed controller
The proposed controller is a robust formulation of the economic MPC for changing economic criterion presented in the
work of Ferramosca et al.19 The main properties of the new formulation are listed below.

• Feasibility and domain of attraction. Since the domain of attraction N does not depend on the optimal steady
state, then for all initial condition x ∈ N , every admissible steady state is reachable. Moreover, since the trajectory
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remains in N , if the economic criterion changes, problem PN(x, p) does not lose feasibility. However, in practice, it may
be difficult to know beforehand if an initial state is in N in order to close the loop with the controller. It is industrial
practice to manually operate the plant to an admissible equilibrium point before closing the control loop. Then, the
initial state is an equilibrium point, that is, (x,u) ∈ ̄s. In this practical case, feasibility of the proposed controller is
ensured since the initial state would be in the domain of attraction of the controller even for N = 1.

• Local economic optimality. The proposed controller may be suboptimal while xa ≉ xeco
s , that is, its performance

may be different from standard economic MPC controllers.9 This suboptimality is a consequence of the particular cost
to minimize and the relaxed terminal constraint, and in some sense, it is the price one has to pay for always ensuring
feasibility. However, it is proved in the aforementioned work19 that under some mild assumption on the cost VO(·, ·),
the controller ensures the economic optimality at least locally, that is, in a region  e

N ⊆ N , where  e
N is the domain of

attraction of the standard economic MPC.9 Note that, since it is the stage cost that provides the economic optimality,
one is free to choose the offset cost function VO(·, ·) in any form such that it satisfies Assumption 4.

• Robust Strategy. The proposed controller ensures robustness for any additive bounded disturbances w ∈  and
maintains the closed-loop system in a region of the state space around the economically optimal operation point, given
by the minimal RPI set, that is, the system (1) is steered to xeco

s ⊕∞, for all w ∈  .

4 ILLUSTRATIVE EXAMPLE

In this section, in order to demonstrate the properties and the benefits of the proposed robust economic MPC strategy,
some simulations results will be presented. First, a brief description of the considered system is shown. Then, the results
of dynamic simulations are presented.

4.1 System description
The system that we consider is the four-tank plant.26 This is composed of four diagonally interconnected tanks. The
controlled flow pumps A and B extract water from the lower tank by pouring it into tanks 1 and 4, pump A, and tanks 2
and 3 pump B. All tanks are discharged by gravity as shown in Figure 1.

Basically, the purpose of the plant is to control the levels of tanks 1 and 2, which represent the two outputs of the system.
These outputs are strongly coupled since if it is desired to increase the level of the reservoir 1, increasing the flow rate of
the pump A also increases the level of the reservoir 4, which, when discharged thereon, will increase the level thereof.

This way, the water levels in the four tanks (h1, h2, h3, h4) are the state of the system, whereas the inlet flows (qa, qb) are
the manipulated variables.

The system is interesting because of the following. (i) All state variables are accessible since the heights of the liquids
can be measured. (ii) The system model is nonlinear. (iii) The variables to be controlled are strongly coupled.

A state-space continuous-time nonlinear model of the quadruple-tank process system is given by Johansson26

dh1

dt
= − a1

S
√

2gh1 +
a3

S
√

2gh3 +
𝛾a

S
qa

3600
(15a)

dh2

dt
= − a2

S
√

2gh2 +
a4

S
√

2gh4 +
𝛾b

S
qb

3600
(15b)

dh3

dt
= − a3

S
√

2gh3 +
(1 − 𝛾b)

S
qb

3600
(15c)

dh4

dt
= − a4

S
√

2gh4 +
(1 − 𝛾a)

S
qa

3600
, (15d)

where, the parameters of the plant are

• S: Cross-section of the tanks ([m2]).
• ai: Discharge constant of the tank i ([m2]).
• hi: Water level of the tank i (state of the system) ([m]).
• qa, qb: Flow produced by the pumps A and B ([m3∕h]).
• g: The acceleration of gravity ([m∕s2]).
• 𝛾a, 𝛾b: Ratio of the three-way valves.
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FIGURE 1 The quadruple tank process [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Parameters of the four-tank plant

Value Unit Description

a1 1.310e-4 m2 Discharge constant of tank 1
a2 1.507e-4 m2 Discharge constant of tank 2
a3 9.267e-5 m2 Discharge constant of tank 3
a4 8.816e-5 m2 Discharge constant of tank 4
S 0.06 m2 Cross-section of all tanks
𝛾a 0.3 Parameter of the 3-way valve
𝛾b 0.4 Parameter of the 3-way valve

The value of these parameters are shown in the Table 1. These values have been estimated on the experimental plant
located at the Control Laboratory of the University of Seville (Spain). For a detailed description of this experimental plant,
please refer to the work of Alvarado et al.27

Linearizing the model at an operating point given by ho = (0.6487, 0.6639, 0.6498, 0.6592), qo = (1.63, 2), and defining
xi = hi − ho

i , u𝑗 = q𝑗 − qo
𝑗
, where i = 1, … , 4 and j = a, b, we have

dx
dt

=

⎡⎢⎢⎢⎢⎢⎣

−1
𝜏1

0 1
𝜏3

0
0 −1

𝜏2
0 1

𝜏4

0 0 −1
𝜏3

0
0 0 0 −1

𝜏4

⎤⎥⎥⎥⎥⎥⎦
x +

⎡⎢⎢⎢⎢⎢⎣

𝛾a
𝜒

0
0 𝛾b

𝜒

0 (1−𝛾b)
𝜒

(1−𝛾a)
𝜒

0

⎤⎥⎥⎥⎥⎥⎦
u + w, 𝑦 =

[
1 0 0 0
0 1 0 0

]
x,

where 𝜒 = 3600 ∗ S, and 𝜏i = S
ai

√
2ho

i
g

≥ 0, i = 1, … , 4, are the time constants of each tank.

The system has been discretized using the zero-order hold method with a sample time of Ts = 5[s].
The set  of possible disturbances realization is given by  = {w ∈ ℝ4 ∶ ||w||∞ ≤ 5 × 10−3}, and it was selected to

account for plant-model mismatches in the usual operating points.28

http://wileyonlinelibrary.com


10 D' JORGE ET AL.

The system must fulfill the following constraints:  = {x ∈ ℝ4 ∶ 0.2 ≤ x1,2 ≤ 1.36; 0.2 ≤ x3,4 ≤ 1.30} and  = {u ∈
ℝ2 ∶ [0, 0] ≤ u ≤ [3.26, 4]}. In what follows, set  will denote the set of admissible outputs given by  = Proj𝑦().
Matrix K has been chosen as the linear quadratic regulator gain, for Q = I4 and R = 0.001I2, and it is given by

K =
[
−6.5049 −4.9114 3.0196 −22.5094
−6.1002 −9.5974 −21.7712 2.3534

]
.

The prediction horizon has been chosen as N = 5.
The economic objective is to minimize the plant energetic consumption,29 by minimizing the voltage of the two pumps,

and at the same time to maximize the volume of water in the tanks 1 and 2. Then, the economic cost function are given by

𝑓eco(𝑦,u, 𝑝) =
(

q2
a + 𝜓q2

b
)
+ 𝜃 Vmin

S(h1 + h2)
,

whereVmin = 0.012[m3]is the minimum volume of water to be accumulated in the tanks. y = (h1, h2), u = (qa, qb), and
p = (𝜓, 𝜃) are the prices on the cost function. Note that this function is strictly convex in (x,u)and twice differentiable.

4.2 Dynamic simulations
In order to observe the dynamic performance of the system, it is considered a starting point that is the linearisation point
of the nominal model ho

i .
On the other hand, three economic costs have been considered on the basis of the following values of prices: p1 = (5, 10)

and p2 = (0.5, 100) and p3 = (5, 100). For these cases, the economically optimal steady conditions and optimal costs
are, respectively,

(𝑦eco
s1 ,u

eco
s1 ) = (0.2951, 0.3997, 1.4623, 1.3196), 𝑓eco(𝑦eco

s1 ,u
eco
s1 , 𝑝1) = 13.7234,

(𝑦eco
s2 ,u

eco
s2 ) = (1.1118, 0.9473, 1.6652, 2.9832), 𝑓eco(𝑦eco

s2 ,u
eco
s2 , 𝑝2) = 16.9358,

(𝑦eco
s3 ,u

eco
s3 ) = (0.5153, 0.8517, 2.4144, 1.3196), 𝑓eco(𝑦eco

s3 ,u
eco
s3 , 𝑝3) = 29.1662.

The chosen terminal cost function Vf (x, xa) presented in Section 3 satisfies Assumption 3 and has the next values for
matrices P and g for each values of prices p1, p2, and p3

P1 = 104 ∗
⎡⎢⎢⎢⎣

9.0172 −1.5784 1.2552 −3.5418
−1.5784 7.3651 −4.3798 0.8197
1.2552 −4.3798 3.9311 −0.6338
−3.5418 0.8197 −0.6338 2.4651

⎤⎥⎥⎥⎦ , g1 =
⎡⎢⎢⎢⎣
−224.0255
−253.8485
−753.2375
−89.7624

⎤⎥⎥⎥⎦
P2 = 104 ∗

⎡⎢⎢⎢⎣
2.4811 −0.4343 0.3454 −0.9745
−0.4343 2.0265 −1.2051 0.2255
0.3454 −1.2051 1.0816 −0.1744
−0.9745 0.2255 −0.1744 0.6783

⎤⎥⎥⎥⎦ , g2 =
⎡⎢⎢⎢⎣
−155.5548
−134.4142
−128.1216
−139.6735

⎤⎥⎥⎥⎦
P3 = 104 ∗

⎡⎢⎢⎢⎣
9.4163 −1.6482 1.3108 −3.6985
−1.6482 7.6911 −4.5737 0.8560
1.3108 −4.5737 4.1051 −0.6618
−3.6985 0.8560 −0.6618 2.5742

⎤⎥⎥⎥⎦ , g3 =
⎡⎢⎢⎢⎣
−382.3292
−373.7694
−688.4208
−144.6703

⎤⎥⎥⎥⎦ .
The results of the simulation are presented in Figures 2 to 4. In particular, Figures 2 and 3 show the evolution of

the controlled outputs h1 and h2 and the evolution of the control inputs qa and qb, respectively. The economic steady
output, the artificial references, and the real output are depicted, respectively, in blue dash-dotted, red dashed, and black
solid lines. It can be observed how the inputs and outputs of the system are affected throughout the time by the additive
disturbances w, highlighting the robust behavior of the controlled system. This behavior is also visible in Figure 4, where
the output space evolution of this simulation is shown. The green shaded sets represent the projections onto the output
space of the minimal RPIs centered in the economically optimal steady states, that is, 𝑦eco

si ⊕ C∞. It can be noticed
that the controller drives the controlled system toward the economically optimal operation point. The deviation is due
to the presence of the disturbance, which is considered, in this case, having a truncated Gaussian distribution. It can be
observed that the system is asymptotically steered to the robust invariant region around the optimal steady state and then
maintained there, ie, 𝑦 → 𝑦eco

s ⊕ C∞ as 𝑦̄ → 𝑦eco
s , which means that the proposed controller satisfies the economic

objective even in the presence of disturbances.
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FIGURE 2 Evolution of the outputs h1 and h2: system output in black solid line, artificial reference in red dotted line, economic optimum
in blue dash-dotted line [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Evolution of the control inputs qa and qb: system output in black solid line, artificial reference in red dotted line [Colour figure
can be viewed at wileyonlinelibrary.com]

Moreover, there is no loss of feasibility when changing the economic parameter p, and therefore, the controller is able
to drive the system to a new economic steady state. This is thanks to the role played by the artificial variables in the design
of the controller.

Figure 5 shows the economic cost for the different values of p1, p2, and p3. We can observe that the economic cost
function robustly converges to the optimal value of feco for all changes of p.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


12 D' JORGE ET AL.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

FIGURE 4 Output space evolution of the closed-loop system in case of a truncated Gaussian distribution [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 5 Evolution of the economic cost feco, for different values of p

Summarizing, this illustrative example shows the following.

• Despite the presence of the nonvanishing additive disturbance w, the controller is able to steer the system toward the
economically optimal operation point, maintaining it in a region around the steady state given by the RPI. In fact, once
the output evolution enters the set 𝑦eco

s ⊕ C∞, it never leaves it unless a change in the economic criterion, that is, a
change in the parameter p, occurs.

• The artificial reference allows the controller to maintain the feasibility when the economically optimal steady state
changes. That is, if the economic goal changes, the controller is able to bring the system to a new point of feasible
operation, keeping the stability and convergence properties.

Remark 4. Note that the online computational demand of the proposed robust controller is not greater than the one
of a nominal one since every polytopic set involved in the online MPC optimization problem is computed offline.

5 CONCLUSIONS

In this work, a new robust economic MPC for a changing economic criterion has been presented for the case of linear
systems with additive bounded disturbances.

http://wileyonlinelibrary.com
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The overall idea is to robustly consider the economic optimization cost into the controller formulation. In this way,
the proposed controller is able to bring the system to an economic optimal operation, ensuring economic optimality and
maintaining the closed-loop system in a region of the state space around the economically optimal operation point, given
by the minimal RPI Set. By means of the economic MPC formulation and the use of artificial variables, stability and
convergence to the optimum are ensured. Robustness is achieved by means of a nominal prediction model and the usage
of restricted constraints to properly accounts for the disturbance effects.

The main benefits of the proposed controller are as follows.

• The closed loop robustly converges to the optimal economic point that minimizes 𝓁eco.
• The controller remains feasible under any change of the economic objective and any disturbance realization.
• Economic optimality is maintained under some mild assumptions on the offset cost function.

A simulation example of a four-tank system showed that the strategy could be useful from an application point of view.
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APPENDIX A

PROOF OF THEOREM

Lemma 1. Consider that Assumptions 1 to 5 hold, and consider a given parameter p for the economic cost 𝓁eco(x,u, p).
Then, for any initial state x ∈ N , problem PN(x, p) and the auxiliary problem P̃N(x, 𝑝) deliver the same optimal solution.

Proof. From the definition of rotated cost in Equation 15, we have that

ṼN(x, 𝑝;u, xa,ua) =
N−1∑
𝑗=0

L
(

x̄( 𝑗) − xa + xeco
s , ū( 𝑗) − ua + ueco

s , 𝑝
)
+ Ṽ𝑓 (x̄(N), xa) + ṼO(xa,ua)

=
N−1∑
𝑗=0

[
𝓁eco

(
x̄( 𝑗) − xa + xeco

s , ū( 𝑗) − ua + ueco
s , 𝑝

)
+ 𝜆(x̄( 𝑗)) − 𝜆(x̄( 𝑗 + 1)) − 𝓁eco

(
xeco

s ,ueco
s , 𝑝

)]
+V𝑓 (x̄(N), xa) + 𝜆(x̄(N)) − 𝜆(xa) − V𝑓 (xa, xa) + VO(xa,ua) + 𝜆(xa) − 𝜆

(
xeco

s
)
− VO

(
xeco

s ,ueco
s

)
.

Notice that Vf (xa, xa) = 0 and
∑N−1
𝑗=0 𝜆(x̄( 𝑗)) − 𝜆(x̄( 𝑗 + 1)) = 𝜆(x̄) − 𝜆(x̄(N)). Hence,

ṼN(x, 𝑝;u, xa,ua) =
N−1∑
𝑗=0

[
𝓁eco(x̄( 𝑗) − xa + xeco

s , ū( 𝑗) − ua + ueco
s , 𝑝)

]
+ 𝜆(x̄) − 𝜆(x̄(N)) − N𝓁eco

(
xeco

s ,ueco
s , 𝑝

)
+V𝑓 (x̄(N), xa) + 𝜆 (x̄(N)) + VO(xa,ua) − 𝜆

(
xeco

s
)
− VO

(
xeco

s ,ueco
s

)
=

N−1∑
𝑗=0

𝓁eco
(

x̄( 𝑗) − xa + xeco
s , ū( 𝑗) − ua + ueco

s , 𝑝
)
+ V𝑓 (x̄(N), xa) + VO(xa,ua)

−N𝓁eco
(

xeco
s ,ueco

s , 𝑝
)
− VO

(
xeco

s ,ueco
s

)
+ 𝜆(x) − 𝜆

(
xeco

s
)
,

https://doi.org/10.1002/rnc.4243


D' JORGE ET AL. 15

where the first term is VN(x, p;u, xa,ua), Equation (10), and the second does not depend on the decision variable vector
(u, xa,ua). Thus, ṼN(·) and VN(·) differ by terms that are constant for a given initial state x.

Therefore, since problem PN(x, p) and problem P̃N(x, 𝑝) have the same set of constraint and their objective function
only differs by constant terms, we conclude that the solutions of PN(x, p) and P̃N(x, 𝑝) are equal.

Lemma 2. Consider that Assumptions 1 to 5 hold, and consider a given parameter p for the economic cost 𝓁eco(x,u, p).
For any initial state x(k) ∈ N , consider the optimal solution to problem P̃N(x(k), 𝑝), Ṽ 0

N(x(k), 𝑝) and define the function
J(x(k), 𝑝) = Ṽ 0

N(x(k), 𝑝) − ṼO(xeco
s ,ueco

s ). Then,

J (x(k + 1), 𝑝) − J (x(k), 𝑝) ≤ −𝛼J
(||x(k) − xeco

s ||) + 𝜎 (|w(k)|)
for all x(k) ∈ N and w(k) ∈  , where 𝜎 and 𝛼J are -function.

Proof. To prove this lemma, as standard in MPC, let us compare two costs, the cost at time k + 1 and at time k. Since
the measured state x(k + 1) is uncertain, we consider the case that w(k) = 0 and w(k) ≠ 0. In what follows, we will
use the notation x for x(k), x+ for x(k + 1), and w for w(k).

First of all, notice that, if w = 0, following same arguments as in the work of Ferramosca et al,19 it can be shown that

J(x+, 𝑝) − J(x, 𝑝) ≤ −𝛼J
(||x − xeco

s ||) .
Consider now that w ≠ 0. We proceed now to compare the optimal cost Ṽ 0

N(x, 𝑝) at time k, with ṼN(x+, 𝑝; ũ, xa, ũa),
that is, the cost at time k + 1 given by the feasible candidate sequence

ũ = {ũ(0), ũ(1), … , ũ(N − 1)}

=
{

u0(1; x),u0(2; x), … ,u0(N − 1, x),K
(

x(N) − x0
a
)
+ u0

a
}

x̃a = x0
a(x)

ũa = u0
a(x).

Notice that it is not possible to compare ṼN(x+, 𝑝; ũ, x̃a, ũa) and Ṽ 0
N(x, 𝑝) using standard nominal MPC arguments2

since x+ ≠ Ax + Bu0(0; x) because of the presence of the disturbance. However, taking into account the nominal
prediction model and Lemma 6, we can state that x+ = x̄(1; x) + w, where x̄(1; x) = Ax + Bu0(0; x). Therefore,

ΔVN = ṼN(x+, 𝑝; ũ, x̃a, ũ) − Ṽ 0
N(x, 𝑝)

= ṼN(x+, 𝑝; ũ, x̃a, ũa) − ṼN (x̄(1; x), 𝑝; ũ, x̃a, ũa) + ṼN (x̄(1; x), 𝑝; ũ, x̃a, ũa) − Ṽ 0
N(x, 𝑝)

= ΔV w
N + ΔV nom

N ,

where

ΔV w
N = ṼN(x+, 𝑝; ũ, x̃a, ũa) − ṼN(x̄(1; x), 𝑝; ũ, x̃a, ũa)

ΔV nom
N = ṼN (x̄(1; x), 𝑝; ũ, x̃a, ũa) − Ṽ 0

N(x, 𝑝).

Note that, following same argument as in the works of Amrit et al an Ferramosca et al,14,19 it can be shown that

ΔV nom
N = ṼN (x̄(1; x), 𝑝; ũ, x̃a, ũa) − Ṽ 0

N(x, 𝑝)

= −L
(

x − x0
a + xeco

s ,u0(0; x) − u0
a + ueco

s , 𝑝
)
.

Let us now analyze ΔV w
N . First of all, let us define the sequence of nominal predictions corresponding to the feasible

candidate sequence ũ, starting from x+ at time k + 1

x̃( 𝑗; x+) = A𝑗x+ +
𝑗−i∑
i=0

Ai Bũ( 𝑗 − i − 1)

= x̄( 𝑗 + 1; x) + A𝑗

Kw,

where the last equality comes from Lemma 6 (Appendix B).
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Then,

ΔV w
N =ṼN(x+, 𝑝; ũ, x̃a, ũa) − ṼN (x̄(1; x), 𝑝; ũ, x̃a, ũa)

=
N−1∑
𝑗=0

L
(

x̃( 𝑗; x+) − x̃a + xeco
s , ũ( 𝑗) − ũa + ueco

s , 𝑝
)
+ Ṽ𝑓

(
x̃(N; x+), x̃a

)
+ ṼO(x̃a, ũa)

−
N−1∑
𝑗=0

L
(

x̄( 𝑗 + 1; x) − x̃a + xeco
s , ũ( 𝑗) − ũa + ueco

s , 𝑝
)
− Ṽ𝑓 (x̄(N + 1; x), x̃a) − ṼO(x̃a, ũa)

=
N−1∑
𝑗=0

𝓁eco
(

x̃( 𝑗; x+) − x0
a + xeco

s ,u0( 𝑗 + 1; x) − ũa + ueco
s , 𝑝

)
+ V𝑓

(
x̃(N; x+), x0

a
)
+ VO

(
x0

a,u0
a
)

+ 𝜆(x+) − 𝜆
(

xeco
s

)
− N𝓁eco

(
xeco

s ,ueco
s , 𝑝

)
+ 𝜆

(
x̃(N; x+)

)
− 𝜆

(
x0

a
)
− V𝑓

(
x0

a, x0
a
)
− VO

(
xeco

s ,ueco
s

)
−

N−1∑
𝑗=0

𝓁eco
(

x̄( 𝑗 + 1; x) − x0
a + xeco

s ,u0( 𝑗 + 1; x) − u0
a + ueco

s , 𝑝
)
− V𝑓

(
x̄(N + 1; x), x0

a
)
− VO

(
x0

a,u0
a
)

− 𝜆(x̄(1; x)) + 𝜆
(

xeco
s

)
+ N𝓁eco

(
xeco

s ,ueco
s , 𝑝

)
− 𝜆(x̄(N + 1; x)) + 𝜆

(
x0

a
)
+ V𝑓

(
x0

a, x0
a
)
+ VO

(
xeco

s ,ueco
s

)
=

N−1∑
𝑗=0

(
𝓁eco(x̃( 𝑗; x+) − x0

a + xeco
s ,u0( 𝑗 + 1; x) − ũa + ueco

s , 𝑝) − 𝓁eco(x̄( 𝑗 + 1; x) − x0
a + xeco

s ,u0( 𝑗 + 1; x) − u0
a + ueco

s , 𝑝)
)

+ V𝑓

(
x̃(N; x+), x0

a
)
− V𝑓

(
x̄(N + 1; x), x0

a
)
+ 𝜆(x+) − 𝜆(x̄(1; x)) + 𝜆

(
x̃(N; x+)

)
− 𝜆(x̄(N + 1; x)) ,

where the second to last equality are similar to the ones developed in Lemma 1. Notice that, since 𝜆(·) is continuous
in the compact set  , then it is uniformly continuous on  , and hence,

𝜆(x+) − 𝜆(x̄(1; x)) ≤ ||𝜆(x+) − 𝜆(x̄(1; x))||
≤ 𝜎𝜆1

(||x+ − x̄(1; x)||) = 𝜎𝜆1 (|w|)
𝜆
(

x̃(N; x+)
)
− 𝜆(x̄(N + 1; x)) ≤ |||𝜆(x̃(N; x+)

)
− 𝜆(x̄(N + 1; x))|||

≤ 𝜎̄𝜆2

(||x̃(N; x+) − x̄(N + 1; x)||) = 𝜎̄𝜆2

(|||AN
k w|||) ≤ 𝜎𝜆2 (|w|),

where 𝜎𝜆1 , 𝜎𝜆2 , and 𝜎̄𝜆2 are -function.
Furthermore, taking into account that x̃(N; x+) = x̄(N + 1; x) + AN

k w, the following bound can be obtained:

V𝑓

(
x̃(N; x+)

)
− V𝑓(x̄(N + 1; x)) ≤ 𝜎V𝑓

(||x̃(N; x+) − x̄(N + 1; x)||)
≤ 𝜎V𝑓 (||AN

K
|| |w|)

≤ 𝜎V𝑓 (|w|),
where the first inequality comes from uniform continuity of Vf (x)‡ and 𝜎V𝑓 is a -function. Moreover,

N−1∑
𝑗=0

𝓁eco
(

x̃( 𝑗; x+) − x0
a + xeco

s ,u0( 𝑗 + 1; x) − ũa + ueco
s , 𝑝

)
− 𝓁eco

(
x̄( 𝑗 + 1; x) − x0

a + xeco
s ,u0( 𝑗 + 1; x) − u0

a + ueco
s , 𝑝

)
≤

N−1∑
𝑗=0

|||𝓁eco
(

x̃( 𝑗; x+) − x0
a + xeco

s ,u0( 𝑗 + 1; x) − ũa + ueco
s , 𝑝

)
− 𝓁eco

(
x̄( 𝑗 + 1; x) − x0

a + xeco
s ,u0( 𝑗 + 1; x) − u0

a + ueco
s , 𝑝

)|||
≤ Γ

N−1∑
𝑗=0

|||(x̃( 𝑗; x+) − x̄( 𝑗 + 1; x)
)
)|||

≤ Γ
N−1∑
𝑗=0

|||A𝑗

K
||| |w|

≤ Γ |w| N−1∑
𝑗=0

|||A𝑗

K
||| = Γ1 − |AK|N

1 − |AK| |w|
≤ 𝜎L(|w|),

‡Vf is uniformly continuos because it is continuous in a compact.
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where the second inequality comes from Lipschitz continuity of 𝓁eco(x,u, p), Γ is the Lipschitz constant, and 𝜎L is a
-function.

Therefore,
ΔV w

N ≤ 𝜎𝜆1 (|w|) + 𝜎𝜆2 (|w|) + 𝜎V𝑓 (|w|) + 𝜎L(|w|)
≤ 𝜎(|w|),

being 𝜎 is a -function. Because of the previous inequality, we can conclude that

ΔVN = ΔV nom
N + ΔV w

N

≤ −L
(

x − x0
a + xeco

s ,u0(0; x) − u0
a + ueco

s , 𝑝
)
+ 𝜎(|w|).

By optimality of the solution at time k + 1, we can state that Ṽ 0
N(x

+, 𝑝) ≤ ṼN(x+, 𝑝; ũ, x̃a, ũa), and then,

ΔV 0
N = Ṽ 0

N(x
+, 𝑝) − Ṽ 0

N(x, 𝑝)
≤ ΔVN

≤ −L
(

x − x0
a + xeco

s ,u0(0; x) − u0
a + ueco

s , 𝑝
)
+ 𝜎(|w|)

≤ −𝛼
(||x − x0

a||) + 𝜎(|w|)
≤ −𝛼J

(||x − xeco
s ||) + 𝜎(|w|),

where the last inequality comes from Lemma 4, which conlcudes the proof.
Thus, we can conclude that

J(x+, 𝑝) − J(x, 𝑝) ≤ −𝛼J(||x − xeco
s ||) + 𝜎(|w|),

for all x ∈ N and w ∈  .

APPENDIX B

LEMMATA

Lemma 3. Let Assumptions 1 and 2 hold. Let the terminal cost function be given by V𝑓 (x, xa) = 1
2
‖x − xa‖2

P + g′(x− xa),
where P ∈ ℝn×n is the solution of the Lyapunov equation A′

KP AK −P = −Q, for a given Q ∈ ℝn×n, and g′ = t′(I − AK)−1,
for a given t ∈ ℝn. Then, there exists a proper choice of Q and t such that Vf (x, xa) fulfills Assumption 3.

Proof. First of all, let us assume, without loss of generality that (xeco
s ,ueco

s ) = (0, 0). Then, by the mean value theorem,
it there exists an x in the interval (xa, xeco

s ) such that

𝓁eco(x − xa + xeco
s , 𝜅𝑓 (x, xa,ua) − ua + ueco

s , 𝑝) =𝓁eco(x − xa,K(x − xa), 𝑝)
=𝓁eco(0, 0) + ∇𝓁eco(0,0)(x − xa)

+ 1
2
(x − xa)′H𝓁eco(x)(x − xa),

where ∇𝓁eco(0, 0) is the gradient of 𝓁eco(x − xa,K (x − xa), p) w.r.t. x evaluated in (0, 0), and H𝓁eco(x) is the Hessian
matrix of 𝓁eco(x − xa,K (x − xa), p) w.r.t. x.

Now, let us define t = ∇𝓁eco(0, 0). Moreover, let

𝜆∗ = max
x∈Projx(Ωt)

{
𝜆M

(
H𝓁eco(x)

)}
,

where 𝜆M(H𝓁eco(x)) is the maximum eigenvalue of H𝓁eco(x) and Projx(Ωt) is the projection of Ωt onto x. Then,
𝜆∗(x − xa)′(x − xa) ≥ (x − xa)′H𝓁eco(x)(x − xa) for all (x, xa,ua) ∈ Ωt.

We can now define matrix Q as Q = 𝜆∗I + 𝛼I, with 𝛼 > −𝜆∗. Then,

(x − xa)′Q(x − xa) ≥ (x − xa)′H𝓁eco(x)(x − xa)

for all (x, xa,ua) ∈ Ωt.
Therefore,

𝓁eco (x − xa,K(x − xa), 𝑝) − 𝓁eco(0, 0, 𝑝) = ∇𝓁eco(0,0)(x − xa) +
1
2
(x − xa)′H𝓁eco(x)(x − xa)

≤ t′(x − xa) +
1
2
‖x − xa‖2

Q ,
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or in general,

𝓁eco(x − xa + xeco
s , 𝜅𝑓 (x, xa,ua) − ua + ueco

s , 𝑝) − 𝓁eco(xeco
s ,ueco

s , 𝑝) ≤ t′(x − xa) +
1
2
‖x − xa‖2

Q .

Taking now the increment of the terminal cost under the control law 𝜅f(x, xa,ua) = K(x − xa) + ua, we have

V𝑓 (x+, xa) − V𝑓 (x, xa) =
1
2
‖‖x+ − xa‖‖2

P + g′(x+ − xa) −
1
2
‖x − xa‖2

P − g′(x − xa)

= 1
2
‖AK(x − xa)‖2

P + g′ (AK(x − xa)) −
1
2
‖x − xa‖2

P − g′(x − xa)

= 1
2
‖x − xa‖2

A′
K PAK−P − g′(I − AK)(x − xa)

= −1
2
‖x − xa‖2

Q − t′(I − AK)−1(I − AK)(x − xa)

= −1
2
‖x − xa‖2

Q − t′(x − xa)

≤ −𝓁eco
(

x − xa + xeco
s , 𝜅𝑓 (x, xa,ua) − ua + ueco

s , 𝑝
)
+ 𝓁eco

(
xeco

s ,ueco
s , 𝑝

)
.

Moreover, notice that Vf (xa, xa) = 0. Then, by choosing t = ∇𝓁eco(0,0) and Q = 𝜆∗I + 𝛼I, with 𝛼 > −𝜆∗, the
terminal cost function (12) satisfies Assumption 3.

In what follows, we introduce some lemmas necessary for the proof of Theorem 1.

Lemma 4. Consider that Assumptions 1 to 5 hold and w = 0. For a given p, let xeco
s be the optimal steady state. For all

x ∈ N and x0
a ∈ s = Pro𝑗x(̄s), define the function e(x) = x − x0

a. Then, there exists a -function 𝛼e such that

|e(x)| ≥ 𝛼e
(||x − xeco

s ||) . (B1)

Proof. Because of the convexity of the sets N and s, e(x) is a continuous function.2 Moreover, let us consider these
two cases:

1. |e(x)| = 0 iff x = xeco
s . In fact, (i) if e(x) = 0, then x = x0

a, and from Lemma 5, this implies that x0
a = xeco

s ; (ii) if
x = xeco

s , then by the economic optimality of xeco
s , it is x0

a = xeco
s , and then, x = x0

a.
2. |e(x)| > 0 for all |x − xeco

s | > 0. In fact, for any x ≠ xeco
s , |e(x)| ≠ 0, and moreover, |x − xeco

s | > 0. Then, |e(x)| > 0.

Then, since N is compact, in virtue of chapter 5, lemma 6 in the work of Khalil,30 there exists a -function 𝛼e such
that |e(x)| ≥ 𝛼e(|x − xeco

s |).
Lemma 5. Consider that Assumptions 1 to 5 hold and w = 0. Take 𝛾 > |g|, where g is defined in (12). Let the optimal
solution to Problem P̃N(x, 𝑝), at time k and for a given p, be such that x(k) = x0

a(x(k)) and ū(k) = u0
a(x(k)). Then, x(k) =

xeco
s , and ū(k) = ueco

s .

Proof. In this proof, the time dependence will be omitted for the sake of clarity. Since the optimal solution to problem
P̃N(x, 𝑝) is such that x = x0

a and ū = u0
a, then because of the terminal constraint, (x, ū) ∈ ̄s, and the optimal cost

function is given by Ṽ 0
N(x

0
a, 𝑝) =

∑N−1
𝑗=0 L(xeco

s ,ueco
s , 𝑝)+ ṼO(x0

a,u0
a) = ṼO(x0

a,u0
a). The latter cost form comes from the fact

that the optimal predicted input and state trajectories correspond to the action of keeping the system at the equilibrium
(xa,ua), for the N steps of the horizon.

The lemma will be proved by contradiction. Assume that (x, ū) = (x0
a,u0

a) ≠ (xeco
s ,ueco

s ). Hence, given that both,
(x0

a,u0
a) and (xeco

s ,ueco
s ) belong to the convex set ̄s (ie, they are feasible equilibrium pairs), there exists a 𝛽 ∈ (0, 1) such

that for any 𝛽 ∈ [𝛽, 1)

1. (x̂s, ûs) = 𝛽(x0
a,u0

a) + (1 − 𝛽)(xeco
s ,ueco

s ).
2. (x̂s, ûs) ∈ ̄s.
3. The control law u = K(x − x̂s) + ûs drives the system from x0

a to x̂s in an admissible way.

Therefore, defining as û the sequence of control actions derived from the control law û( 𝑗) = K(x̂( 𝑗) − x̂s) + ûs, with
x̂(0) = x0

a, it is inferred that û is a feasible solution to problem P̃N(x, 𝑝). Then, by the optimality of the assumed solution,
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we have that Ṽ 0
N(x

0
a, 𝑝) = ṼN(x0

a, 𝑝;u0, x0
a,u0

a) ≤ ṼN(x0
a, 𝑝; û, x̂s, ûs). Then, taking into account that Ṽ 0

N(x
0
a, 𝑝) = ṼO(x0

a,u0
a)

and developing the second term of the latter inequality, it follows that

ṼO(x0
a,u0

a) ≤
N−1∑
𝑗=0

L
(

x̂( 𝑗) − x̂s + xeco
s , û( 𝑗) − ûs + ueco

s , 𝑝
)
+ Ṽ𝑓(x̂(N), x̂s) + ṼO(x̂s, ûs)

≤ Ṽ𝑓(x̂(0), x̂s) + ṼO(x̂s, ûs)
= Ṽ𝑓

(
x0

a, x̂s
)
+ ṼO(x̂s, ûs)

= V𝑓

(
x0

a, x̂s
)
+ 𝜆

(
x0

a
)
− 𝜆(x̂s) − V𝑓(x̂s, x̂s) + VO(x̂s, ûs) + 𝜆(x̂s) − 𝜆

(
xeco

s
)
− VO

(
xeco

s ,ueco
s

)
= V𝑓

(
x0

a, x̂s
)
+ VO(x̂s, ûs) + d, (B2)

where d = 𝜆(x0
a) − 𝜆(xeco

s ) − VO(xeco
s ,ueco

s ).
The second inequality comes from Property 2 since

Ṽ𝑓 (x̂( 𝑗 + 1), x̂s) ≤ Ṽ𝑓 (x̂( 𝑗), x̂s) − L
(

x̂( 𝑗) − x̂s + xeco
s , 𝜅(x̂( 𝑗), x̂s, ûs) − ûs + ueco

s , 𝑝
)
,

where 𝜅(x̂( 𝑗), x̂s, ûs) = û( 𝑗) = K(x̂( 𝑗) − x̂s) + ûs, with x̂(0) = x0
a, and x̂( 𝑗 + 1) = Ax̂( 𝑗) + Bû( 𝑗).

Now, taking j = 0, we have that

Ṽ𝑓 (x̂(1), x̂s) ≤ Ṽ𝑓 (x̂(0), x̂s) − L(x̂(0) − x̂s + xeco
s , û(0) − ûs + ueco

s , 𝑝),

whereas taking j = 1, we have that

Ṽ𝑓 (x̂(2), x̂s) ≤ Ṽ𝑓 (x̂(1), x̂s) − L
(

x̂(1) − x̂s + xeco
s , û(1) − ûs + ueco

s , 𝑝
)

≤ Ṽ𝑓 (x̂(0), x̂s) −
1∑
𝑗=0

L
(

x̂( 𝑗) − x̂s + xeco
s , û( 𝑗) − ûs + ueco

s , 𝑝
)
.

Therefore, by induction, for j = N − 1, we have

Ṽ𝑓 (x̂(N), x̂s) ≤ Ṽ𝑓 (x̂(N − 1), x̂s) − L
(

x̂(N − 1) − x̂s + xeco
s , û(N − 1) − ûs + ueco

s , 𝑝
)

≤ Ṽ𝑓 (x̂(0), x̂s) −
N−1∑
𝑗=0

L
(

x̂( 𝑗) − x̂s + xeco
s , û( 𝑗) − ûs + ueco

s , 𝑝
)
,

which can be written as

Ṽ𝑓 (x̂(0), x̂s) ≥
N−1∑
𝑗=0

L(x̂( 𝑗) − x̂s + xeco
s , û( 𝑗) − ûs + ueco

s , 𝑝) + Ṽ𝑓 (x̂(N), x̂s).

Now, we resume Equation (B2). Given that (x̂s, ûs) is a convex combination of (x0
a,u0

a) and (xeco
s ,ueco

s ), with 𝛽 ∈ (0, 1)
as the convex parameter, the idea is to compute the cost as a function of 𝛽. Define the function W (𝛽), which is given by

W(𝛽) = V𝑓

(
x0

a, x̂s
)
+ VO(x̂s, ûs) + d

= 1
2
‖‖x0

a − x̂s‖‖2
P + g′

(
x0

a − x̂s
)
+ VO(x̂s, ûs) + d

= (1 − 𝛽)2 1
2
‖‖x0

a − xeco
s ‖‖2

P + (1 − 𝛽)g′
(

x0
a − xeco

s
)
+ VO(x̂s, ûs) + d.

Notice that W(1) = VO(x0
a,u0

a) + d = ṼO(x0
a,u0

a) = Ṽ 0
N(x

0
a, 𝑝).

Taking the partial of W about 𝛽, we have that

𝜕W
𝜕𝛽

= −(1 − 𝛽) ‖‖x0
a − xeco

s ‖‖2
P − g′

(
x0

a − xeco
s

)
+ q′ (x0

a − xeco
s ,u0

a − ueco
s

)
,

where q′ ∈ 𝜕VO(x̂s, ûs), defining 𝜕VO(x̂s, ûs) as the subdifferential of VO(x̂s, ûs). Evaluating this partial for 𝛽 = 1,
we obtain

𝜕W
𝜕𝛽

||||𝛽=1
= −g′

(
x0

a − xeco
s

)
+ q̄′ (x0

a − xeco
s ,u0

a − ueco
s

)
,

where q̄′ ∈ 𝜕VO(x0
a,u0

a), defining 𝜕VO(x0
a,u0

a) as the subdifferential of VO(x0
a,u0

a).
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Then, from Assumption 4, we can state that, for every x0
a and xeco

s ,

q̄′ (x0
a − xeco

s ,u0
a − ueco

s
)
≥ VO

(
x0

a,u0
a
)
− VO

(
xeco

s ,ueco
s

)
≥ 𝛾 ||x0

a − xeco
s || .

Therefore,
𝜕W
𝜕𝛽

||||𝛽=1
≥ −g′

(
x0

a − xeco
s

)
+ 𝛾 ||x0

a − xeco
s || ≥ − |g| ||x0

a − xeco
s || + 𝛾 ||x0

a − xeco
s ||

= (𝛾 − |g|) ||x0
a − xeco

s || .
Since 𝛾 > |g| and |x0

a − xeco
s | > 0, hence 𝜕W

𝜕𝛽
|𝛽=1 > 0.

This means that there exists a 𝛽 ∈ [𝛽, 1) such that the cost to move the system from x0
a to x̂s, W (𝛽), is smaller than

the cost to remain in x0
a, which is given by W(1) = ṼO(x0

a,u0
a) = Ṽ 0

N(x
0
a, 𝑝).

This contradicts the optimality of the solution to problem P̃N(x, 𝑝), and hence, x = x0
a = xeco

s , and ū = u0
a = ueco

s ,
which proves the lemma.

Remark 5. Summarizing, this lemma proves that if the system converges to an equilibrium point x0
a, then this point

is the economically optimal steady state, xeco
s .

The following lemmas will be only stated here, but the interested reader may refer to the work of Ferramosca et al21 for
detailed proofs.

Lemma 6. (See lemma 1 in the work of Ferramosca et al21)
For all j = 0, … ,N − 1 and for all k ≥ 0, x̃( 𝑗; x(k + 1)) − x̄( 𝑗 + 1; x(k)) = A𝑗

Kw(k).

Lemma 7. (See lemma 2 in the work of Ferramosca et al21)
If x0( 𝑗; x(k)) ∈ 𝑗 and u0( 𝑗; x(k)) ∈ 𝑗 , then

x̃ (𝑗 − 1; x(k + 1)) ∈ 𝑗−1, ∀ 𝑗 = 0, … ,N,
ũ (𝑗 − 1; x(k + 1)) ∈ 𝑗−1, ∀ 𝑗 = 1, … ,N − 1.

Lemma 8. (Recursive feasibility of the terminal constraint. See lemma 4 in the work of Ferramosca et al21)
For all k ≥ 0,

(x̄0 (N; x(k)) , x0
a(k),u0

a(k)) ∈ Ωt.
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